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Generalized chest CT and lab curves 
throughout the course of COVID‑19
Michael T. Kassin1,3,16, Nicole Varble1,2,16, Maxime Blain1,16, Sheng Xu1, Evrim B. Turkbey3, 
Stephanie Harmon4,5,14, Dong Yang6, Ziyue Xu6, Holger Roth6, Daguang Xu6, Mona Flores7, 
Amel Amalou1, Kaiyun Sun8, Sameer Kadri9, Francesca Patella10, Maurizio Cariati10, 
Alice Scarabelli12, Elvira Stellato12, Anna Maria Ierardi11, Gianpaolo Carrafiello11, Peng An13, 
Baris Turkbey4,14 & Bradford J. Wood1,3,4,15*

A better understanding of temporal relationships between chest CT and labs may provide a reference 
for disease severity over the disease course. Generalized curves of lung opacity volume and density 
over time can be used as standardized references from well before symptoms develop to over a month 
after recovery, when residual lung opacities remain. 739 patients with COVID-19 underwent CT and 
RT-PCR in an outbreak setting between January 21st and April 12th, 2020. 29 of 739 patients had 
serial exams (121 CTs and 279 laboratory measurements) over 50 ± 16 days, with an average of 4.2 
sequential CTs each. Sequential volumes of total lung, overall opacity and opacity subtypes (ground 
glass opacity [GGO] and consolidation) were extracted using deep learning and manual segmentation. 
Generalized temporal curves of CT and laboratory measurements were correlated. Lung opacities 
appeared 3.4 ± 2.2 days prior to symptom onset. Opacity peaked 1 day after symptom onset. GGO 
onset was earlier and resolved later than consolidation. Lactate dehydrogenase, and C-reactive 
protein peaked earlier than procalcitonin and leukopenia. The temporal relationships of quantitative 
CT features and clinical labs have distinctive patterns and peaks in relation to symptom onset, which 
may inform early clinical course in patients with mild COVID-19 pneumonia, or may shed light upon 
chronic lung effects or mechanisms of medical countermeasures in clinical trials.
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Plt	� Platelet
PT	� Prothrombin time
PT(INR)	� Prothrombin time and international normalized ratio
RBC	� Red blood cell count
TBil	� Total bilirubin
UA	� Uric acid
WBC	� White blood cell count

The role of chest Computed Tomography (CT) in the SARS-CoV-2 pandemic is highly dependent upon local 
practice patterns and available resources 1. Scarce data are available on the clinical or research utility of applying 
tools prospectively for quantitative metrics in patients presenting with pre-symptomatic coronavirus disease 
2019 (COVID-19) opacities. The role of imaging in COVID-19 is ill-defined, perhaps in part due to a lack of 
widespread uniform use, which limits size and availability of data 2. Although rational, the World Health Organi-
zation (WHO) guidance for chest imaging for COVID-19 is based on expert opinion and low-certainty evidence. 
Additional evidence would thus be welcome regarding its clinical utility 3. The lower sensitivity of RT-PCR in 
early and pre-symptomatic disease as well as imperfect and variable turn around times highlights the potential 
impact of additional tests with immediate readouts, such as targeted CT in high risk exposed populations 4. The 
cohort presented here showed pre-symptomatic CT findings, which adds experiential evidence towards support 
of the feasibility of CT utility. Although no major therapeutic or vaccine clinical trials implement CT response 
criteria, a standardized CT quantification tool could possibly detect relevant signals of response or early disease 
modulation after medical countermeasures. Specifically, the number of affected lobes, extent of well aerated lung, 
or consolidation at baseline chest CT may predict outcomes in selected populations 5,6. Quantification of CT 
opacities mirrors clinical severity in patients with COVID-19 7–9, however standardized, automated and validated 
assessment tools have not been widely applied to clinical practice nor to clinical trials of COVID-19 therapeutics.

Prior work has evaluated the temporal dynamics of CT features in patients with COVID-19, however, thus 
far has been focused on post-symptomatic timepoints 10–13. Far less is known about the CT appearance in the 
pre-symptomatic period, nor how this relates to subsequent overall course of the disease. Knowledge of the 
typical chronology and sequence of the lung opacity volumes and subtypes may inform treatment decisions. 
Further, deviations from expected patterns before or after symptom onset may carry prognostic or early treatment 
implications. Ground glass opacities (GGO) are the most common and typical feature on chest CT in patients 
with COVID-19, however, opacity type and pre-symptomatic CT findings remain incompletely defined 13–15.

Quantitative analysis of sequential CTs over time may characterize COVID-19 and better inform efforts to 
develop drugs or to assess response longitudinally over the course of a hospitalization or in chronic disease. 
In this study we aimed to evaluate the dynamics of chest CT opacity subtypes in COVID-19 before and after 
symptom onset. Additionally, the dynamic correlation of symptoms, laboratory data, and CT opacity metrics 
over the course of infection may provide a standardized reference.

Results
Descriptive CT findings.  In total, 121 chest CTs were analyzed from 29 patients. Each patient had an aver-
age of 4.2 ± 1.5 CTs (range 2–8 CTs). COVID-19 related opacity was present in all patients at some point during 
infection and opacities were present in 87% of the CTs (105/121). The main opacity subtype encountered was 
GGO (84%, 102/121), followed by consolidation (59%, 71/121), atelectasis (27%, 33/121), sub-pleural reticula-
tions (10%, 12/121), and crazy paving (7%, 8/121). Pleural effusion was noted in 10% (12/121).

The opacities were bilateral in 77% (81/105), diffuse upper and lower in 63% (66/105), inferior lobes only in 
32% (34/105), and only superior lobes involvement in 4% (4/105). Opacities often had mainly a peripheral dis-
tribution (96%, 101/105) or less commonly central and peripheral distribution (7%, 7/105). The average number 
of distinct opacity foci was 3.9 (range 1–13).

Segmentations clearly and independently delineated total lung with AI, and overall opacity, GGO, and con-
solidation with manual segmentation (Fig. 1). The AI total lung segmentations were verified by radiologists as 
subjectively accurate, with no major inaccuracies identified (Fig. 1a).

Dynamic curves for percent lung opacity.  Dynamic curves for percent COVID-19 lung opacity in this 
population demonstrated the disease course on CT over time (Fig. 2, Table 1). Standard deviations are visually 
appreciated on detailed curves that define the range of the data with upper and lower bounds (Fig. 2b). Individ-
ual patient curves are displayed in Supplemental Figure S1. CT data resides in a public repository “The Cancer 
Imaging Archive” (https://​www.​cance​rimag​ingar​chive.​net/).

Lung opacities were observed an average of 3.4 ± 2.2 days prior to symptom onset (maximum seven days). 
Both GGOs and consolidation were present on initial CT in all patients. A majority of lung opacity volume was 
classified as GGO (3.6 ± 0.4.0% of lung volume and 87% of all opacity volume).

The maximum percent lung involvement was found 0.6 ± 3.1 days after symptoms onset. Similarly, the max-
imum percent involvement of GGOs was found 0.7 ± 4.1 days after symptom onset. The maximum percent 
involvement of consolidation was found slightly later, at 1.3 ± 3.0 days after symptom onset. At its peak, percent-
age lung involvement was 6.3 ± 5.0%. Peak GGO and consolidation percentages were 5.1 ± 4.5% and 1.9 ± 1.2%, 
respectively. Whole lung and opacity subtype segmentations over time were reconstructed and visualized in 
Fig. 3.

Opacities (primarily GGO) persisted in a diminished fashion on the last CT (in 14 of 29 patients), with an 
overall percent lung opacity average of 1.1 ± 2.5% at an average of 46 ± 13 days after symptom onset. The percent-
age of GGO and consolidation involvement decreased by half of the peak 25 and 6 days later, respectively. At the 
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last follow-up, GGOs accounted for 1.0 ± 2.3% of the lung 44 ± 17 days after symptom onset and consolidation 
accounted for 0.1 ± 0.1% at 33 ± 19 days after symptom onset.

Dynamic curves for COVID‑19 lesion attenuation.  Dynamic curves for lesion attenuation during the 
disease time course were generated (Fig. 4a, Table 2). Standard deviations on detailed curves defined the range 
of the data with upper and lower bounds (Supplemental Figure S2). Data was extrapolated to the attenuation 
of the healthy lung (− 862 ± 56 HU). Only three data points were used to generate the dynamic consolidation 
attenuation curve as it was less prevalent. The maximum attenuation of the overall opacities occurred the same 
day of symptom onset (0.0 ± 3.1 days). The maximum GGO attenuation occurred just before symptom onset at 
− 0.2 ± 3.4 days, while consolidation attenuation peaked later at 1.6 ± 5.1 days.

Dynamic curves for laboratory measurements.  From all laboratory measurements, procalcitonin 
(PCT), white blood cell count (WBC), lactate dehydrogenase (LDH), and c-reactive protein (CRP) were found 
to have similar dynamic curves to percent lung opacity (increase after infection, sharp peak, and decline) and 
were selected for demonstration of the curves. The average time between the first laboratory test to last labora-
tory test was 36 ± 22 days. In total, PCT and WBC were measured an average of 3.6 ± 1.3 times per patient. LDH 
and CRP were measured a total of 30 and 37 times respectively with an average of 1.2 ± 1.0 measurements per 
patient for both.

The normalized curves for PCT, WBC (inverted), LDH, and CRP over time were generated (Fig. 4b, source 
data Table 3).

Standard deviations on detailed curves define the range of the data with upper and lower bounds (Sup-
plemental Figure S3). The peaks of PCT and WBC (inverted) were seen 9.2 ± 10.6 and 4.1 ± 1.3 days respec-
tively after symptom onset. In contrast, peak LDH and CRP occurred at symptom onset (at − 0.3 ± 1.0 days 
and − 0.5 ± 0.8 days, respectively). Peaks values for PCT, WBC, LDH, and CRP were 0.295 ± 0.061 ng/mL, 
4.1 ± 1.3 × 109/L, 314 ± 104 mmol/L, and 40.8 ± 30.4 mg/L, respectively. Minimum neutrophil and lympho-
cyte counts were 2.4 ± 1.1 × 109/L at 3.2 ± 5.9 days and 1.1 ± 0.4 × 109/L at 2.6 ± 6.2 days after symptom onset, 
respectively.

In this early disease cohort, CT opacities and certain labs colocalized and peaked very near the day of symp-
tom onset. More sequential data points were available for WBC and PCT (average of 3.7 tests per patient), and 
therefore the same methodology for curve formation was applied as that for CT analysis. The dynamic curves 
of LDH and CRP however required data aggregation and pooling to extrapolate curves based upon pooling of 
different patients’ data, due to the limited data points available for individual patients (average 1.2 data point 
per patient). Therefore, 3-day increments were aggregated and averaged until the 10th day after symptom onset 
for the first points, and then all data points over 10 days were aggregated to derive the last point of the curve.

Correlation analysis.  A correlation analysis between CT findings and laboratory measurements found 
a strong correlation between LDH and percent lung opacity (r = 0.68, p = 0.03) and percent GGO (r = 0.65, 
p = 0.04), between CRP and opacity attenuation (r = 0.60, p = 0.01) and GGO attenuation (r = 0.70, p = 0.003), 
and between lymphocyte percentage and percent lung opacity (r = − 0.26, p = 0.05) and percent consolidation 

Figure 1.   Axial CT images of COVID-19 opacity in right upper lobe, resulting in a part of GGO and a part 
of consolidation. (a) Non-contrast axial chest CT passing through right upper lobe opacity. (b) Overlaid AI 
whole lung segmentation (green). (c) Overlaid GGO segmentation alone (blue). (d) Overlaid consolidation 
segmentation alone (red).
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(r = − 0.31, p = 0.02). A correlation diagram heat map of all investigated CT features and laboratory measure-
ments and a detailed correlogram of features with strong correlation coefficients low probability coefficients are 
given in Fig. 5.

Referencing dynamic curve for percent lung opacity in one patient.  Mapping a single pre-selected 
external example patient to the CT reference curve for mild COVID-19 disease demonstrated the feasibility of 
using the dynamic curve as a clinical reference tool to display clinical course severity over time (Fig. 6). Devia-
tion of the CT percent opacity from the reference curve for mild disease is shown in one example, with limited 

Figure 2.   Dynamic curves of percent lung opacities for initially asymptomatic patients with COVID-19. 
(a) COVID-19 lung opacities, generalized from 29 patients with sequential CTs. Percent COVID-19 lung 
involvement (black) and opacity subtypes, including GGO (blue) and consolidation (red) are shown. (b) 
Detailed curves showing total percent COVID-19 lung opacity and subtype (GGO and consolidation). The 
upper and lower bounds and error bars represent the standard deviations. Data points are shown at the 4 
generalized time points where percent lung involvement was calculated and estimated.
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significance. This applied example of pre-selected severe disease in an independent sight-unseen demographic 
within another outbreak setting is displayed as a deviation from the generalized curve for mild to moderate 
disease. External validation with correlative outcomes was not performed. An applied example is presented for 
dynamic lab and imaging referencing to generalized curves, to show theoretical applied use of such curves (Sup-
plemental video).

Discussion
Clearer definition of the clinical manifestations of COVID-19 over time could provide an essential reference 
point and measurement system for future applied studies. CT opacities pre-dated symptom onset in COVID-19 
by an average of three days in this highly selected cohort of early disease in a high prevalence outbreak setting. 
Opacity volume, subtype and attenuation curves follow a parallel pattern to key clinical and laboratory factors 16. 
In this study, the high number of CT scans per patient (average = 4.2) adds strength to the sequential CT temporal 

Table 1.   Data used to generate the dynamic curves for percent lung opacity.

Day
% Lung 
involvement

# Of patientsAverage SD Average SD

Total
% Lung opacity

First CT Scan  − 3.4 2.2 4.1 4.3 29

Maximum Opacity 0.6 3.1 6.3 5.0 29

Next CT after maximum opacity 6.3 5.6 5.2 4.8 18

Minimum opacity/last CT 45.8 13.1 1.1 2.5 25

% GGO
Lung involvement

First CT Scan  − 3.4 2.2 3.6 4.0 28

Maximum % GGO 0.7 4.1 5.1 4.5 28

Next Scan 8.2 5.7 4.4 4.1 17

Minimum % GGO/last CT 43.6 16.5 1.0 2.3 25

% Consolidation
Lung involvement

First CT Scan (with consolidation)  − 3.4 2.2 0.6 0.7 27

Maximum % GGO 1.3 3.0 1.9 1.2 26

Next Scan 7.3 5.8 0.7 0.8 16

Minimum % GGO/last CT 33.0 19.1 0.1 0.1 23

Figure 3.   3D model display of the evolution of COVID-19 opacities of 34 years old male from pre-symptomatic 
stage to convalescence. Symptom onset is day 0. Green shows 3D whole lung segmentation (derived from an AI 
model), blue shows GGO lesions, and red shows consolidation. The opacity volume (blue plus red) divided by 
the whole lung volume (green) is the percent lung opacity. Note normal hilar anatomy (dark green).
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analysis model. Prior serial CT analyses have generally not included > 2 multiple CTs in the same patient, as 
seen here. A reference curve built upon same-patient data is useful to patients with even just one CT at various 
timepoints in the disease course. In June 2020 the World Health Organization (WHO) clarified indications for 
imaging as when: PCR is unavailable or delayed, PCR is negative but with a high index of suspicion, patients at 
high risk, over 60 years old, or with comorbidities, for triage to ward or ICU, hospitalized patients who progress 
or are unresponsive to therapies, as well as patients with suspicion for pulmonary embolus or pulmonary fibrosis 

Figure 4.   Dynamic curves of lesion attenuation and laboratory measurements. (a) Dynamic curves for 
COVID-19 lesion attenuation or density. The total lesion attenuation (black) and subtypes (GGO = blue, 
consolidation = red) are shown overtime and were generalized from 29 patients with sequential CTs. The dotted 
lines show the data extrapolated to normal lung attenuation. (b) Dynamic laboratory measurements over time 
for COVID-19-positive patients. The generalized and normalized curves for PCT (purple), 1-WBC (gray), LDH 
(yellow), CRP (red) with total percent lung involvement (black).

Table 2.   Data used to generate the dynamic curves for COVID-19 lesion attenuation.

Day

Lesion 
attenuation 
(HU)

# Of patientsAverage SD Average SD

Overall opacity attenuation

First CT Scan  − 3.4 2.2  − 590 104 29

Maximum Opacity 0.0 3.1  − 511 116 28

Next CT after maximum opacity 5.4 4.1  − 634 108 15

Minimum opacity/last CT 25.7 17.2  − 724 74 19

GGO attenuation

First CT Scan (with GGOs)  − 3.4 2.2  − 665 65 28

Maximum % GGO  − 0.2 3.4  − 639 54 27

Next Scan 3.6 4.0  − 682 62 17

Minimum % GGO/last CT 20.5 15.9  − 741 54 19

Consolidation attenuation

First CT Scan (with consolidation)  − 2.1 3.1  − 223 52 27

Maximum % GGO 1.6 5.1  − 174 50 21

Minimum % consolidation 6.3 5.6  − 219 91 11
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Table 3.   Data used to generate the dynamic curves for PCT, WBC, and neutrophil and lymphocyte count.

Day Value

# Of patientsAverage SD Average SD

PCT

First laboratory test  − 1.0 5.1 0.194 0.066 27

Maximum PCT 9.2 10.6 0.295 0.061 28

Next lab test after maximum 13.3 6.4 0.225 0.092 10

Last follow-up lab test 44.3 15.7 0.213 0.094 17

WBC (× 109/L)

First laboratory test  − 0.7 5.3 5.3 1.6 26

Minimum WBC 3.7 7.5 4.1 1.3 27

Next lab test after minimum 6.4 6.0 5.2 1.3 16

Last follow-up lab test 42.9 14.6 6.2 1.8 19

Neutrophil count (× 109/L)

First laboratory test  − 1.0 4.0 3.4 1.6 27

Minimum neut. count 3.2 5.9 2.4 1.1 28

Next lab test after minimum 6.8 5.6 3.5 1.5 18

Last follow-up lab test 42.7 15.9 3.5 1.7 20

Lymphocyte count (× 109/L)

First laboratory test  − 1.0 4.0 1.3 0.4 27

Minimum lymph. count 2.6 6.2 1.1 7.5 28

Next lab test after minimum 7.5 10.7 1.6 0.5 21

Last follow-up lab test 39.7 18.1 2.1 0.7 22

LDH (mmol/L)

Early screen (day − 4 to − 2)  − 3.0 0.8 213 62 7

Peak (day − 1 to 1)  − 0.3 1.0 314 104 4

Follow-up 1 (day 2 to 4) 2.6 0.8 239 69 5

Follow-up 2 (day 5 to 7) 6.4 0.6 189 26 5

Follow-up 3 (day 8 +) 19.0 6.1 181 37 9

CRP (mg/L)

Early screen (day − 4 to − 2)  − 3.4 0.8 17.4 11.2 5

Peak (day − 1 to 1)  − 0.5 0.8 40.8 30.4 6

Follow-up 1 (day 2 to 4) 2.8 1.0 28.5 30.4 9

Follow-up 2 (day 5 to 7) 6.5 0.6 3.7 2.8 6

Follow-up 3 (day 8 +) 18.9 13.2 0.8 7.2 9

Figure 5.   Correlation analysis between CT findings and laboratory measurements. (a) Correlation diagram 
heat map of all investigated CT features and laboratory measurements. Dots are present when p ≤ 0.05 and color 
represent either a positive (blue) or negative (red) correlation coefficient (r). (b) Detailed correlogram of features 
with strong correlation coefficients low probability coefficients (low p-values) .
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3. This represented an expansion of indications, compared to previous guidelines, enhancing the potential utility 
of a generalized reference to define an expected or mild disease course 1.

Standardized COVID-19 quantification of chest CT opacities may non-invasively and rapidly characterize 
disease, which may be valuable to investigate as one element of a composite outcome measure or predictive sur-
rogate endpoint in clinical trials. Sequential CT data presented here informs a generalized dynamic curve that 
may provide a useful reference for specific patients in a similar setting. Standardization by date of symptom onset 
allows comparison and characterization of patients who may not yet have declared themselves along a specific 
disease trajectory. Such comparisons to a generalized curve could theoretically help define risk, triage, resource 
allocation, or need for timely early medical countermeasures upon deviation from an expected normalized curve 
for similar patients. Such curves could also clarify presence and degree of chronic lung opacity, which could 
help decipher chronic lung effects. Residual opacities averaging 1.1% were present at last CT scan (average of 
46 days), which raise the concern for residual pulmonary impairment after convalescence, and certainly merit 
further investigation of chronic effects. Chest CT data in a research or clinical trial setting documents actual 
lung disease that might be otherwise hidden by clinical trials that only follows secondary effects and externally 
apparent clinical metrics.

GGOs are known to be the primary lung opacity in COVID-19. In the studied cohorts, consolidation peaked 
later in the patient course and resolved faster than GGO. Consolidation however is associated with a poorer 
outcome 6. This suggests mucous or debris within the alveolar air sacs associated with SARS-CoV-2 may evolve 
over the course of the infection and this change may be detected with CT. Residual opacity or scarring on CT 
persisted during convalescence an average of 46 days after symptom onset, which is of unknown significance. 
Future studies merit evaluation of outcomes associated with consolidation or other combination of patterns, and 
the potential predictive role for CT AI in triaging into specific treatment tracks.

The model used a combination of manual and automated deep learning segmentation. The segmentation 
of opacities was accomplished manually, whereas whole lung segmentation was achieved via a deep learning 
model. Indeed, manual whole lung segmentation in diseased lungs is very time consuming and impractical for 
radiologists, however almost instantaneous with deep learning artificial intelligence 8. Quantitative CT has been 
studied in COVID-19 as a tool for triage, disease progression and severity, outcome prediction, drug discovery, 
and laboratory test correlation 7,8,17–21. Any quantification tool applied over time adds another dimension of 
information to the evolving knowledge base in this viral pandemic.

With contextual and temporal referencing, CT data may define when and how a patient’s disease course 
might vary or diverge from that expected for an uncomplicated recovery (Fig. 6). CT could potentially also 
play an enhanced role in clinical trials by defining reproducible response criteria for triage, prognostication, or 
clinical alerts in the context of comparison to a standard dynamic curve or “reference nomogram”. The specu-
lative potential for such a tool may support development of a quantification tool as a part of the evaluation of 
similarly infected patients (with comparable variables of community prevalence, age, underlying lung disease 
or comorbidities, etc.).

Symptom and RT-PCR screening remain key metrics for re-opening or back to work (or school) strategies 
22. The potential role of imaging has evolved over the course of the pandemic, however no consensus exists on 
exact utility. In the event that RT-PCR testing is unavailable, delayed, or clinically suspected to be false negative, 
then imaging may play a role in the diagnosis of COVID-19 3. The WHO suggests not using chest imaging for 
diagnosis in asymptomatic contacts of patients with COVID-19 3 However, 27 of 29 patients here with contact 
or travel history had CT opacities averaging 3.4 days before symptom onset. Also, given the recent confusion 
over testing in the asymptomatic population 23, the fact that chest CT here showed infiltrates before symptoms 
developed merits further consideration. This is especially relevant, given the unmet need for evidence to guide 

Figure 6.   Demonstration of the utility of the dynamic curve using a pre-selected patient with severe COVID-
19. Percent lung opacity was calculated from 3 serial chest CT’s. Deviation from the mild to moderate 
disease curve  occurs  9 days after symptom onset, as a clinical "red flag".
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testing and imaging recommendations that are currently rated as low level of evidence, resulting in skepticism, 
heterogeneity of practice, and confusion 3.

The dataset presented here was somewhat atypical, in that almost all patients received CT and laboratory 
tests before symptoms developed. The poorly defined pre-symptomatic phase of the SARS-CoV-2 infections was 
explored here with CT and laboratory findings. Prior studies with CT data have pooled intervals and patients 
in order to generate curve estimates. In comparison, the present study utilizes multiple sequential CTs from 
the same patient in order to generate a higher fidelity dynamic curve, without the screening bias present from 
pooling data among patients.

Prior case reports have attempted to define patient-specific curves with serial CT 24. Pan et al. used a CT 
score based on the sum of each lobe score calculated from a range of percent involvement, and therefore grouped 
patients with different severity. In addition, their survivor group presented a great heterogeneity in patients’ 
severity with patients presenting CT severity score from 0 to 20, We feel that the use of total lung involvement 
percent might be more objective and reproducible way to describe severity, and less subject to reader subjec-
tivity 25. Peak CT opacities on the day of symptom onset is a markedly different finding than seen on previous 
studies, one of which reported a peak CT opacity 10 days post-symptom onset 8,11,12,26.One possible explanation 
is patient selection bias. The cohort presented here may be relatively healthy with early disease and early CT 
targeted testing practices, in a high prevalence outbreak setting, perhaps with light viral exposure loads, although 
speculative. The extent of disease may be correlated with the viral exposure levels and times 27, thus it is possible 
that other reports describe patients who are sicker, presented a higher viral load or simply were selected for CT 
only when they became increasingly ill. This last bias speaks to the variability in the timing of CT either early 
alongside RT-PCR, versus later as a critical care tool, for patients who do not improve in expected timeframes 
26. Our cohort included patients with mild to moderate initially asymptomatic pneumonia, where none required 
later ICU admission or intubation. Also, the average number of CT per patient was 4.2 in our study versus less 
than two for Wang et al. 26. More data points per patient is more internally controlled, thus less subject to model 
bias. In our study, patients served as their own controls, while in previous sequential studies, the evolution of 
opacity from symptom onset relied upon averaging the values within different time intervals. A supplemental 
analysis that compares previously reported methods to the present one is given in Supplemental Figure S4. These 
differences in methods dilutes individual patient dynamics and may explain why peak disease date is reported 
to be different in other studies.

Data aggregation and pooling certainly limit the reproducibility and reliability of those curves. Labs peaked 
close to the onset of symptoms and colocalized with peak opacities. Even though this methodology was based 
on only a few longitudinal datasets (8/20 for LDH), it has been widely used previously to display this type of 
sparse data 10.

This study is further limited by its retrospective nature and multiple major patient selection biases, which 
may preclude extrapolation to other patient populations. The total number of CTs (n = 121) and sequential 
laboratory tests (n = 105) is substantive, however 29 patients is a relatively small study. This single center study 
in a high prevalence setting limits generalizability or extrapolation to dissimilar or heterogeneous demograph-
ics. CTs were also not taken at standard times or uniform intervals with reference to symptom onset, and 2/29 
had no CT before symptom onset. Awareness of outbreak and exposures may have lowered the threshold for 
presentation. The dynamic curves contain several underlying assumptions about the normalization of the data 
over time in order to construct a curve with intermediate points. Backfitting the pre-symptomatic curves to 
match a known pre-symptomatic normal/zero disease is somewhat arbitrary, based upon historical average serial 
interval of SARS-CoV-2, which could make the pre-symptomatic curve unreliable when applied as a reference. 
The segmentation process focused on attenuation thresholds which separated consolidation from ground glass 
segmentations and included small intra-parenchymal vessels in both. The effect was not analyzed independently.

Clinical utility of the laboratory curves remains undefined. However, it is possible although speculative that 
the dynamic radiographic and laboratory curves together might be useful as reference for clinical triage for 
borderline patients as an extra factor in support of increased level of acute care (Supplemental video). Dynamic 
reference curves may inform the relative disease status of positive SARS-CoV-2 patients, in relation to the 
expected course of mild disease. For example, if a patient’s CT data point resides within the dynamic reference 
curves, then mild disease may be likely, and the patient might be expected to improve during convalescence. 
In this way, a derived percent lung opacity on CT is a window into the clinical course, with severity of disease 
expressed as graphical deviation from a generalized curve. Although speculative, if the CT data point maps well 
outside the reference curve, then the patient deviating from mild disease might require consideration of more 
advanced or critical care. One example patient was selected for having advanced disease and serial chest CTs, 
and was plotted in comparison to the generalized curve for opacities, in order to show this point. The disease 
course in this example case demonstrates how the reference curves might function to define deviation, in a 
similar fashion to plotting an infant’s or toddler’s height and weight percentile to identify deviations from normal 
(Fig. 6). This single pre-selected case was specifically chosen to demonstrate the ability of the reference curves 
to alert for deviation from mild disease. However, this work without further prospective studies does not prove 
anything besides feasibility.

In conclusion, COVID-19 opacities were observed multiple days prior to symptom onset, culminated on the 
day of symptom onset and slowly decreased during follow-up in an initially asymptomatic cohort with early and 
mild to moderate COVID-19. Compared to GGOs, consolidation peaked later and almost resolved quicker in 
this cohort. Metrics for comparison could provide valuable clinical reference data for early detection of deviation 
from the expected disease course, which could potentially inform early medical countermeasures, therapeutic 
decision making, or clinical trial response criteria. Characterization of correlative patterns in such readouts can 
potentially identify patients with COVID-19 pneumonia by defining extreme deviations from standardized 
curves for patients with mild disease. Certainly a better understanding of serial disease changes on CT and labs 
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over time could enlighten healthcare decision-makers facing off against an incompletely understood and novel 
virus in the context of medical countermeasures, chronic lung effects, or mutational variants.

Methods
Subjects.  Xiangyang NO.1 People’s Hospital Affiliated to Hubei University of Medicine, Xiangyang, Hubei, 
China (Approval #20200702150947) and University of Milan (Universita Degli Studi Di Milano) Research Board/
Institutional Review Board (IRB), Milan, Italy (#324-2020 and 562-2020 and #335-2020), provided approval for 
this study. The study was conducted in accordance with the local IRB and ethics approval for retrospective evalu-
ation and data sharing. Informed consent requirements were waived by both Xiangyang No. 1 People’s Hospital 
Affiliated to Hubei University of Medicine, Xiangyang, Hubei, China (Approval #20200702150947) and Univer-
sity of Milan (Universita Degli Studi Di Milano) Research Board/IRB, Milan, Italy (#324-2020 and 562-2020 and 
#335-2020), due to the nature of the retrospective observational study.

Patients were retrospectively selected from a larger cohort of 739 patients who underwent initial CT screening 
alongside RT-PCR on the day of presentation at point of care settings in Hubei Province, China. 710 patients 
had only one CT. 29 patients who received 2 or more chest CTs over the course of their care during the initial hit 
phase of the pandemic were identified and analyzed for this study. All patients were RT-PCR positive for SARS-
CoV-2. CT and laboratory tests were conducted between January 21, and April 12, 2020.

All 29 patients underwent screening with chest CT either because of a history of contact with patients with 
proven or suspected COVID-19 or because of high exposure risk due to travel in high prevalence regions (out-
break zones). The patients were predominately female (69%, 20/29), and were 41 ± 10 years old (range 25 to 
60 years old). The hospitalization period was 15 ± 4 days and the symptomatic period was 10 ± 2 days. The overall 
follow-up period, defined as the time from first CT or laboratory measurement to last CT or laboratory meas-
urement, was 50 ± 16 days (range 6 to 69 days). Demographic data, symptoms, and follow-up period is given in 
Table 4. The day of symptom onset was defined as day 0. Symptom onset was defined as the presence of fever 
(body temperature ≥ 37.8 °C) and one or more of the following: fatigue, headache, nasal discharge, sore throat, 
cough, myalgia, diarrhea, nausea or vomiting. Twenty-seven of 29 patients had a CT prior to symptom onset. 
No patients had a poor outcome or advanced disease requiring intervention. None of the 29 patients had a poor 
outcome or required intervention throughout the course of disease.

CT acquisition.  Non-contrast chest CT was obtained with 120 kVp (Toshiba and GE Healthcare). The scans 
were reconstructed as axial images with 0.873 × 0.873 mm pixel size and 512 × 512 matrix with a standard slice 
thickness of 5 mm.

CT interpretation.  For each patient, initial chest CT was obtained on the day of presentation and subse-
quent sequential CT scans were obtained in intervals during a follow-up of 2 to 69 days after the initial scan 
(average 43 ± 20 days). Two radiologists, blinded to the clinical and laboratory data, retrospectively and inde-
pendently reviewed each CT for the presence and location of opacities, type of opacity (GGO, consolidation, 
intralobular septal lines [“crazy paving”]), atelectasis, sub-pleural reticulation, mosaic attenuation, number of 
distinct opacities, upper/lower and peripheral/central location of the opacities, presence of pleural effusion, 

Table 4.   Demographic data and follow-up periods for patients with sequential CTs and COVID-19.

Number Percent

Female sex 20 69

Chinese nationality 29 100

Smoker 17 59

Contact or suspected contact with COVID-19 Pt 29 100

Most common symptoms

Fever (temperature ≥ 37.8 °C) 7 24

Fatigue 3 10

Myalgia 3 10

Nasal discharge or obstruction 3 10

Sore throat 3 10

Cough 3 10

Average SD Min Max Total

Age, years 41 10 25 60

Symptomatic period, days 15 4 10 29

Number of CTs 4.2 1.6 2 8 121

Number of lab tests 4.4 1.6 1 7 129

Total follow-up, days 50 16 6 69

CT follow-up range, days 44 20 2 69

Lab follow-up range, days 32 23 0 69
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bronchial wall thickening, tree-in-bud nodules, and pre-existing lung disease (including emphysema, bronchi-
ectasis, and fibrosis). All discrepancies were resolved by consensus review (174 out of 1815 entries).

Three radiologists manually annotated and segmented lung opacities (www.​itksn​ap.​org, www.​slicer.​org), 
and differentiated opacity subtypes of GGO and consolidation. Semi-automated (part manual) or assisted seg-
mentation was based on a Hounsfield Unit (HU) attenuation threshold initially, which was subsequently refined 
manually. The optimal threshold was manually defined between − 400 and − 300 HU 28–32. Volume and average 
density were extracted for: (1) overall opacity, (2) GGO alone, and (3) consolidation alone. Other opacities listed 
in “CT Findings” including atelectasis and subpleural reticulations, contributed to overall opacities but were not 
independently segmented. Healthy lung was segmented using a manual threshold set between − 750 and − 650 
HU, in order to extract the normal lung.

Deep learning model.  All chest CTs underwent automated whole lung segmentation using AI tools based 
on deep learning via a deep neural network model. The lung segmentation model was trained using a previously 
described model based upon an AH-Net architecture 33, and is publicly available as a part of the NVIDIA Clara 
Train SDK on NGC (NVIDIA Clara Train SDK v3 2020: https://​docs.​nvidia.​com/​clara/​tlt-​mi/​clara-​train-​sdk-​
v3.0/​index.​html#). The extent of lung involvement was determined by combining manual and AI-based seg-
mentation. Opacity volume (segmented manually) was divided by the overall lung volumes (segmented by AI 
model) to calculate percent lung involvement or percent COVID-19. AI-derived total lung segmentations were 
reviewed and verified by two radiologists.

Dynamic curves of COVID‑19 percent lung opacity and opacity attenuation.  Dynamic curves 
for percent COVID-19 lung opacity and opacity attenuation were generated using a maximum of 4 points, 
including: (1) the first pre-symptomatic CT, (2) the maximum percent opacity/lesion attenuation, (3) the next 
subsequent CT, and (4) the last follow-up CT. These timepoints reflect relevant points during the disease pro-
gression, including: (1) initial point of care at a timepoint nearest to the first suspected risk event such as travel 
or contact with COVID-19 infected individual, (2) near or at symptom onset, (3) one week after symptom onset, 
(4) approximately one month after convalesce. The generalized function over time was created using a smoothed 
polynomial curve between points. The number of patients that were included in the generation of the curves is 
noted in the tables. To make the curve continuous, the day of infection was assumed to be 5 days prior to the 
known day of symptom onset 27.

Laboratory data.  All laboratory tests were assessed at admission or early in the disease and, for some 
measurements, also during follow-up between 1 and 69 days after initial measurements (average 36 ± 22 days). 
Measurements included 20 different labs: Blood Urea Nitrogen, Creatinine, Aspartate transaminase, Alanine 
transaminase, Bilirubin, Lactate Dehydrogenase (LDH), Albumin (Alb), C-reactive Protein (CRP), Uric Acid 
(UA), Procalcitonin (PCT), Red Blood Cell (RBC), Hemoglobin (Hb), Platelet (Plt), White Blood Cell (WBC), 
Neutrophil, Lymphocyte, Monocyte, Eosinophil percentage and count, Activated Partial Thromboplastin Time 
(APTT), and Prothrombin time and International Normalized Ratio (PT(INT)). 279 individual lab measure-
ments were analyzed during the course of disease in the 29 patients. Twenty-six of 29 patients had laboratory 
tests prior to symptom onset.

Dynamic curves of laboratory data.  We analyzed all 20 laboratory measurements and identified PCT, 
WBC, LDH, and CRP for modeled curves. These dynamic curves for laboratory measurements were done in 2 
fashions. For laboratory measurements that were taken an average of 3 or more times per patient during follow-
up (PCT and WBC), laboratory curves were built similar to the opacity curves. Up to 4 data points were similarly 
defined, including: (1) the first laboratory measurement (2) the laboratory measurement of maximum or mini-
mum value (depending on the trend), (3) the next subsequent laboratory measurement, (4) the last follow-up 
laboratory measurement.

In addition, for measurements that had two or fewer tests per patient (LDH and CRP), data were aggregated 
and averaged in 3-day increments until the 10th day after symptom onset. For these data, the curve was built 
from average laboratory values from the following days: (1) early screening: day − 4 to − 2, (2) at symptom onset: 
day − 1 to 1, (3) follow-up 1: day 2 to 4, (4) second follow-up: day 4 to 6, 5) third follow-up: day 8 and greater.

Correlation analysis.  To explore the potential relationship between quantitative CT findings and laboratory test 
results, a Pearson’s correlation analysis was performed. The analysis was performed with CT findings and labora-
tory tests that were taken on the same day or one day apart.

Example of referencing to dynamic curve for percent lung opacity.  To demonstrate potential 
applied clinical utility of these curves, 1 patient from a different country with advanced disease was arbitrar-
ily selected retrospectively from a separate external dataset of patients with SARS-CoV-2 positive PCR who 
had undergone 3 serial CTs during a severe disease course. This single patient who developed advanced severe 
disease was retrospectively mapped to, and plotted on, the generalized dynamic reference curve for lung opacity 
percent over time for patients with mild to moderate disease (Fig. 6).

http://www.itksnap.org
http://www.slicer.org
https://docs.nvidia.com/clara/tlt-mi/clara-train-sdk-v3.0/index.html#
https://docs.nvidia.com/clara/tlt-mi/clara-train-sdk-v3.0/index.html#
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