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Creation and validation of a chest 
X-ray dataset with eye-tracking and 
report dictation for AI development
Alexandros Karargyris   1 ✉, Satyananda Kashyap1,4 ✉, Ismini Lourentzou1,2,4, Joy T. Wu1,4, 
Arjun Sharma1, Matthew Tong1, Shafiq Abedin1, David Beymer1, Vandana Mukherjee1, 
Elizabeth A. Krupinski   3 & Mehdi Moradi1 ✉

We developed a rich dataset of Chest X-Ray (CXR) images to assist investigators in artificial intelligence. 
The data were collected using an eye-tracking system while a radiologist reviewed and reported on 
1,083 CXR images. The dataset contains the following aligned data: CXR image, transcribed radiology 
report text, radiologist’s dictation audio and eye gaze coordinates data. We hope this dataset can 
contribute to various areas of research particularly towards explainable and multimodal deep learning/
machine learning methods. Furthermore, investigators in disease classification and localization, 
automated radiology report generation, and human-machine interaction can benefit from these data. 
We report deep learning experiments that utilize the attention maps produced by the eye gaze dataset 
to show the potential utility of this dataset.

Background & Summary
In recent years, artificial intelligence (AI) has been extensively explored for enhancing the efficacy and efficiency 
of the radiology interpretation and reporting process. As the current prevalent paradigm of AI is deep learning, 
many of the works in AI for radiology use large data sets of labeled radiology images to train deep neural net-
works to classify images according to disease classes. Given the high labor cost of annotating images with the areas 
depicting the disease, large public training datasets often come with global labels describing the whole image1,2 
without localized annotation of the disease areas. The deep neural network model is trusted with discovering the 
relevant part of the image and learning the features characterizing the disease. This limits the performance of 
the resulting network. Furthermore, the black-box nature of deep neural networks and lack of local annotations 
means that the process of developing disease classifiers does not take advantage of expert’s knowledge of disease 
appearance and location in medical images. The result is a multi-layer and nonlinear model with serious concerns 
with respect to the explainability of its output. Another well-studied concern is the generalization capability (i.e., 
when the model is deployed to infer the class labels for images from other sources or distributions) and how deep 
neural networks are affected by scanner differences and/or demographic changes3.

In the past five decades eye-tracking has been extensively used in radiology for education, perception under-
standing, and fatigue measurement (example reviews4–7:). More recently, efforts8–11 have used eye-tracking data 
to improve segmentation and disease classification in Computed Tomography (CT) by integrating them in deep 
learning techniques. With such evidence and with the lack of public datasets that capture eye gaze data in the 
chest X-Ray (CXR) space, we present a new dataset that can help improve the way machine learning models are 
developed for radiology applications and we demonstrate its use in some popular deep learning architectures.

This dataset consists of eye gaze information recorded from a single radiologist interpreting frontal chest 
radiographs. Dictation data (audio and timestamped text) of the radiology report reading is also provided. We 
also generated bounding boxes containing anatomical structures on every image and share them as part of this 
dataset. These bounding boxes can be used in conjunction with eye gaze information to produce more meaning-
ful analyses.

We present evidence that this dataset can help with two important tasks for AI practitioners in radiology:
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•	 The coordinates marking the areas of the image that a radiologist looks at while reporting a finding pro-
vide an approximate region of interest/attention for that finding. Without altering a radiologist’s routine, 
this approach presents an inexpensive and efficient method for generating a locally annotated collection of 
images for training machine learning algorithms (e.g., disease classifiers). Since we also share the ground 
truth bounding boxes, the validity of the eye-tracking in marking the location of the finding can be further 
studied using this dataset. We demonstrate the utilization of eye gaze in deep neural network training and 
show that performance improvements can be obtained.

•	 Tracking of the eyes can characterize how radiologists approach the task of reading radiographs. The study 
of the eye gaze of radiologists while reading normal and disease radiographs, presented as attention maps, 
reveals a cognitive workflow pattern that AI developers can use when building their models.

We invite researchers in the radiology community who wish to contribute to the further development of the 
dataset to contact us.

Methods
Figure 1 provides an overview of the study and data generation process. In this work we use the publicly available 
MIMIC-CXR Database2,12 in conjunction with the publicly available Emergency Department (ED) subset of the 
MIMIC-IV Clinical Database13. The MIMIC-IV-ED subset contains clinical observations/data and outcomes 
related to some of the CXR exams in the MIMIC-CXR database. Inclusion and exclusion criteria were applied 
to the patient attributes and clinical outcomes (via the discharge diagnosis, a.k.a the ICD-9 code) recorded in 
the MIMIC-IV Clinical Database13, resulting in a subset of 1,083 cases that equally cover 3 conditions: Normal, 
Pneumonia and Congestive Heart Failure (CHF). The corresponding CXR images of these cases were extracted 
from the MIMIC-CXR database2. A radiologist (American Board of Radiology certified with over 5 years of experi-
ence) performed routine radiology reading of the images using the Gazepoint GP3 Eye Tracker14 (i.e., eye-tracking 
device), Gazepoint Analysis UX Edition software15 (i.e., software for performing eye gaze experiments), a headset 
microphone, a desktop computer and a monitor (Dell S2719DGF) set at 1920 × 1080 resolution. Radiology read-
ing took place in multiple sessions (i.e., 30 cases per session) over a period of 2 months (i.e., March – May 2020).  
The Gazepoint Analysis UX Edition15 exported video files (.avi format) containing eye fixations and voice dic-
tation of radiologist’s reading along with spreadsheets (.csv format) containing eye tracker’s recorded eye gaze 
data. The audio was extracted from the video files and saved in wav and mp3 format. Subsequently, these audio 
files were processed with speech-to-text software (i.e., https://cloud.google.com/speech-to-text) to extract text 
transcripts along with dictation word time-related information (.json format). Furthermore, these transcripts 
were manually corrected. The final dataset contains the raw eye gaze signal information (.csv), audio files (.wav,.
mp3) and transcript files (.json).

Ethical statement.  The source data from the MIMIC-CXR and MIMIC-IV databases have been previously 
de-identified, and the institutional review boards of the Massachusetts Institute of Technology (No. 0403000206) 
and Beth Israel Deaconess Medical Center (2001-P-001699/14) both approved the use of the databases for 
research. We have also complied with all relevant ethical regulations regarding the use of the data for our study.

Data preparation.  Inclusion and exclusion criteria.  Figure 2 describes the inclusion/exclusion criteria used 
to generate this dataset. These criteria were applied to the MIMIC-IV Clinical Database13 to identify the CXR 
studies of interest. The studies were used to extract their corresponding CXR images from the MIMIC-CXR 
Database2.

Fig. 1  Flowchart of Study.
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We selected two clinically prevalent and high impact diseases, pneumonia and congestive heart failure (CHF), 
in the Emergency Department (ED) setting. We also picked normal cases as a comparison class. Unlike related 
CXR labeling efforts1, where the same labels are derived from radiology reports using natural language process-
ing (NLP) alone, the ground truth for our pneumonia and CHF class labels were derived from unique discharge 
ICD-9 codes (verified by our clinicians) from the MIMIC-IV-ED tables13.

This ensures the ground truth is based on a formal clinical diagnosis and is likely to be more reliable, given that 
ICD-9 discharge diagnoses are typically derived from a multi-disciplinary team of treating providers after having 
considered all clinically relevant information (e.g., bedside observations, labs) in addition to the CXR images. 
This is particularly important since CXR observations alone may not always be specific enough to reach a pneu-
monia or CHF clinical diagnosis. The normal class is determined by excluding any ICD-9 codes that may result in 
abnormalities visible on CXRs and also having no abnormal labels extracted from the relevant CXR reports using 
CXR report labeler16. The code to run the inclusion and exclusion criteria is available on our Github repository 
https://github.com/cxr-eye-gaze/eye-gaze-dataset.

Fig. 2  Sampling flowchart for selecting images for this study from the MIMIC-IV (the ED subset) and the 
MIMIC-CXR datasets.02,13.
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In addition, our sampling criteria prioritized the strategy for getting a good number of examples of disease 
features across a range of ages and sex from the source ED population. The goal is to support building and eval-
uation of computer vision algorithms that do not overly rely on age and sex biases, which may depict prominent 
visual features17, to predict disease classes.

Preparation of images.  Preparation of images The 1,083 CXR images (Inclusion/Exclusion section) were con-
verted from DICOM (Digital Imaging and Communications in Medicine) format to .png format: normalized 
(0–255), resized and padded to 1920 × 1080 to fit the radiologist’s computer’s monitor resolution (i.e., kept same 
aspect ratio) and to enable loading into Gazepoint Analysis UX Edition15.

A calibration image (i.e., resolution: 1920 × 1080 pixels) consisting of a white dot (30 pixels in radius) was gen-
erated (see Fig. 3 - left). The calibration image was presented to the radiologist randomly during data collection to 
measure eye gaze offset (see Fig. 3 - right).

The 1,083 images and calibration images were split into 38 numbered folders (i.e., ’01’, ’02’, ’03’, …’38’) with no 
more than 30 images per folder. These folders were then uploaded to IBM’s internal BOXTM and shared with the 
radiologist who finally downloaded and loaded them to Gazepoint Analysis UX Edition software15 to perform 
the reading (i.e., data collection).

Data collection.  Software and hardware setup.  The Gazepoint GP3 Eye Tracker14 is an optical eye tracker 
that uses infrared light to detect eye fixation. The Gazepoint Analysis UX Edition software15 is a software suite that 
comes along with the Gazepoint GP3 Eye Tracker and allows performing eye gaze experiments on image series.

The Gazepoint GP3 Eye Tracker14 was set up in the radiologist’s routine working environment on a Windows 
desktop PC (connected at USB 3 port). The Gazepoint Analysis UX Edition software15 was also installed on the 
same computer. Each session was a standalone experiment that contained up to 30 images for reading by the 
radiologist. The radiologist’s eyes were 28 inches away from the monitor. The choice of this number of images 
was intentional to avoid fatigue and interruptions and to allow for timely offline review and quality assurance 
of each session recordings by the rest of the team. Gazepoint Analysis UX Edition software15 allows for 9-point 
calibration which occurred in the beginning of each session. In addition, Gazepoint Analysis UX Edition15 allows 
the user to move to the next image either by pressing the spacebar on the keyboard when done with a case or by 
waiting for a fixed time. In this way the radiologist was able to move to the next CXR image when he was done 
with a given image, making the experiment easier.

Radiology reading.  The radiologist read 1,083 CXR images reporting in unstructured prose, same as what he 
would perform in his routine working environment. The goal was to simulate a typical radiology read with mini-
mal disruption from the eye gaze data collection process. The order of the CXR images was randomized to allow 
a blinded radiology read. Furthermore, we intentionally withheld the reason for exam information from our 
radiologist in order to collect an objective CXR exam interpretation based only on the available imaging features.

The original source MIMIC-CXR Database2 has the original de-identified free text reports for the same 
images, which were collected in real clinical scenarios where the reading radiologists had access to some patient 
clinical information outside the CXR image. The radiologists may even have had discussions about the patients 
with the bedside treating physician. Interpreting CXRs with additional patient clinical information (e.g., age, sex, 
other signs or symptoms) has the benefit of allowing radiologists to provide a narrower list of disease differential 
diagnosis by reasoning with their extra medical knowledge. However, it may also have the unintended effect 
of narrowing the radiology finding descriptions or subconsciously biasing what the radiologists look for in the 
image. In contrast, our radiologist only had the clinical information that all the CXRs came from an ED clinical 
setting.

By collecting a more objective read, we ensured that the CXR images used in this dataset have associated 
reports from both kinds of reading scenarios (read with and without patient clinical information). The goal is to 
broaden the range of possible technical and clinical research questions that future researchers working with the 
dataset may ask and explore.

The only clinical information that our radiologist was given when reading the CXRs in the eye gaze dataset 
was that the CXR exams were taken in the Emergency Department (ED) setting. The ED setting is broad and can 
include several common acute and chronic conditions that may be apparent on CXR images. The radiologist was 

Fig. 3  Calibration images presented during data collection with the radiologist’s fixation super-imposed. Left: 
Calibration image presented to radiologist during data collection, Right: Radiologist’s fixation super-imposed in red.
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blinded to the final diagnosis for the ED admission, asked to read the CXR as he would typically in an ED case, 
and the CXR image order was randomized to remove potential clinical patterns.

The eye gaze radiology read setting is set to contrast the routine radiology report setting under which the 
original MIMIC reports were collected because our intention is to add new value to the dataset. In the routine 
workflow, information not visible on the CXR images is often available to the radiologists. As a result, the reports 
are influenced by complex multimodal inference. We made our best attempt to separate the multimodal informa-
tion in the eye gaze dataset. A future direction of this work is to integrate all the multimodal clinical information 
available in this dataset in the experiments.

We observed that pneumonia and heart failure (disease terminologies) are described much less frequently by 
our radiologist in his eye gaze reports, which we attribute to the effect of creating the reports with just the image 
information and no prior patient clinical information. In contrast, the findings such as lung opacity, which do 
not require additional clinical information and can be deducted based on image appearance alone, are consistent 
between original reports and those produced during the eye gaze experiments.

Data post-processing.  At the end of each session the radiologist exported the following information from 
the Gazepoint Analysis UX Edition software15: (1) fixation spreadsheet (.csv) containing fixation information for 
each case in the session, (2) eye gaze spreadsheet (.csv) containing raw eye gaze information for each case in the 
session, and (3) videos files (.avi) containing audio (i.e., radiologist’s dictation) along with his eye gaze fixation 
heatmaps per session case (see Fig. 4). These files were uploaded and shared over IBM’s internal BOXTM sub-
scribed service. A team member reviewed each video for any technical quality issues (e.g., corrupted file, video 
playback stopped abruptly, bad audio quality).

Once data collection (i.e., 38 sessions) finished, the following post-processing tasks were performed.

Spreadsheet merging.  From all sessions (i.e., folders), the fixations spreadsheets were concatenated into a single 
spreadsheet file: fixations.csv, and the raw eye gaze spreadsheets were concatenated into a single spreadsheet file: 
eye_gaze.csv. Mapping of eye gaze and fixation from the screen coordinate system to the original MIMIC image 
coordinate system was also performed at this stage.

Detailed descriptions of these tables are provided in the Data Records section.

Audio extraction and transcript generation.  For each session video file (i.e., containing radiologist’s eye gaze 
fixations and dictation in .avi format, Fig. 4) the dictation audio was extracted and saved in audio.wav and 
audio.mp3 files. We used Google Speech-To-Text service https://cloud.google.com/speech-to-text to transcribe 
the audio (i.e., wav file) into text. The transcribed text was saved in transcript.json containing timestamps 
and corresponding words based on the API example found in https://cloud.google.com/speech-to-text/docs/
async-time-offsets. Furthermore, the transcripts were corrected manually by three (3) team members (all verified 
by the radiologist) using the original audio. An example of a transcript json is given in the Data Records section.

Segmentation maps and bounding boxes for anatomies.  Two supplemental datasets are also provided to enrich 
this dataset:

•	 Segmentation maps: Segmentation Maps Four (4) key anatomical structures per image were generated: 
i) left_lung.png, ii) right_lung.png, iii) mediastinum.png and iv) aortic_knob.png. 
These anatomical structures were automatically segmented by an internal segmentation model and then 

Fig. 4  Sample video exported from Gazepoint Analysis UX Edition15 showing a CXR case image with overlayed 
fixations.
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manually reviewed and corrected by the radiologist. Each image has pixel values 255 for anatomy and 0 for 
background. Figure 5 presents a sample case with its corresponding segmentation maps.

•	 Bounding boxes: An extension of a bounding box extraction pipeline18 was used to extract 17 anatomical bound-
ing boxes for each CXR image, which include: ‘right lung’, ‘right upper lung zone’, ‘right mid lung zone’, ‘right 
lower lung zone’, ‘left lung’, ‘left upper lung zone’, ‘left mid lung zone’, ‘left lower lung zone’, ‘right hilar structures’, 
‘left hilar structures’, ‘upper mediastinum’, ‘cardiac silhouette’, ‘trachea’, ‘right costophrenic angle’, ‘left costophrenic 
angle’, ‘right clavicle’, ‘left clavicle’. These zones cover the clinically most important anatomies on a Posterior Ante-
rior (PA) CXR image. These automatically produced bounding boxes were manually corrected (when required). 
Each bounding box is described by the top left corner point (XX1, YY1) and bottom right corner point (XX2, YY2) 
on the original CXR image coordinate system. Figure 6 shows an example of anatomical bounding boxes. The 
information for bounding boxes of the 1,083 images are contained in bounding_boxes.csv.

Researchers can utilize these two (2) supplemental datasets to improve segmentation and disease localization 
algorithms by combining them with the eye gaze data. In the Statistical analysis on fixations subsection we utilize 
the bounding_boxes.csv to perform statistical analysis between fixations and condition pairs.

Data Records
An overview of the released dataset with their relationships is provided in Fig. 7. Specifically, four (4) data docu-
ments and one (1) folder are provided:

	 1.	 master_sheet.csv: Spreadsheet containing MIMIC DICOM ids along with study clinical indication 
sentence, report derived finding labels, and ICD-9 derived outcome disease labels.

Fig. 5  Representative chest X-ray image and the corresponding segmentation maps. From Left to Right: (a) 
CXR image, (b) Right lung, (c) Left lung, (d) Aortic knob and (e) Mediastinum.

Fig. 6  Sample CXR case with 17 overlaying anatomical bounding boxes. The anatomies in the chest overlay one 
another on CXRs since the image is the 2D X-ray shadow capture of a 3D object.
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	 2.	 eye_gaze.csv: Spreadsheet containing raw eye gaze data as exported by Gazepoint Analysis UX Edi-
tion software15.

	 3.	 fixations.csv: Spreadsheet containing fixation data as exported by Gazepoint Analysis UX Edition 
software15.

	 4.	 bounding_boxes.csv: Spreadsheet containing bounding box coordinates for key frontal CXR ana-
tomical structures.

	 5.	 audio_segmentation_transcripts: Folder containing dictation audio files (i.e., mp3, wav), 
transcript file (i.e., json), anatomy segmentation mask files (i.e., png) for each dicom id.

The dataset is hosted at https://doi.org/10.13026/qfdz-zr6719. To utilize the dataset, the only requirement for 
the user is to obtain Physionet access to the MIMIC-CXR Database2 in order to download the original MIMIC 
CXR images in DICOM format. The dicom-id tag found throughout all the dataset documents maps records to 
the MIMIC CXR images. A detailed description of each data document is provided in the following subsections.

Master spreadsheet.  The master spreadsheet (master_sheet.csv) provides the following key 
information:

•	 The dicom-id column maps each row to the original MIMIC CXR image as well as the rest of the docu-
ments in this dataset.

•	 The study-id column maps the CXR image/dicom to the associated CXR report, which can be found from 
the source MIMIC-CXR dataset2.

•	 For each CXR study (study-id), granular radiology ‘finding’ labels have been extracted from the associated 
original MIMIC reports by two different NLP pipelines – first is the CheXpert NLP pipeline1, and second is 
an NLP pipeline developed internally16.

•	 Additionally, for each CXR study (study-id), the reason for exam indication has been sectioned out from 
the original MIMIC CXR reports. The indication sentence(s) tend to contain patient clinical information that 
may not otherwise be visible from the CXR image alone.

Table 1 describes in detail each column found in the master spreadsheet.

Fixations and eye gaze spreadsheets.  The eye gaze information is stored in two (2) files: a) fixa-
tions.csv, and b) eye_gaze.csv. Both files were exported by the Gazepoint Analysis UX Edition soft-
ware15. Specifically, the eye_gaze.csv file contains one row for every data sample collected from the eye 
tracker, while fixations.csv file contains a single data entry per fixation. The Gazepoint Analysis UX Edition 
software15 generates the fixations.csv file from the eye_gaze.csv file by averaging all data within a fixa-
tion to estimate the point of fixation based on the eye gaze samples, stopping when a saccade is detected. Table 2 
describes in detail each column found in the fixations and eye gaze spreadsheets.

Bounding boxes spreadsheet.  The bounding boxes spreadsheet contains the following information:

audio_segmentation_transcripts

Fixations Spreadsheet
fixations.csv

(48,959 rows x 35 columns)

Raw Eye Gaze Spreadsheet
eye_gaze.csv

(1,498,953 rows x 35 columns)

Master Spreadsheet
master_sheet.csv

(1,083 rows x 62 columns)

Bounding Boxes Spreadsheet
bounding_boxes.csv

(38,659 rows x 6 columns)

Anatomy Segmentations

left_lung.png, 
right_lung.png, 

mediastinum.png, 
aortic_knob.png

Transcript

transcript.json

Audio

audio.wav, audio.mp3

Data Type Color Description

: csv spreadsheet

: json file

: audio file

: image file

dicom_id

path

study_id

...

DICOM_ID

CNT

Time (in seconds)

...

DICOM_ID

CNT

Time (in seconds)

...

DICOM_ID

x1

y1

...

Fig. 7  Overview of Dataset.
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•	 dicom_id: DICOM ID as provided in MIMIC-CXR Database2 for each image.
•	 bbox_name: These are the names for the 17 rectangular anatomical zones that bound the key anatomical 

organs on a frontal CXR image. Each lung (right and left) is bounded by its own bounding box, as well as 
subdivided into common radiological zones (upper, mid and lower lung zones) on each side. The upper medi-
astinum and the cardiac silhouette (heart) bounding boxes make up the mediastinum anatomy. The trachea 
is a bounding box that includes the visible tracheal air column on a frontal CXR, as well as the beginnings 
of the right and left main stem bronchi. The left and right hilar structures contain the left or right main stem 
bronchus as well as the lymph nodes and blood vessels that enter and leave the lungs in the hilar region. The 
left and right costophrenic angles are key regions to assess for abnormalities on a frontal CXR. The left and 
right clavicles can have potential fractures to rule out, but are also important landmarks to assess whether the 
patient (hence the anatomies on the CXRs) is rotated or not (which affects the appearance of potential abnor-
malities). Some of the bounding boxes (e.g clavicles) could be missing for an image if the target anatomical 
structure is cut off from the CXR image’s field of view.

•	 x1: x coordinate for starting point of bounding box (upper left).
•	 y1: y coordinate for starting point of bounding box (upper left).
•	 x2: x coordinate for ending point of bounding box (lower right).
•	 y2: y coordinate for ending point of bounding box (lower right).

Please see Fig. 6 for an example of all the anatomical bounding boxes.

Audio, segmentation maps and transcripts.  The audio_segmentation_transcripts folder 
contains subfolders for all the cases in the study with case dicom_id as name. Each subfolder contains: a) the 
dictation audio file (mp3, wav), b) the segmentation maps of anatomies (png), as described in Segmentation maps 
and bounding boxes for anatomies subsection above, and c) the dictation transcript (json). The dictation tran-
script.json contains the following tags:

Column Name Description

dicom-id DICOM ID in the original MIMIC dataset2

path Path of DICOM image in the original MIMIC dataset

study-id Study ID in the original MIMIC dataset

patient-id Patient ID in the original MIMIC dataset

stay-id Stay ID in the original MIMIC dataset

gender Gender of patient in the original MIMIC dataset

anchor-age Age range in years of patient in the original MIMIC dataset

image-top-pad, image-bottom-pad, image-left-pad, image-right-pad Padding (top, bottom, left, right respectively) in pixels applied after 
re-scaling MIMIC image to 1920 × 1080

normal-reports
No affirmed abnormal finding labels or descriptors documented in 
the original MIMIC-CXR reports, extracted using an internal CXR 
labeling pipeline16.

Normal
No abnormal chest related final diagnosis from the Emergency 
Department (ED) discharge ICD-9 records AND have normal-
reports as defined above.

CHF
A clinical diagnosis of heart failure (includes ICD-9 for congestive 
heart failure, chronic or acute on chronic heart failure) from the ED 
visit as determined from the associated ICD-9 discharge diagnostic 
code.

Pneumonia
A clinical diagnosis of any lung infection (pneumonia) including 
bacterial and viral, as determined from the ICD-9 discharge diagnosis 
code of the ED visit.

dx1, dx2, dx3, dx4, dx5, dx6, dx7, dx8, dx9
The descriptive ICD-9 diagnosis name associated with the Emergency 
Room admission for which the CXR study was ordered. ICD-9 final 
diagnoses are used to identify the 3 classes in the eye gaze analysis 
and experiments.

dx1-icd, dx2-icd, dx3-icd, dx4-icd, dx5-icd, dx6-icd, dx7-icd, dx8-
icd, dx9-icd ICD-9 code for corresponding dx

consolidation, enlarged-cardiac-silhouette,linear-patchy-
atelectasis,lobar-segmental-collapse,not-otherwise-specified-
opacity,pleural-parenchymal-opacity, pleural-effusion-or-thickening, 
pulmonary-edema-hazy-opacity, normal-anatomically, elevated-
hemidiaphragm, hyperaeration, vascular-redistribution

Abnormal finding labels derived from the original MIMIC-CXR 
reports by an internal IBM CXR report labeler16. 0: Negative, 1: 
Positive

atelectasis-chx, cardiomegaly-chx consolidation-chx, edema-
chx,enlarged-cardiomediastinum-chx fracture-chx,lung-lesion-
chx,lung-opacity-chx,no-finding-chx,pleural-effusion-chx,pleural-
other-chx,pneumonia-chx,pneumothorax-chx,support-devices-chx

ChexPert1 report derived abnormal finding labels for MIMIC-CXR. 
0: negative, 1: positive, −1: uncertain

cxr_exam_indication

The reason for exam sentences sectioned out from Indication section 
of the original MIMIC-CXR reports1. They briefly summarize 
patients’ immediate clinical symptoms, prior medical conditions and 
or recent procedures that are relevant for interpreting the CXR study 
within the clinical context.

Table 1.  Master Spreadsheet.
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•	 full_text: The full text for the transcript.
•	 time_stamped_text: The full text broken into timestamped phrases:

•	 phrase: Phrase text in the transcript.
•	 begin_time: The starting time (in seconds) of dictation for a particular phrase.
•	 end_time: The end time (in seconds) of dictation of a particular phrase.

Figure 8 shows the structure of the audio_segmentation_transcripts folder, while Fig. 9 shows a 
transcript json example.

Technical Validation
We subjected two aspects of the released data to reliability and quality validation: eye gaze and transcripts.

The code for the validation tasks below can be found at https://github.com/cxr-eye-gaze/eye-gaze-dataset.

Validation of eye gaze data.  As mentioned in the Preparation of images subsection, a calibration image 
was interjected randomly within the eye gaze sessions to measure the error of the eye gaze on the X- and Y- axis 

Data Type/Column Name Description

DICOM-ID DICOM ID from original MIMIC dataset.

CNT The counter data variable is incremented by 1 for each data record sent by the server. Useful to determine if any 
data packets are missed by the client.

TIME(in secs)
The time elapsed in seconds since the last system initialization or calibration. The time stamp is recorded at the 
end of the transmission of the image from camera to computer. Useful for synchronization and to determine if 
the server computer is processing the images at the full frame rate. For a 60 Hz camera, the TIME value should 
increment by 1/60 seconds.

TIMETICK(f = 10000000) This is a signed 64-bit integer which indicates the number of CPU time ticks for high precision synchronization 
with other data collected on the same CPU.

FPOGX The X- coordinates of the fixation POG, as a fraction of the screen size. (0,0) is top left, (0.5,0.5) is the screen 
center, and (1.0,1.0) is bottom right.

FPOGY The Y-coordinates of the fixation POG, as a fraction of the screen size. (0,0) is top left, (0.5,0.5) is the screen 
center, and (1.0,1.0) is bottom right.

FPOGS The starting time of the fixation POG in seconds since the system initialization or calibration.

FPOGD The duration of the fixation POG in seconds

FPOGID The fixation POG ID number

FPOGV
The valid flag with value of 1 (TRUE) if the fixation POG data is valid, and 0 (FALSE) if it is not. FPOGV valid 
is TRUE ONLY when either one, or both, of the eyes are detected AND a fixation is detected. FPOGV is FALSE 
all other times, for example when the participant blinks, when there is no face in the field of view, when the eyes 
move to the next fixation (i.e., a saccade)

BPOGX The X-coordinates of the best eye POG, as a fraction of the screen size.

BPOGY The Y-coordinates of the best eye POG, as a fraction of the screen size.

BPOGV The valid flag with value of 1 if the data is valid, and 0 if it is not.

LPCX The X-coordinates of the left eye pupil in the camera image, as a fraction of the camera image size.

LPCY The Y-coordinates of the left eye pupil in the camera image, as a fraction of the camera image size.

LPD The diameter of the left eye pupil in pixels

LPS The scale factor of the left eye pupil (unitless). Value equals 1 at calibration depth, is less than 1 when user is 
closer to the eye tracker and greater than 1 when user is further away.

LPV The valid flag with value of 1 if the data is valid, and 0 if it is not.

RPCX The X-coordinates of the right eye pupil in the camera image, as a fraction of the camera image size.

RPCY The Y-coordinates of the right eye pupil in the camera image, as a fraction of the camera image size.

RPD The diameter of the right eye pupil in pixels

RPS The scale factor of the right eye pupil (unitless). Value equals 1 at calibration depth, is less than 1 when user is 
closer to the eye tracker and greater than 1 when user is further away.

RPV The valid flag with value of 1 if the data is valid, and 0 if it is not.

BKID Each blink is assigned an ID value and incremented by one. The BKID value equals 0 for every record where no 
blink has been detected.

BKDUR The duration of the preceding blink in seconds.

BKPMIN The number of blinks in the previous 60 second period of time.

LPMM The diameter of the left eye pupil in millimeters.

LPMMV The valid flag with value of 1 if the data is valid, and 0 if it is not.

RPMM The diameter of the right eye pupil in millimeters.

RPMMV The valid flag with value of 1 if the data is valid, and 0 if it is not.

SACCADE-MAG Magnitude of the saccade calculated as distance between each fixation (in pixels).

SACCADE-DIR The direction or angle between each fixation (in degrees from horizontal).

X_ORIGINAL The X coordinate of the fixation in original DICOM image.

Y_ORIGINAL The Y coordinate of the fixation in original DICOM image.

Table 2.  Fixations and Eye Gaze Spreadsheets.
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(Fig. 3). A total of 59 calibration images were presented throughout the data collection. We calculated the error by 
using the fixation coordinates of the last entry of each calibration image (i.e., the final resting fixation by the radi-
ologist on the calibration mark). The overall average percentage error on X, Y axes was calculated with (error_X, 
error_Y) = (0.0089, 0.0504), and std: (0.0065, 0.0347) respectively. In pixels, the same error was: (error_X, 
error_Y) = (17.0356, 54.3943), with std: (12.5529, 37.4257) respectively.

Validation of transcripts.  As mentioned in the Preparation of images subsection, transcripts were gener-
ated using Google Speech-to-Text https://cloud.google.com/speech-to-text on the dictation audio with times-
tamps per dictated word. The software produced two (2) types of errors:

•	 Type A: Incorrect identification of a word at a particular time stamp (please see example in Fig. 10).
•	 Type B: Missed transcribed phrases of the dictation (please see example in Fig. 11).

The transcripts were manually corrected by three (3) experts and verified by the radiologist. Both types of 
errors were completely corrected. For Type B error, the missing text (i.e., more than one (1) word) was added with 
an estimation of the begin_time and end_time manually. To measure the potential error in the transcripts, 
the number of phrases with multiple words in a single time stamp was calculated (i.e., Type B error):

•	 Total number of phrases: 19,499
•	 Number of phrase with single words: 18,434
•	 Number of phrases with multiple words: 1,065

= − = .Type B error 1 1065
19499

5 46%

Statistical analysis on fixations.  We performed t-test analysis to measure any significant differences between 
fixations for each condition within anatomical structures. More specifically, we performed the following steps:

	 1.	 We examined the average number of fixations made in each disease condition, and found that the expert 
made significantly more overall fixations in the two diseased conditions than in the normal condition 
(p < 0.01).

	 2.	 For each image we calculated the number of fixations that their coordinates (i.e., X_ORIGINAL, Y_ORIG-
INAL in fixations.csv) fall into each anatomical zone (bounding box) found in bounding_boxes.
csv.

	 3.	 We performed t-test for each anatomical structure between condition pairs: i) Normal vs. Pneumonia, ii) 
Normal vs. CHF, iii) Pneumonia vs CHF.

Figure 12 shows the duration of fixations per image for each disease condition and anatomical area, while 
Table 3 shows p-values from each t-test. Fixations on Normal images are significantly different from Pneumonia 
and CHF. More fixations are made for images associated with either the Pneumonia or CHF final diagnoses. 
Moreover, fixations for the abnormal cases are mainly concentrated in anatomical regions (i.e., lungs and heart) 
that are relevant to the diagnosis, rather than distributed at random. Overall, the fixations on Pneumonia and 
CHF are comparatively similar, although still statistically different (e.g., Left Hilar Structure, Left Lung, Cardiac 
Silhouette, Upper Mediastinum). These statistical differences demonstrate that the radiologist’s eye-tracking 

Fig. 8  audio_segmentation_transcripts folder structure.
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information provides insight into the condition of the patient, and shows how a human expert pays attention to 
the relevant portions of the image when interpreting a CXR exam. The code to replicate the t-test analysis can be 
found on our Github repository (https://github.com/cxr-eye-gaze/eye-gaze-dataset).

Usage Notes
The dataset is hosted at https://doi.org/10.13026/qfdz-zr6719 The user is also required to apply for access to 
MIMIC-CXR Database2 to download the images used in this study. Our Github repository (https://github.com/
cxr-eye-gaze/eye-gaze-dataset) provides a detailed description and source code (Python scripts) on how to use 
this dataset and reproduce the published validation results (e.g., post-processing, machine learning experiments, 
etc.). The data in the MIMIC dataset has been previously de-identified, and the institutional review boards of the 
Massachusetts Institute of Technology (No. 0403000206) and Beth Israel Deaconess Medical Center (2001-P-
001699/14) both approved the use of the database for research.

Fig. 9  Transcript example.
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Fig. 10  Top: Example of incorrect detection. Bottom: Manual correction.

Fig. 11  Top: Missed and incorrect transcript phrase. Bottom: Manually corrected phrase.

Fig. 12  Fixations vs. anatomical structures vs. conditions.

https://doi.org/10.1038/s41597-021-00863-5


13Scientific Data |            (2021) 8:92  | https://doi.org/10.1038/s41597-021-00863-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

Use of the dataset in machine learning.  To demonstrate the effectiveness and richness of the informa-
tion provided in this dataset, we performed two sets of machine learning multi-class classification experiments, 
with models designed to leverage the eye gaze data. These experiments are provided as dataset applications with 
simple and popular network architectures and they can function as a starting point for researchers.

Both experiments used the eye gaze heatmap data to predict the multi-class classification of the aforemen-
tioned classes (i.e., Normal, CHF, Pneumonia in Table 1) and compare model performances with and without the 
eye gaze information. Our evaluation metric was AUC (Area Under the ROC Curve). The first experiment incor-
porates information from the temporal eye gaze fixation heatmaps while the second experiment utilizes static eye 
gaze fixation heatmaps. In contrast to temporal fixation heatmaps, static fixation heatmaps are the aggregation of 
all the temporal fixations into a single image.

Temporal heatmaps experiment.  The first model consists of a neural architecture, where the image and the tem-
poral fixation heatmap representations are concatenated before the final prediction layer. We denote an instance 
of this dataset as X(i), which includes the image XCRX

i( )  and the sequence of m temporal fixation heatmaps 
= ={X X }j

m
eyegaze
(i) (i)

k 1, where k ∈ {1, …, m} is the temporal heatmap index. To acquire a fixed vector CRX rep-
resentation vCRX

i( ) , the image is passed through a convolutional layer with 64 filters of kernel size 7 and stride 2, 
followed by max-pooling, batch normalization and a dense layer of 64 units. The baseline model consists of the 
aforementioned image representation layer, combined with a final linear output layer that produces the classifica-
tion prediction. Additionally, for the eye gaze, each heatmap is passed through a similar convolutional encoder 
and then the sequence of heatmaps is summarized with a 1-layer bidirectional LSTM with self-attention20,21. We 
denote the heatmap representation as ueyegaze

i( ) . Here, the image and heatmaps representations are concatenated 
before passed through the final classification layer. Figure 13 shows the full architecture. We train with Adam22, 
0.001 initial learning rate and triangular schedule with fixed decay23, 16 batch size and 0.5 dropout24. The experi-
mental results in Fig. 14 show that incorporating eye gaze temporal information, without any preprocessing, fil-
tering or feature engineering, results in 5% AUC improvement for this prediction task when compared to the 
baseline model with just CXR image data as input.

Static heatmaps experiment.  The previous section demonstrated performance improvements over baselines, 
originating from the use of temporal fixation heatmaps on a simple network architecture. In this experiment, 
we pose the classification problem in the U-Net architecture framework25 with an additional multi-class clas-
sification block at the bottleneck layer (see Fig. 15). The encoding and bottleneck arm of the U-Net can be any 
standard pre-trained classifier without the fully connected layer. The two combined will act as a feature encoder 
for the classifier. The CNN decoder part of the network runs deconvolution layers to predict the static eye gaze 
fixation heatmaps. The advantage is that we can jointly train to output the eye gaze static fixation heatmap as well 
as predict the multi-class classification. Then, during testing on unseen CXR images, the network can predict 
the disease class and produce a probability heatmap of the most important locations pertaining to the condition.

We used a pre-trained EfficientNet-b026 as the encoder and bottleneck layers. The classification head was an 
adaptive average pooling followed by flatten, dropout24 and linear output layers. The decoder CNN consisted 
of three convolutions followed by upsampling layers. The loss function was a weighted combination (γ) of the 

Normal vs Pneumonia Normal vs CHF Pneumonia vs CHF

Cardiac Silhouette 0.000 0.000 0.002

Left Lung 0.000 0.000 0.008

Left Clavicle 0.023 0.110 0.406

Left Costophrenic Angle 0.000 0.000 0.171

Left Hemidiaphragm 0.000 0.000 0.195

Left Hilar Structures 0.000 0.000 0.000

Left Lower Lung Zone 0.000 0.000 0.169

Left Mid Lung Zone 0.000 0.000 0.008

Left Upper Lung Zone 0.000 0.000 0.676

Mediastinum 0.000 0.000 0.000

Right Lung 0.000 0.000 0.668

Right Clavicle 0.000 0.000 0.766

Right Costophrenic Angle 0.000 0.000 0.270

Right Hemidiaphragm 0.000 0.000 0.460

Right Hilar Structures 0.000 0.000 0.136

Right Lower Lung Zone 0.000 0.000 0.723

Right Mid Lung Zone 0.000 0.000 0.437

Right Upper Lung Zone 0.000 0.000 0.044

Spine 0.008 0.001 0.542

Trachea 0.397 0.367 0.097

Table 3.  p-values (at 3 decimal places) for each pair of condition and anatomy. p-values in bold demonstrate 
statistical significant differences.
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classification and the segmentation losses both of which used a binary cross-entropy loss function. The baseline 
network consisted of just the encoder and the bottleneck arm followed by the classification head.

The hyperparameter tuning for both the U-Net and the baseline classifier was performed using the Tune 
library27 and the resulting best performing hyperparameter combination is shown in Table 4. Figure 16 shows the 
U-Net and baseline AUCs. Both had similar performance. However, for this experiment, we are interested in see-
ing how network interpretability improved with the use of static eye gaze heatmaps. Figure 17 shows a qualitative 
comparison of the GradCAM28. The GradCAM approach is one of the common methods to visualize activation 
maps of convolutional networks. While the GradCAM-based heatmaps don’t clearly highlight the disease loca-
tions, we see clearly that the heatmap probability outputs of the U-Net highlight similar regions to what the static 
eye gaze heatmap shows.

With both experiments, we tried to demonstrate different use cases of the eye gaze data into machine learn-
ing. With the first experiment, we wanted to show how eye gaze data can be utilized in a human-machine setting 
where radiologist’s eye gaze information is fed into the algorithm. The second experiment shows how eye gaze 
information can be used for explainability purposes through generating verified activation maps. We intention-
ally did not include other modalities (audio, text) because of the complexity of such experiments and the scope of 

Fig. 13  Model architecture for leveraging temporal eye gaze information.

Fig. 14  Experimental results with and without temporal eye gaze information, i.e., (a). Temporal model versus 
(b). Baseline.
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this paper (i.e., dataset description). We hope that these experiments can serve as a starting point for researchers 
to explore novel ways to utilize this multimodal dataset.

Limitations of Study
Although this study provides a unique large research dataset, we acknowledge the following limitations:

	 1.	 The study was performed with a single radiologist. This can certainly bias the dataset (lacks inter-observer 
variability) and we aim to expand the data collection with multiple radiologists in the future. However, 
given the relatively large size and richness of data from various sources, i.e., multimodal, we believe that the 

Fig. 15  Block diagram of U-Net utilizing the static heatmap combined with a classification head.

ExperimentName Optimizer Initial Learning rate Scheduler23 Step Size Epochs Dropout24 γ

UNet Adam22 0.0091 2 35 0.5 0.417

Baseline Classifier Adam22 0.0065 8 20 0.0 N/A

Table 4.  Best performing hyper-parameters used for the static heatmap experiments found using the Tune27 
library.
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Fig. 16  AUC results with (a). U-Net and (b). Baseline classifier using static eye gaze information.
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current dataset already holds great value to the research community. Given the availability of the images 
and our code, researchers (including our team) can expand the dataset with more reads per image in the 
future. In addition, we have shown with preliminary machine learning experiments that a model trained 
to optimize on a radiologist’s eye-tracking pattern has improved diagnostic performance as compared to a 
baseline model trained with weak image-level labels.

	 2.	 The images used during the radiology reading were in ‘png’ format and not in DICOM. That’s because 
the Gazepoint Analysis UX Edition15 doesn’t support DICOM format. This had the shortcoming that the 
radiologist could not utilize windowing techniques. However, the png images were prepared using the 
windowing information in the original DICOM images.

	 3.	 This dataset includes only Posterior Anterior (PA) CXR images as selected from the inclusion/exclusion 
criteria (Fig. 2). This view position criterion was clinically chosen because of its higher quality images 
compared to Anterior Posterior (AP) CXR images. Therefore, any analysis (e.g., machine learning models 
trained on only this dataset) may suffer from generalizability to AP CXR images.

Code availability
Our Github repository (https://github.com/cxr-eye-gaze/eye-gaze-dataset) contains code (Python 3) for:

1.	 Data Preparation

•	 Inclusion and exclusion criteria on MIMIC dataset (see details in Inclusion and exclusion criteria section).
•	 Case sampling and image preparation for eye gaze experiment (see details in Preparation of images 

section).

2.	 Data Post -Processing

•	 Speech-to-text on dictation audio (see details in Audio extraction and transcript generation section).
•	 Mapping of eye gaze coordinates to original image coordinates (see details in Fixations and eye gaze 

spreadsheets section).
•	 Generate heatmap images (i.e temporal or static) and videos given eye gaze coordinates. The temporal 

and static heatmap images were used in our demonstrations of machine learning methods in Use of the 
Dataset in Machine Learning section.

Fig. 17  Qualitative comparison of the interpretability of U-Net based probability maps in comparison with 
GradCAM for a few example use cases. (a) CHF. The physician’s eye gaze tends to fall on the enlarged heart 
and hila, as well as generally on the lungs, (b) Pneumonia. The physician’s eye gaze predictably focuses on the 
focal lung opacity and (c). Normal. Because the lungs are clear, the physician’s eye gaze skips around the image 
without focus.
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3.	 Technical Validation
•	 Validation of eye gaze fixation quality using calibration images (see details in Validation of eye gaze data).
•	 Validation of quality in transcribed dictations (see details in Validation of transcripts section).
•	 The t-test for eye gaze fixations for each anatomical structure and condition pairs (see details in Statistical 

analysis on fixations section)

4.	 Machine Learning Experiments, as described in Use of the Dataset in machine learning section.
Software requirements are listed in https://github.com/cxr-eye-gaze/eye-gaze-dataset.
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