Skip to main content
. 2021 Feb 22;5(5):2000115. doi: 10.1002/gch2.202000115

Table 4.

Computational approaches to predict ligand–receptor binding and structure‐based drug design for COVID‐19 management

Nanomaterial Size Strategy Ligand–receptor binding results Potential application Ref.
Iron oxide nanoparticles N/r a) Nano‐mineral structure of Fe2O3 b) and Fe3O4 c) Interactions with S1‐RBD d) of SARS‐CoV‐2 e) Repurposing medication [ 75 ]
PolyP f) /Silica nanoparticles 210 ± 40 nm Optimized polyP f) encapsulated by SiNPs g) Inhibition of binding of ACE2 h) to S‐protein SARS‐CoV‐2 e) , at a physiological solution Immunologic agents [ 76 ]
Gold nanoparticles N/r a) Peptide‐functionalized gold nanoparticles More stable complex with RBD d) of SARS‐CoV‐2 e) than ACE2 h) . Antiviral agents [ 77 ]
Nano‐sized formazans 23.75 ± 7.16 nm Formazan analogs by dithizone and α‐haloketones reaction Inhibition of SARS‐CoV‐2 e) chymotrypsin‐like protease, at a physiological solution Antiviral agents [ 78 ]
L‐PLGA NPs i) N/r a) Optimized Remdesivir‐loaded L‐PLGA NPs i) Interactions Lisinopril‐ACE1 g) and remdesivir‐intracellular targeting protein RdRp j) Antiviral therapy [ 79 ]
Silver nanoparticles Artemisinin, Artemether, and Artesunate delivery by silver nanoparticles Interactions between negative charges of oxygen atoms of drugs with Ag surface Antiviral drugs [ 80 ]
a)

Not reported

b)

Iron(III) oxide or magnetite

c)

Iron(II,III) oxide or hematite)

d)

Chimeric spike‐receptor‐binding domain

e)

Novel coronavirus

f)

Ployp

g)

Silica nanoparticle

h)

Angiotensin‐converting enzyme inhibitor 1 or 2

i)

Lisinopril covalently grafted onto poly(lactic‐co‐glycolic acid) nanoparticles

j)

RNA‐dependent RNA polymerase.