Skip to main content
. 2021 Mar 1;35(2):755–770. doi: 10.1111/jvim.16083

TABLE 5.

The performance of a series of models predicting preclinical disease status

Multivariable logistic regression SVM Random forest GBM Logistic regression
Backward stepwise elimination Ridge regression Linear Polynomial RBF XGBoost NT‐proBNP
Train (n = 848) AUC (95% CI) 0.83 (0.80‐0.86) 0.85 (0.82‐0.88) 0.84 (0.81‐0.87) 0.84 (0.81‐0.87) 0.87 (0.84‐0.90) 0.97 (0.96‐0.98) 0.97 (0.96‐0.98) 0.78 (0.75‐0.82)
Accuracy 0.81 0.82 0.81 0.81 0.83 0.89 0.91 0.78
Bootstrap AUC (SD) 0.83 (0.017) 0.85 (0.016) 0.84 (0.017) 0.84 (0.017) 0.87 (0.015) 0.97 (0.005) 0.97 (0.006) 0.79 (0.019)
Test (n = 212) AUC (95% CI) 0.86 (0.81‐0.91) 0.88 (0.83‐0.93) 0.88 (0.84‐0.93) 0.88 (0.83‐0.93) 0.87 (0.82‐0.92) 0.85 (0.80‐0.91) 0.86 (0.82‐0.91) 0.77 (0.70‐0.84)
Accuracy 0.79 0.82 0.81 0.81 0.83 0.81 0.80 0.77
Brier score 0.133 0.125 0.125 0.126 0.127 0.136 0.133 0.158
Calibration in the large −0.034 0.135 0.268 0.244 0.097 0.098 0.088 −0.056
Calibration slope 1.129 1.441 1.492 1.454 1.383 1.275 1.217 0.950
n (variables required) 5 29 29 29 29 29 29 1
Interpretable Yes Yes No No No No No Yes

Notes: The 5 variables selected by backward stepwise elimination in the predictive logistic regression model were: appetite, body condition score, creatinine, murmur intensity, and NT‐proBNP. Model calibration was assessed using a locally weighted smoothing line (LOWESS) fitted to predicted probabilities plotted against the actual probability (prevalence) for each value. Support vector machine models were developed using linear, polynomial and radial basis function kernels. AUC, area under the receiver operating characteristic curve; CI, confidence intervals; GBM, gradient boosting machine; NT‐proBNP, N‐terminal propeptide of B‐type natriuretic peptide; RBF, radial basis function; SVM, support vector machine; XGBoost, extreme gradient boosting trees.