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Abstract

Surfactants – molecules and particles that preferentially adsorb to fluid interfaces – play a 

ubiquitous role in the fluids of industry, of nature, and of life. Since most surfactants cannot be 

seen directly, their behavior must be inferred from their impact on observed flows, like the buoyant 

rise of a bubble, or the thickness of a coating film. In so doing, however, a difficulty arises: 

physically distinct surfactant processes can affect measurable flows in qualitatively identical ways, 

raising the specter of confusion or even misinterpretation. This Perspective describes, in one 

coherent piece, both the equilibrium properties and dynamic processes of surfactants, to better 

enable the fluid mechanics community to understand, interpret, and design surfactant/fluid 

systems. Specifically, §2 treats the equilibrium thermodynamics of surfactants at interfaces, 

including surface pressure, isotherms of soluble and insoluble surfactants, and surface dilatational 

moduli (Gibbs and Marangoni). §3 describes surfactant dynamics in fluid systems, including 

surfactant transport and interfacial stress boundary conditions, the competition between surface 

diffusion, advection, and adsorption/desorption, Marangoni stresses and flows, and surface excess 

rheology. §4 discusses paradigmatic problems from fluid mechanics that are impacted by 

surfactants, including translating drops and bubbles, surfactant adsorption to clean and oscillating 

interfaces; capillary wave damping, thin film dynamics, foam drainage, and the dynamics of 

particles and probes at surfactant-laden interfaces. Finally, §5 discusses the additional richness and 

complexity that frequently arise in ‘real’ surfactants, including phase transitions, phase 

coexistence, and polycrystalline phases within surfactant monolayers, and their impact on non-

Newtonian surface rheology.
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1. Introduction

Interfaces between fluids appear throughout science, technology, industry and nature. 

Bubbles are generated by crashing waves in the ocean, by agitation in washing machines, 

during froth flotation in the mining and energy industries, and when super-saturated, 

dissolved gasses nucleate and grow bubbles in sodas, geysers, canned whipped cream, and 

during fermentations. Droplets of one liquid may be emulsified in a second immiscible 

liquid – as found in foods, consumer products, pharmaceuticals, oil production and 

processing. Sea surfaces may be smooth and glassy, or riddled with capillary waves.

Almost without exception, ‘surface-active’ molecules and/or particles – collectively called 

‘surfactants’ – control the initiation, dynamics, and behavior of these and other processes. 

The fluid mechanics community knows quite well that surfactants reduce the interfacial 

tension of liquid surfaces, thus lowering the energetic cost of blowing bubbles or inflating 

lungs. By extension, surfactant gradients are well-known to exert ‘Marangoni’ stresses on 

fluid interfaces, often driving or influencing the flow of the fluids that form them.

Surfactants also impact a variety of scientific and industrial processes through a number of 

processes and mechanisms that are not so clear. A simple example highlights the difficulties 

that arise: the buoyant rise of a small bubble through a Newtonian liquid (figure 1). A bubble 

of radius R with perfectly clean surface rises according to the classic Stokes drag 

calculation, imposing a no-shear stress boundary condition, to give

Uc = F
4πηR, (1.1)

where F is the drag and η is the shear viscosity of the fluid. In many cases, however, bubbles 

rise with velocities much closer to

Us = F
6πηR, (1.2)
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as one would expect for a rigid particle. What is the reason?

A vague acknowledgment that surfactants exist doesn’t help much. In fact, a number of 

phenomena may be responsible for the slower rise. Boussinesq (1913) originally surmised 

that the fluid/gas interface might itself have some surface excess viscosity, dissipating 

energy as it deforms (figure 1 b). A more modern understanding holds that such surface 

viscosities are established by the surfactants adsorbed to the interface. Even without surface 

rheology, bulk viscous stresses advect surfactant to the rear of the bubble as it rises (figure 1 

e), establishing a concentration gradient that drives a counter-acting Marangoni stress (figure 

1 f). The strength of this gradient depends on how the surfactant responds (Levich 1962) to 

being driven out of equilibrium. Insoluble surfactants diffusively fight to equalize their 

surface concentration (figure 1 g). Soluble surfactants adsorb and desorb from the interface 

to maintain an equilibrium (figure 1 h). If this equilibration process occurs slowly, gradients 

(and Marangoni stresses) are strong; conversely, rapid equilibration causes only weak 

gradients.

It is hard to imagine a simpler experiment than this – measuring the rise velocity of a nearly 

spherical bubble in a liquid, say as a function of bubble radius. If the measured velocity 

matches Uc from (1.1), one can conclude that the drop is clean. If, on the other hand, the 

measured velocity is slower than Uc, the discrepancy might be caused by (a) inherent surface 

viscosity; (b) surface viscosity due to a surfactant; (c) flow-induced Marangoni stresses from 

an insoluble surfactant; (d) flow-induced Marangoni stresses from a soluble surfactant, the 

magnitude of which might be determined by (i) adsorption/desorption rate kinetics; or (ii) 

surfactant diffusion across the bubble; (iii) convection-diffusion transport of surfactant 

across the bubble. However sensible figure 1 a may seem, the x-axis is often difficult to 

unambiguously determine.

This difficulty – of identifying mechanisms by which surfactants act – arises much more 

broadly, in systems and processes that are much more complicated. Surfactants influence 

film thicknesses in coating flows (Quéré 1999; Shen et al. 2002; Scheid et al. 2010), the 

dispersion of surface waves (Levich 1962; Lucassen & Hansen 1966), the dynamics and 

thicknesses of spreading films (Troian et al. 1990; Darhuber & Troian 2005), and the 

lifetime of foams and emulsions (Langevin 2000; Cohen-Addad et al. 2013). Mechanisms by 

which these effects arise can be complicated and varied. For example, surfactants may 

provide additional energetic barriers to droplet and bubble coalescence: surfactants on either 

side of a liquid film may repel each other sterically or electrostatically, and thus retard or 

arrest the thinning of the film (Bibette et al. 1992; Stancik et al. 2004). Alternatively, or 

additionally, dynamic mechanisms may also act: surfactants advected by thinning films 

establish gradients, and thus Marangoni stresses, that oppose the film drainage (Leal 2004). 

Monolayers of surfactant may introduce an excess surface viscosity, elasticity, or visco-

elasticity that retards or alters film thinning (Langevin 2000). Even more subtle, surfactant 

exchange between the bulk and the interface can mimic surface-excess (dilatational) 

viscosity, masking the physical origin of the dissipation (Levich 1962; Lucassen & van den 

Tempel 1972).
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Despite the controlling influence that surfactants exert over many fluid systems, the 

surfactants themselves are effectively invisible in most experiments, and to most techniques. 

Interpreting such experiments becomes challenging at best, given that physically distinct 

surfactant processes impact measurements in identical ways. In many ways, surfactants 

behave like ‘hidden variables’ that cannot be measured directly, yet influence fluid flows so 

profoundly that they must be determined in order to understand even gross, qualitative fluid 

phenomena. Surfactant distributions are thus typically inferred from observable fluid 

phenomena – e.g. measured fluid velocity fields, free surface dynamics, or Laplace pressure 

measurements. Connecting measurements and observations with the underlying surfactant 

fields, however, requires some model for the dynamics and mechanics of surfactant 

transport.

The fact that physically distinct surfactant processes can impact measurable properties in the 

same way – while the surfactants themselves elude detection – has caused significant 

confusion. For example, the origin and even existence of surface rheology has long been 

controversial (Scriven & Sternling 1960), with justifiable reason: if Marangoni stresses can 

explain an experimental observation, what is the need to invoke surface rheology? Why 

should a rightly skeptical scientist invoke some nebulous phenomenon, when established 

processes can explain measurements? At the same time, plausible mechanisms should not be 

dismissed out of hand: after all, however familiar a process may be, it might actually not be 

the one responsible for an observation.

Understanding these surfactant systems – and ultimately predicting and designing them – 

requires that these mechanisms and processes be differentiated unambiguously. This might 

be accomplished by specifically designing experiments to excite one process but not others: 

forcing a surfactant-laden interface to deform in a purely shear fashion – i.e., with zero 

compression or dilation – should not trigger Marangoni stresses, but would be sensitive to 

surface shear rheology. In systems with compression, it may not be easy or even possible to 

separate stresses cause by surface dilatational viscosity – an intrinsic material property – 

from an effective surface viscoelasticity due to surfactant adsorption and desorption, surface 

and bulk diffusion, aggregation or phase transitions, Marangoni flows, or some combination 

of these processes. Knowing how these processes scale with e.g. system geometry, fluid 

velocity, surfactant concentrations and properties, however, might suggest complementary 

experiments to tease apart these influences.

The objective of this Perspective, then, is to enumerate and elucidate the multitude of 

transport processes involved in the formation, flow and rheological response of surfactant-

laden interfaces, and therefore to better understand, interpret, predict, and design surfactant-

fluid flows and materials. By presenting these diverse phenomena in one comprehensive 

piece, described using the same language and within the same context, we hope to to 

empower the fluid mechanics and soft condensed matter physics communities to discern and 

differentiate between the various dynamics surfactants might cause. We also hope to connect 

the fluid mechanics community to the physical chemistry literature on surfactants, which is 

more steeped in equilibrium thermodynamics than typical fluid mechanicians have at their 

fingertips. To this end, this Perspective highlights paradigmatic examples chosen for their 
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pedagogic value in weaving a coherent and compelling picture of surfactant dynamics, rather 

than a comprehensive treatment of this vast literature.

In what follows, we treat surfactants from the physical-chemical standpoint, hopefully 

giving the fluid mechanician enough basis to connect with the surfactant literature. We will 

start with equilibrium arguments about surface tension and surface pressure, including the 

equilibrium properties of soluble and insoluble surfactants (§2). We then move on to 

dynamic processes – which tend to be more familiar to the fluid mechanician – and discuss 

the various ways in which surfactant is transported (§3). We will touch on surface rheology, 

which is relatively unfamiliar to both communities. Then, in §4, we show how even these 

most basic treatments give rise to remarkable richness in a series of paradigmatic problems: 

(§4.1) the buoyant translation of bubbles and drops; (§4.2) the oscillatory compression of 

soluble monolayers; (§4.3) surface wave dynamics; (§4.4) coating flows; (§4.5) foam 

drainage; and (§4.6) particle motion within surfactant-laden interfaces. These problems are 

chosen both for their ubiquity and importance, as well as the nontrivial and rich phenomena 

that appear even for the simplest assumptions for the processes described in §3. Finally, in 

§5, we present a variety of complexities that arise even in common surfactant systems – 

beyond the ‘simplest’ treatments in §2–4 – with the goal of highlighting areas where 

standard assumptions may not capture experimental observations, and to encourage new 

directions for research and innovation.

2. Interfaces at Equilibrium

2.1. Surface tension and its origins

Surface tension originates from the imbalance in mutually attractive forces felt by molecules 

near an interface. A liquid molecule in the bulk of a fluid is surrounded by neighbors of the 

same kind, all exerting attractive intermolecular forces. Molecules that are surrounded 

experience no net force, due to the symmetric distribution of their neighbors. A force is 

required to pull one molecule out of the bulk liquid, however: one must supply enough free 

energy to break the N ‘bonds’, each of strength ΔU.

A molecule near an immiscible fluid-fluid interface, however, feels a net force towards the 

fluid phase with higher intermolecular attractions. These interfacial molecules are in an 

energetically unfavorable state, and creation of additional interfacial area is expensive. A 

fluid system, therefore, minimizes interfacial area. The surface tension γ of a fluid-fluid 

interface is then the energy associated with creating excess area, which depends on the 

strength of intermolecular forces in both bulk phases. For example, a clean air-water 

interface has γ ≈ 0.072 J/m2, or equivalently, 72 mN/m.

The surface tension of a liquid can be estimated with the simple thought experiment depicted 

in figure 2. Each molecule in the bulk liquid has attractive interactions with N neighbors. 

Cleaving the bulk into two, and therefore creating two interfaces, requires N/2 bonds, each 

of energy ΔU, to be supplied for every interfacial molecule. Given Γs molecules per unit 

area, cleaving these bonds requires an energy per unit area
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γ NΔUΓs . (2.1)

Of course, molecules at the interface might relax and re-arrange, changing the energetics of 

interfacial molecules, but we neglect these small changes. The interaction energy NΔU must 

be O(kBT) in order for the bulk to be a liquid: if the interaction energy were much stronger 

than thermal energy (NΔU ≫ kBT), molecules would lock in place as a solid or glass, 

whereas if it were much weaker (NΔU ≪ kBT), the molecules would fly apart to form a gas. 

Ignoring numerical prefactors, this suggests a surface tension

γ kBTΓs . (2.2)

However crude, this approximation gives reasonable estimates: assuming water molecules to 

have an approxmate radius rw ~ 0.2 nm (based on the bulk density and molecular mass of 

water) suggests water molecules occupy the interface with density Γs ~ 9/nm2. Using kBT ~ 

4 pN nm at room temperature gives γ ~ 40 mN/m, which is within a factor of two of the 

measured value 72 mN/m. More generally, most liquids with approximately Angstrom radii 

thus have surface tensions in the tens of mN/m.

Surface tension can be alternatively interpreted in terms of the mechanical work done in 

stretching an interface. If the application of a force F within the plane of the interface 

changes its area by dA, the net change in energy is a sum of mechanical work done and the 

surface energy associated with surface tension:

dU = − Fdx + γdA . (2.3)

At mechanical equilibrium, dU = 0, and writing dA = ℓ dx where ℓ is the width of the 

interfacial layer, we find γ = F/ℓ. In other words, surface tension gives the force per unit 

length to create interfacial area.

Finally, γ can be thought of as a surface stress, pulling isotropically within the plane of the 

interface, and is therefore analogous to a negative 3D pressure. We will soon extend this 

analogy with 3D pressure, as surfactants exert a ‘surface pressure’, Π, against the surface 

tension γ of the clean interface.

Unlike bulk 3D fluids, however, surfaces are two-dimensional and can be curved, which 

modifies the static stress required to create additional area. For example, increasing the 

volume of a bubble of gas A suspended at equilibrium in liquid B increases the surface area 

of the bubble, and therefore its interfacial energy. If the bubble radius increases from R to R 
+ dR, the net free energy change is

dU = − pAdV A − pBdV B + γABdA, (2.4)

where γAB is the surface tension of the A–B interface, pA and pB are the pressures inside 

and outside the bubble, respectively, dVA = −dVB = 4πR2 dR and dA = 8πR dR. Imposing 

dU = 0 to satisfy mechanical equilibrium reveals the well-known Laplace pressure jump 

across the bubble surface,
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Δp = pA − pB = 2γAB
R . (2.5)

The larger the interfacial curvature or surface tension, the greater is the bulk fluid pressure 

required to maintain the system in equilibrium: smaller bubbles have a higher internal 

pressure. More generally, the Laplace pressure is given by the Young-Laplace equation (Leal 

2007):

Δp = γAB∇s ⋅ n, (2.6)

where n is the normal to the interface, pointing away from the fluid A, ∇s = (I−nn)·∇ is the 

surface gradient operator, and ∇s n is the mean curvature of the surface.

2.2. ‘Dirty’ interfaces: surfactants of different classes

Many surfactants are ‘amphiphilic’ – having both hydrophilic and hydrophobic parts – and 

adsorb to surfaces to minimize energetically unfavorable interactions. For instance, 

amphiphilic molecules adsorb to a water-air interface with their hydrophobic tails directed 

out of the water phase (figure 3). Adsorption to a surface comes at a cost, however: the bulk 

fluid offers a wider range of translational and rotational micro-states and therefore, a larger 

entropy per surfactant molecule. At equilibrium, the balance between adsorbed surfactants, 

with surface concentration Γ, and dissolved surfactants, with bulk concentration C, reflects a 

balance between the (favorable) enthalpy change and the (unfavorable) entropy loss that 

occurs during adsorption. With increasing bulk concentration, the balance between the 

energetic expense of hydrophobic groups remaining within the bulk and the entropic loss of 

moving to the interface tilts in favor of adsorption (figures 3 b,c) and a monolayer of 

increasing surface concentration Γ forms at the interface.

The affinity of surfactant molecules towards interfaces creates a surface ‘excess’ 

concentration, Γ. In other words, Γ is the number of molecules per unit interfacial area in 

excess of a hypothetical reference state, in which the adjoining bulk phases maintain their 

constant concentrations (figure 3 c) up until the surface. The position of the surface itself is 

arbitrary, and is typically chosen such that the surface excess concentration of the solvent is 

zero.

It is conceptually simple to appreciate the surface-active nature of molecules with physically 

distinct hydrophilic and hydrophobic portions, as depicted in figure 3 (a). Such clearly 

differentiated portions, however, are not necessary for surface-activity. The basic surfactant 

argument holds just as well for chemically homogeneous molecules or particles that possess 

an intermediate wettability with respect to the fluids on either side of the interface (Binks 

2002).

Any species (molecular or particulate) that has a positive surface excess is – by definition – a 

surfactant. And so – what are the options? How much do they reduce surface tension? What 

time scales emerge? The equilibrium properties of different classes of surfactants can differ 

substantially, as shown in figure 4. All cases depict a spherical liquid drop of surface area Ai 

whose shape is deformed and held at a final surface area Af, for an increase of ΔA. The 
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clean, surfactant-free drop (figure 4 a) serves as a base case: the extra surface area ΔA 
created by deforming at the interface comes at the cost of the ‘clean’ surface tension γ0 of 

the liquid/liquid interface, requiring an additional energy ΔU = γ0ΔA.

Many surfactants are soluble, meaning that the surface excess concentration Γ of adsorbed 

surfactant equilibrates with the dissolved concentration C according to an isotherm (table 1). 

When a drop is initially coated with soluble surfactant at surface coverage Γeq and then 

deformed to create extra area ΔA, the interfacial concentration Γ drops below its equilibrium 

with the bulk concentration C. Bulk surfactant is then driven to adsorb to the interface, until 

the equilbrium surface coverage (Γf = Γeq) is restored (figure 4 b). At steady state, the 

surface tension of the drop is thus equal to the initial, equilibrium value γeq(C), which is 

lower than the clean surface tension γ0. The energetic cost of this deformation is thus 

reduced to ΔU = γeqΔA.

Some surfactants are insoluble in the bulk solution, meaning that there are no surfactants 

dissolved in the ‘reservoir,’ and the number N of surfactants on an interface remains 

constant. Deforming a drop coated with insoluble surfactants (figure 4 c) decreases the 

surface concentration to Γf = ΓiA/(A+ΔA), which typically increases the surface tension 

according to an equilibrium isotherm γ(Γ) (§2.3). The change in surface energy is then ΔU = 

∫γ(Γ) dA.

Small particles with intermediate wettability can also act like surfactants – forming the basis 

for so-called ‘Pickering’ emulsions (Binks 2002). Nanoparticles often adsorb extremely 
strongly to fluid interfaces – with millions or billions of kBT in binding energy. However 

strong this binding energy may be, deforming a particle-laden drop creates ‘clean’ interface, 

at a cost given by the clean liquid surface tension γ0 (figure 4 d). Therefore, particles do not 

affect the surface tension in any appreciable way if they do not interact with each other. 

Mutually repulsive interfacial particles, for example, relax and separate when the drop is 

deformed (figure 4 e). Clean fluid interface is created at a cost γ0, but reducing interparticle 

repulsion ‘returns’ some energy per area Πint(Γ), giving a net surface tension γeff(Γ) = γ0 

−Πint(Γ), and the energetic cost of deformation takes the same form as for an insoluble 

surfactant.

Figure 4 gives some sense for the diverse ways that surfactants behave when one waits ‘long 

enough’. In what follows (§2.3–3), we address questions raised by this figure. What 

differentiates soluble surfactants from insoluble ones? What determines the surface tension 

γ(Γ) or γ(C)? How long is ‘long enough,’ and what happens ‘in between’?

2.3. Insoluble surfactants: Langmuir monolayers

A lot of salt can be dissolved in water – but not an infinite amount. Above some solubility 

limit Csol, additional salt does not dissolve, but remains in solid form and sediments. 

Substances with extremely low solubility in a liquid – like wax in water – are said to be 

‘insoluble’, meaning that the concentration of dissolved molecules is immeasurably small. 

Likewise, surfactants can be insoluble when the precipitated (aggregated) form is 

energetically so much more favorable than the dissolved form. Surfactants may gain entropy 

by dissolving, but this comes at the cost of disrupting attractive interactions between 
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surfactants, and also entropic loss of solvent molecules. Crudely speaking, the larger the 

hydrophobic component, the lower the solubility of a surfactant in water. Phospholipids 

represent one class of surfactants that is frequently insoluble in water owing to the two 

(hydrophobic) hydrocarbon tails attached to each hydrophilic head group. The insolubility of 

phospholipids is essential for important biological functions: biological membranes typically 

consist of phospholipid bilayers – two ‘sheets’ of phospholipids, oppositely oriented, so that 

the hydrophilic heads face the water, and hydrophobic tails are buried internally.

Monolayers formed by insoluble surfactants are called Langmuir monolayers, and can be 

prepared and controlled by literally spreading a known number N of surfactant molecules 

onto a fluid surface of area A, to give a surface concentration

Γ = N
A . (2.7)

Langmuir troughs allow this surface concentration Γ of insoluble surfactants to be controlled 

using mobile barriers to change the area A available to the N surfactants on the monolayer.

Any fluid mechanician should expect that spreading some number N of insoluble surfactants 

onto a fluid interface of area A will lower its surface tension. Real questions lie just beyond 

this qualitative, ‘binary’ expectation. How much does the surface tension change? Why do 

different surfactants behave differently, both in static and dynamic situations?

The simplest Langmuir monolayer consists of ‘ideal’ surfactants that are so dilute that they 

behave as point-like and non-interacting. The free energy required to assemble such ideal 

monolayers reflects the contribution from mixing entropy alone:

ℱs
ideal = Nμs0 + kBT N ln N

Γ0A − N , (2.8)

where μs0 is the free energy per surfactant (chemical potential) of a reference monolayer of 

surfactant concentration Γ0. Equation (2.8) represents the 2D analog of an (3D) ideal gas.

Just like the pressure of a 3D material is defined by the energy required to compress it 

isothermally,

P = − ∂ℱ
∂V T , N

, (2.9)

the surface pressure Π exerted by a species bound to a surface is determined by the energy 

required to compress it isothermally, in 2D:

Π = − ∂ℱs
∂A T , N

. (2.10)

The surface pressure of an ideal Langmuir monolayer (2.8) can then be computed using 

(2.10) to give
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Πideal = kBTΓ, (2.11)

as should be expected for an ideal, 2D gas.

Despite its clear analogy to 3D pressure, and its clear thermodynamic status, the surface 

pressure Π is largely unfamiliar to the fluid mechanics community. It can, however, be 

simply connected to more familiar terrain. Namely, the surface tension γ0 of clean fluid 

interfaces pulls on interfaces, acting to reduce interfacial area. At the same time, the surface 

pressure Π of adsorbed surfactant pushes outward on interfaces, acting to increase interfacial 

area. The net effect is what a fluid mechanician would simply call the surface tension γ(Γ):

γ(Γ) = γ0 − Π(Γ) . (2.12)

In other words, the surface pressure Π(Γ) exerted by a surfactant monolayer represents the 

reduction in surface tension caused by the surfactant.

Although intuitive and straightforward, the ideal gas model, (2.8) and (2.11), is almost never 

appropriate in describing real surfactants. This can be seen by evaluating (2.11) to determine 

the surface concentration Γ1 required for an ideal gas surfactant to reduce surface tension by 

a nominal amount, e.g. Π1 ~ 1 mN/m, which is just over 1% of the surface tension of clean 

water:

Γ1
ideal = Π1

kBT ≈ 1mN/m
4pNnm ≈ 1surfactant 

4nm2 . (2.13)

Ideal gas surfactants must be packed to surface concentrations of at least one per few square 

nanometers to exert even a small surface pressure, but must nonetheless obey the ideal gas 

conditions. First, each surfactant must behave as ‘point-like,’ meaning that its molecular 

radius must be signficantly smaller than 2 nm. This restriction effectively renders the ideal 

gas description invalid for proteins, nanoparticles, and colloids. Second, intermolecular 

interactions must be negligible over ~nm length scales – also a rarity, given the strength of 

van der Waals interactions between hydrophobic tails, interfacial electrostatic dipoles, and 

electrostatic repulsions between headgroups at nm length scales.

If surfactant monolayers can not be described by ideal gas behavior, then how can one 

describe them? In many cases, Π versus Γ isotherms are simply measured. However, 

‘simple’ violations of the point-like and non-interacting assumptions in the ideal gas model 

can be accommodated analogous to treatments of 3D gasses.

For example, the Langmuir isotherm accounts for finite surfactant size A0 ≡ 1/Γ∞ by 

effectively allowing them to occupy sites on a lattice. Assuming N surfactants to occupy a 

fraction of N∞ = Γ∞A such sites, the free energy of the interface is (Diamant & Andelman 

1996; Kralchevsky et al. 2008)

ℱs
L = Nμs0 + kBT N ln N

Γ∞A + Γ∞A − N ln Γ∞A − N
Γ∞A , (2.14)
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where μs0 is the chemical potential at half maximum packing (Γ∞/2). As with the ideal gas, 

(2.14) omits all interactions between surfactants, but instead accounts only for the free 

energy of mixing of both the occupied and unoccupied sites.

Computing surface pressure using (2.10) for the lattice gas (2.14) gives the so-called 

Langmuir isotherm,

ΠL = kBTΓ∞ ln 1
1 − Γ /Γ∞

. (2.15)

At low surfactant concentrations Γ ≪ Γ∞, ΠL reduces to Πideal. As surfactant concentration 

Γ approaches Γ∞, however, the surface pressure diverges.

Rather than constraining surfactants to a lattice, surfactants with finite size might simply 

reduce the area available for surfactants to explore. Placing N surfactants, each of area A0 ≡ 
1/Γ∞, onto a surface of area A leaves an unoccupied area A′ = A−N/Γ∞. Replacing A in the 

ideal gas expression ℱs
ideal with A′,

ℱs
V = Nμs0 + kBT N ln N

Γ∞A − N − N , (2.16)

gives the Volmer isotherm,

ΠV = kBTΓ
1 − Γ /Γ∞

. (2.17)

Like the Langmuir isotherm, the Volmer pressure recovers the ideal gas pressure as Γ ≪ Γ∞, 

and diverges as Γ → Γ∞, but in a different way than ΠL.

One might think it would be straightforward to distinguish between the Langmuir and 

Volmer forms for the divergence, but interactions between surfactants become significant 

and alter this form considerably.

The simplest way to include interactions between surfactants is perturbatively, i.e., adding a 

term to either the Langmuir (2.14) or Volmer (2.16) expressions

Δℱs
int = − N β

2Γ (2.18)

that reduces the free energy to assemble a monolayer of mutually attractive surfactants 

(when β > 0), or vice-versa for repulsive interactions. For example, adding (2.18) to the 

Volmer free energy ℱs
V gives the van der Waals monolayer,

ℱs
vdW = Nμs0 + kBT N ln N

Γ∞A − N − N − β N2

2A , (2.19)

with surface pressure
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ΠvdW = kBTΓ
1 − Γ /Γ∞

− β Γ2

2 . (2.20)

Equation (2.20) is the precise two-dimensional analog of the 3D van der Waals equation of 

state. Similarly, adding the interaction term (2.18) to the Langmuir surface free energy ℱs
L

(2.14) gives the Frumkin isotherm (see table 1). Kralchevsky et al. (2008) provide a detailed 

thermodynamic derivation of each of these commonly used models, the results of which are 

summarized in table 1 and illustrated in figure 5.

2.3.1. Compressibility: Gibbs (E) and Marangoni (E0) moduli—The surface 

compressional (or dilatational) modulus,

E = − A∂Π
∂A , (2.21)

measures the resistance of the surface to compression, completely analogous to 3D 

materials. For insoluble surfactants, the number of surfactants in a monolayer does not 

change during compression, meaning A can be replaced with N/Γ in (2.21) to give the 

insoluble dilatational modulus:

E0 = Γ ∂Π
∂Γ N

. (2.22)

The nomenclature of (2.21) and (2.22) varies across the surfactant literature, with the names 

of Gibbs, Marangoni, Gibbs-Marangoni, or simply dilatational modulus used for both E and 

E0. For the purposes of this review, we will consistently call E the Gibbs modulus and E0 the 

Marangoni modulus.

The Marangoni modulus E0 measures the work done in squeezing surfactant molecules 

together, and generally increases with surfactant concentration. For example, ideal gas 

monolayers have Marangoni modulus

E0
ideal = kBTΓ, (2.23)

with expressions for other isotherms given in table 1. Notably, the Marangoni modulus for 

the van der Waals isotherm,

E0
vdW = kBTΓ

1 − Γ /Γ∞
2 − βΓ2, (2.24)

becomes negative for a range of Γ whenever βΓ∞/kBT > 27/4. Just like in 3D, a monolayer 

with negative compressibility is mechanically unstable, and undergoes phase separation to a 

two-phase coexistence between a high-Γ condensed phase, and a low-Γ expanded phase.

In what follows (§2.4.2 and §3.2), we will find that monolayers (soluble or insoluble) do not 

always react instantaneously following compression – finite time scales are required for 

phase transitions to occur, for surfactants to adsorb or desorb to equilibrate with the 
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surrounding bulk fluid, or for surfactant gradients in the surroundings to diffusively relax. In 

this regard, the Marangoni modulus E0 reflects an intrinsic material property, whereas the 

Gibbs modulus E describes the dynamic response of a macroscopic interface, which 

additionally depends on the shape, size, and time scales of the forcing.

2.3.2. The chemical potential—In preparation for the upcoming transition to soluble 
surfactants, we discuss one final thermodynamic property of Langmuir monolayers. The 

chemical potential represents the free energy cost of adding one additional molecule to the 

monolayer, holding temperature and area constant:

μs(Γ) = ∂ℱs
∂N T , A

. (2.25)

The chemical potential of a monolayer of ideal surfactants – as described by (2.8) – is

μsideal(N) = μs0 + kBT ln N
Γ0A , (2.26)

or, equivalently,

μsideal(Γ) = μs0 + kBT ln Γ
Γ0

. (2.27)

where μs0 is a reference chemical potential, valid at a particular concentration Γ0. In what 

follows, we will frequently use the Langmuir (lattice) isotherm as a model; its chemical 

potential is

μsL(Γ) = μs0 + kBT ln Γ
Γ∞ − Γ . (2.28)

where μs0 is the chemical potential at Γ = Γ∞/2.

2.4. Soluble surfactants: Gibbs monolayers

We now turn to soluble surfactants, which can dissolve into the liquid below the interface. 

Monolayers of soluble surfactants – called Gibbs monolayers – represent an equilibrium 

between surfactants adsorbed at the interface (with surface concentration Γ) and those 

dissolved in the bulk (with concentration C).

Detailed balance must hold for adsorbed and dissolved surfactants to be in equilibrium: as 

many surfactants must adsorb to a surface as desorb in any given time. For this to happen 

spontaneously, the two states must be equivalent from a free energy standpoint. Adding one 

surfactant to the monolayer costs energy – the chemical potential μs(Γ) of the adsorbed 

surfactant. This free energy cost must be identical to the free energy liberated by removing 

that surfactant from the subphase – represented by the chemical potential μb(C) of the 

surfactant in the bulk. In short, equilibrium between dissolved and adsorbed surfactant 

requires
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μs(Γ) = μb(C), (2.29)

which defines the equilibrium isotherm Γ(C).

For example, surfactants that are sufficiently dilute in solution have ‘ideal’ chemical 

potential

μb = μb
0 + kBT ln C

C0
, (2.30)

where μb
0 is the chemical potential at a reference concentration C0.

If adsorbed surfactants also form an ideal gas monolayer, with μs given by (2.27), then 

equating chemical potentials (2.29) reveals a linear relation between adsorbed and bulk 

concentrations:

Γ ideal = Γ0
C0

exp
μb

0 − μs0

kBT C, (2.31)

or

Γ ideal = KidealC, (2.32)

which is called the Henry isotherm (table 1. Here

Kideal = Γ0
C0

exp
μb

0 − μs0

kBT (2.33)

is an equilibrium constant for adsorption. The adsorption free energy Δμads
0 = μb

0 − μs0

indicates the drop in free energy when a surfactant (at reference concentrations) adsorbs to 

the interface. As expected from statistical mechanics, the equilibrium constant K grows 

exponentially with Δμads
0 . Different choices of either reference concentration (Γ0 or C0), both 

of which are chosen arbitrarily, would change the corresponding reference chemical 

potentials (μs0 or μb
0, respectively), giving the same adsorption constant K.

Given Γ(C) for a Gibbs monolayer of soluble surfactant, other monolayer properties like 

Π(C) and E0(C) can be determined following the thermodynamic arguments for the insoluble 

surfactants given above. Surface pressure Π is still defined from the surface free energy via 

(2.10), so that the Gibbs monolayer defined by (2.32) has

Πideal = kBTKidealC, (2.34)

with Kideal defined by (2.33). The Marangoni modulus, defined by (2.22), is also 

E0
ideal = kBTKidealC.
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More complex isotherms arise for more complex monolayers or solutions. For example, 

soluble surfactants that adsorb to Langmuir (lattice) monolayers have surface chemical 

potentials of the Langmuir form (2.28), and equilibrate with an ideal bulk solution of 

surfactant (2.30) to give

ΓL

Γ∞
= KLC

1 + KLC
, (2.35)

where

KL = 1
C0

exp
μb

0 − μs0

kBT (2.36)

is the equilibrium constant for Langmuir adsorption, with units of [concentration]−1. The 

surface pressure for the Langmuir isotherm then follows by inserting ΓL from (2.35) into 

ΠL(Γ) from (2.15) to give

ΠL(C) = kBTΓ∞ log 1 + KLC , (2.37)

The desorption constant, KD
L = KL −1

, represents a characteristic subphase concentration, at 

which the interface is half-saturated. The Langmuir adsorption isotherm (2.35) reduces to 

the ideal gas isotherm (2.34) for concentrations significantly below KD
L (i.e. C ≪ 1/KL). 

Similar to insoluble monolayers, adding an interaction term to the surface chemical potential 

of the Langmuir form gives the Frumkin isotherm. Other models of monolayers that 

equilibrate with ideal surfactant solutions are reviewed by Kralchevsky et al. (2008), 

summarized in table 1, and illustrated in figure 5. All but the (purely empirical) Freundlich 

isotherm reduce to ideal gas monolayers at sufficiently low C.

Alternatively, surfactants dissolved in solution may show non-ideal behavior. The most 

common example is micellization: above a critical micelle concentration (CMC), some 

surfactants spontaneously aggregate to form micelles. Spherical micelles are most common, 

but cylinders (‘wormlike micelles’), lamellae and vesicles can also form, depending on 

molecular morphology and intermolecular forces (Myers 2006; Israelachvili 2011). The 

energetics, kinetics, and morphology of micelles is a broad and well-studied topic that is 

beyond the scope of this review. We will merely point out that at equilibrium and above the 

CMC, the chemical potential of surfactant monomers, μb(C), must equal the chemical 

potential of surfactant molecules in micelles, μmic(C), both of which in turn must equal the 

chemical potential μs(Γ) of adsorbed surfactant molecules. In other words, micellization 

provides an energetic alternative to further interfacial adsorption: once conditions favor 

micelle formation, adding further surfactant to solution tends to form additional micelles, 

rather than increase interfacial concentration. Indeed, identifying the bulk concentration at 

which the surface tension, and ostensibly the surface concentration, becomes approximately 

constant is a common method for measuring the CMC.
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2.4.1. Gibbs Isotherm—It is frequently difficult to measure the surface concentration Γ 
of soluble surfactants; more common is to measure surface pressure Π (or, equivalently, 

surface tension γ) as a function of subphase concentration C. In such cases, the Gibbs 

adsorption isotherm allows Γ to be derived from measured Π(C) relations (Martínez-

Balbuena et al. 2017). The Gibbs relation connects changes in surface pressure Π to changes 

in the chemical potential μs of adsorbed surfactants at concentration Γ, via (Adamson 1990; 

Myers 2006; Kralchevsky et al. 2008):

dΠ = − dγ = Γdμs . (2.38)

The chemical potential of adsorbed surfactants μs is difficult to determine directly since Γ is 

unknown for soluble surfactants. However, when bulk and adsorbed surfactants are 

equilibrated, μs must be equal to μb for the dissolved surfactants. In cases where the 

surfactant solution is dilute enough to behave as ideal, μb(C) is given by (2.30), in which 

case

dμ = dμs = kBTdlnC . (2.39)

The Gibbs relation (2.38) then gives

Γ(C) = 1
kBT

∂Π
∂ lnC T

. (2.40)

In other words, the adsorbed surfactant concentration Γ can be determined from 

measurements of surface pressure Π as a function of dissolved surfactant concentration C, so 

long as the system has equilibrated, and the concentration is well below the CMC (Martínez-

Balbuena et al. 2017).

2.4.2. Compressibility: E and E0 for soluble surfactants—The distinction 

between the Gibbs and Marangoni moduli, E and E0, defined by (2.21) and (2.22) 

respectively, becomes significant for soluble monolayers. Recall that E tracks surface 

pressure changes when the monolayer area A is changed, whereas E0 additionally holds the 

number N of adsorbed surfactant molecules fixed – meaning Γ changes when A does. 

Compressing monolayers of soluble surfactants raises the chemical potential μs of the 

adsorbed surfactants, without changing the concentration or chemical potential μb(C) of the 

dissolved surfactant. A thermodynamic force drives adsorbed surfactants to desorb, until Γ 
returns to the value predicted by (2.29). Once equilibrium is re-established, Γ returns to its 

initial value, so that

Esoluble(t ∞) = − A∂Π
∂A t ∞

= 0. (2.41)

How quickly the interface re-equilibrates cannot be determined from thermodynamic 

properties alone, as discussed in §3.2.

Soluble surfactant monolayers do have a non-zero Marangoni modulus E0, however. After 

all, Γ (and therefore Π) must increase during a rapid compression of a Gibbs monolayer, 
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before the surfactants have had the chance to desorb. The Gibbs adsorption equation (2.40), 

however, offers a route to E0 for soluble surfactant monolayers from measured Π(C) 

isotherms:

E0 = Γ ∂Π
∂Γ = Γ ∂Π

∂ lnC
∂ lnC
∂Γ . (2.42)

Substituting Γ and ∂Γ/∂ ln C using (2.40) gives

E0 = Π′ 2

Π′′ ,  or  1
E0

= − 1
Π′

′, (2.43)

where primes denote differentiation with respect to ln C.

While the Gibbs modulus E describes the monolayer’s mechanical response to macroscopic 

compression or expansion (dA), the Marangoni modulus E0 reflects sensitivity to intrinsic 

molecular concentrations Γ, and will play an important role in establishing an effective 

surface dilatational viscosity for surfactant monolayers, as shown in §4.2.

2.4.3. Soluble isotherms via dynamic equilibrium—Equilibrium between 

surfactants adsorbed at an interface and dissolved in the subphase can also be determined by 

explicitly balancing adsorption and desorption fluxes. This approach holds particular value 

to the fluid mechanics community, as it connects the equilibrium arguments and 

measurements made above to Marangoni stresses and dynamical processes in surfactant 

systems.

The simplest expressions for adsorption and desorption fluxes – which one should expect to 

hold for ideal mixtures in both the monolayer and in the bulk – is to take the adsorption flux, 

ja, to be proportional to the bulk concentration C, and the desorption flux jd to be 

proportional to the adsorbed concentration Γ:

ja = kaC, (2.44)

jd = kdΓ . (2.45)

These fluxes balance at equilibrium, ja = jd, giving

Γ ideal = ka
kd

C ≡ KidealC, (2.46)

reproducing the Henry isotherm (2.32). Previously, the adsorption constant Kideal was shown 

to depend upon the free energy of adsorption Δμ = μb
0 − μs0 via (2.33). Eq. (2.46) additionally 

relates Kideal to the ratio of adsorptive to desorptive rate constants ka/kd. Each individual rate 

constant ka and kd can not be determined from an equilibrium quantity like K; however, the 

ratio of the two is set by thermodynamics.
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Other isotherms require different adsorption and/or desorption rate kinetics. For example, 

the Langmuir isotherm (2.35) is formed when dissolved surfactants adsorb to vacant lattice 

sites (Levich 1962; Adamson 1990; Kralchevsky et al. 2008), modifying the adsorption flux 

(2.44) to

ja
L = kaC Γ∞ − Γ . (2.47)

At equilibrium, jaL = jd, so that

kaC
kd

= ΓL

Γ∞ − ΓL , (2.48)

recovering (2.35) with K = ka/kd. Adsorption and desorption fluxes for other common 

isotherms are listed in table 2.

This dynamic equilibrium approach forms a natural transition into §3, which addresses the 

dynamic response of surfactant-laden interfaces when they are driven out of equilibrium. 

Specifically, we will describe how fluid flow transports surfactant molecules in the bulk and 

on the interface, and how the tendency of surfactant molecules to re-equilibrate in turn 

impacts interfacial fluid dynamics.

3. Dynamic Properties

So far, we have assumed that interfacial deformations have been ‘slow enough,’ or that we 

have waited long enough, that the surfactants have remained in quasi-steady equilibrium, 

instantaneously redistributing and/or adsorbing and desorbing to equilibrate with the bulk 

liquid beneath them. However, these processes take time. Various dynamic surfactant 

processes arise in systems driven out of equilibrium, modifying the behavior of even the 

simplest systems. Figure 1, for example, highlights the dynamic surfactant processes that 

impact a rising gas bubble. Convective flow along the fluid interface sweeps surfactants to 

the rear as the bubble rises. The resulting concentration gradients generate Marangoni 

stresses that act to oppose the motion that created them. Surface diffusion smooths out non-

uniform distributions of surface concentration, as does surfactant exchange with the bulk, 

thereby reducing the strength of Marangoni flows. Additionally, surface excess rheological 

stresses might arise as insoluble surfactant monolayers are sheared or compressed.

Interpreting, predicting, and engineering these surfactant systems then necessitates a 

thorough understanding of the interplay between physically distinct transport processes. Our 

objective in this section is to provide an introduction to the physics and the mathematical 

machinery that govern the out-of-equilibrium behavior of surfactant systems. We will start 

with the governing equations of surfactant transport (§3.1), discuss the competition between 

diffusion- and adsorption/desorption kinetics in surfactant exchange between bulk and 

adsorbed states (§3.2), outline the origins of Marangoni stresses and characterize its strength 

relative to other processes (§3.3), and finally describe the fluid mechanics of systems with a 

non-zero surface excess viscosities (§3.4).
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3.1. Governing equations

Our discussion thus far has centered on the equilibrium properties of surfactants. Of 

particular interest to the fluid dynamics community, on the other hand, is the coupling 

between the surfactants and the fluids surrounding the interface. Conservation equations for 

the mass and momentum of the bulk fluid are well-known,

ρDv
Dt = − ∇p + η∇2v, (3.1a)

∇ ⋅ v = 0, (3.1b)

with ρ the fluid density, η the shear viscosity, υ the fluid velocity, and p the pressure.

At first glance, boundary conditions seem to be fairly straightforward. The kinematic 

boundary condition relates the fluid velocity normal to an interface to the deformation 

velocity of that interface (Leal 2007): a fluid interface located at rs(t) is defined by

Φ rs, t = 0, (3.2)

with unit normal

n = ∇Φ
∇Φ rs

, (3.3)

and requires

n ⋅ v rs = − 1
∇Φ

∂Φ
∂t rs

. (3.4)

Likewise, the fluid velocity at the interface, u, generally obeys the no-slip condition:

u rs = v rs . (3.5)

In general, the stress boundary condition is more complicated. Conservation of momentum 

at the interface gives (Slattery et al. 2007)

ρs
Du
Dt = n ⋅ 〚 σ 〛 + ∇s ⋅ σs, (3.6)

where ρs is the surface mass density, 〚 σ 〛 = σupper − σlower is the hydrodynamic stress 

jump across the interface with n pointing into the ‘upper’ fluid, and ∇s = (I − nn)·∇ is the 

surface gradient operator. The surface stress tensor is

σs = γIs + τrheol (3.7)

Manikantan and Squires Page 19

J Fluid Mech. Author manuscript; available in PMC 2021 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where γ is the local surface tension, Is = I−nn is the surface identity tensor, and we have 

included surface rheological stresses τrheol in anticipation, but defer detailed discussion to 

§3.4.

Neglecting fluid and surfactant inertia, the interfacial stress balance (3.6) becomes

−n ⋅ 〚 σ 〛 = ∇sγ − γ ∇s ⋅ n n + ∇s ⋅ τrheol . (3.8)

The tangential component of (3.8) reveals that imbalances between viscous shear stress can 

be driven by (or balance) both Marangoni stresses (§3.3) and surface rheological stresses 

(§3.4). The normal component of (3.8) reduces to the Young-Laplace equation (2.6) in a 

static system (σ = −pI) if surface rheological stresses are absent.

The interfacial stress boundary condition (3.8) depends on the surface tension γ (or surface 

pressure Π), which in turn depends on adsorbed surfactant concentration Γ(rs, t) via some 

isotherm, as described in §2.3. Still, the concentration profile of adsorbed surfactant Γ 
changes in space and time, and must therefore be determined. To do so requires addressing 

dynamic questions of surfactant transport: convective and diffusive transport along the 

interface, adsorption and desorption of surfactant between the interface and the bulk 

solution(s).

Adsorbed surfactant evolves according to a conservation equation,

∂Γ
∂t = − ∇s ⋅ jD + uΓ + jn, (3.9)

where jD represents the diffusive flux along the interface, and uΓ represents the surface 

advective flux. The final term jn accounts for the local ‘production’ or ‘consumption’ of 

adsorbed surfactant, typically driven by adsorptive and desorptive exchange between the 

bulk solution and the interface. If more surfactant adsorbs to a spot on the interface than 

desorbs from that spot, then Γ grows (and jn > 0) at that spot.

A common form of this equation, as formally derived by Aris (1962) and Stone (1990), 

assumes constant surface diffusivity Ds, and reads

∂Γ
∂t + ∇s ⋅ Γus + Γ ∇s ⋅ n (u ⋅ n) = Ds∇s

2Γ + jn, (3.10)

where us is the in-plane surface velocity:

us = (I − nn) ⋅ v rs = (I − nn) ⋅ u . (3.11)

In what follows, we will discuss subtleties and assumptions built into this expression, as well 

as generalizations.

3.1.1. Surface advection—The surface advective flux can be decomposed into 

components normal to the interface, and components along the interface:
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uΓ = n(n ⋅ u)Γ + (I − nn) ⋅ uΓ, (3.12)

and therefore has surface divergence

∇s ⋅ (uΓ) = Γ ∇s ⋅ n (u ⋅ n) + ∇s ⋅ usΓ (3.13)

as in (3.10). The first term captures the compression or dilation of surfactant that occurs 

when curved interfaces (∇s·n ≠ 0) themselves deform (due to non-zero normal interfacial 

velocities), and the second term captures the compression or dilation arising from non-

uniform convective flux within the plane of the interface.

3.1.2. Surface diffusion—The standard expression for the diffusive flux of adsorbed 

surfactant along a surface, used to derive (3.10), has a Fickian form,

jD
Fick = − Ds∇sΓ, (3.14)

A diffusive flux of this form, however, is built on assumptions that are rarely accurate in 

systems of practical interest.

A brief derivation of the diffusive flux highlights conditions under which the Fickian form 

holds. Because the chemical potential μ(Γ,T) represents the free energy ‘cost’ of an adsorbed 

surfactant at concentration Γ and temperature T, any spatial gradients in μ point toward more 

‘costly’ locations for surfactants to be placed. A chemical potential gradient thus represents 

a thermodynamic force (fs = −∇sμ) on an adsorbed surfactant, which drives it to migrate 

along the interface, with relative velocity

V − us = − bs∇sμ = − Ds
kBT ∇sμ, (3.15)

where bs is the hydrodynamic mobility of the surfactant along the surface, and is related to 

its self-diffusivity by the Stokes-Einstein relation (Furst & Squires 2017; Saffman & 

Delbrück 1975)

Ds = kBTbs . (3.16)

Each surfactant molecule moves with velocity (3.15) along the surface, so that a single-
component monolayer of surface concentration Γ establishes a flux

jD = − Ds
kBT Γ ∇sμ = − Ds

kBT Γ ∂μ
∂Γ ∇sΓ (3.17)

relative to the interface. In multi-component monolayers, the chemical potential of each 

species depends on the surface concentration of every other component, and the term in 

brackets in (3.17) is replaced by a generalized Maxwell-Stefan diffusivity tensor (Krishna 

1990). In what follows, we restrict our discussion to single-component monolayers.
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The Fickian form (3.14) holds only for the ideal gas monolayer, for which μ = μsideal(Γ) from 

(2.27), and therefore

∂μsideal

∂Γ = kBT
Γ , (3.18)

so that the diffusive flux (3.17) reduces to Fick’s law (3.14). As discussed in §2.3, however, 

it is rare for any surfactant that reduces surface tension in any appreciable way to behave as 

an ideal gas. The Fickian form, then, rarely holds as explicitly derived. Of course, one can 

define an effective diffusivity

Ds
eff(Γ) = Ds

kBT Γ ∂μ
∂Γ , (3.19)

which differs from the true self-diffusivity of each surfactant molecule. If gradients are small 

enough that Ds
eff is approximately constant, then the Fickian form would be appropriate, 

albeit with a modified diffusivity.

The effective surface diffusivity Ds
eff can be shown using (2.22) and (2.23) to exceed the 

Fickian self-diffusivity by the Marangoni modulus E0(Γ) relative to an ideal gas monolayer:

jD = − Ds
E0(Γ)
kBTΓ ∇sΓ ≡ − Ds

E0(Γ)
E0

ideal ∇sΓ . (3.20)

The diffusive flux expressions for the Langmuir and Volmer isotherms (table 1), for 

example, become

jD
L = − Ds

1 − Γ /Γ∞
∇sΓ,  and  jD

V = − Ds
1 − Γ /Γ∞

2 ∇sΓ . (3.21)

Curiously, the diffusive flux of adsorbed surfactant within single-component monolayers can 

be expressed in terms of surface pressure gradients alone. The Gibbs adsorption relation 

(2.38) directly implies

Γ ∇sμ = ∇sΠ, (3.22)

which can be substituted for Γ∇sμ in (3.17) to give a diffusive flux

jD = − bs∇sΠ . (3.23)

which appears to be independent of the surface concentration Γ! Although this result seems 

counter-intuitive at first, it can be understood physically as follows. The surface pressure 

gradient gives the force per unit area exerted on the surfactant monolayer, which is divided 

among Γ molecules per unit area. The greater the concentration Γ of adsorbed surfactant, the 

weaker the force on each (Fs ~ ∇Π/Γ), and the slower each migrates: V ~ bs(∇sΠ/Γ). 

Ultimately, the concentration Γ cancels out of the flux ΓV in (3.23).
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3.2. Adsorption/desorption

The final term in the surfactant conservation equation, jn, accounts for exchange of 

molecules between the bulk and the interface. At equilibrium, adsorption and desorption 

fluxes balance each other (§2.4.3). For an interface out of equilibrium, the difference 

between ja and jd represents a kinetic flux of surfactant entering or leaving the interface:

jkin = ja Γ, Cs − jd Γ, Cs , (3.24)

where

Cs = C rs, t (3.25)

is the surfactant concentration in the bulk fluid, evaluated at the interface (figure 6 e). Table 

2 gives ja and jd corresponding to the common isotherms described in § 2.3 and table 1.

Departures from a constant equilibrium concentration C0 also drive surfactant transport in 

the bulk, governed by the convection-diffusion equation

∂C
∂t = D∇2C − v ⋅ ∇C . (3.26)

Concentration gradients in the bulk may drive a diffusive flux of surfactants onto or off the 

interface, via

jdiff = Dn ⋅ ∇C rs, (3.27)

where n is normal to the interface and points into the bulk fluid containing the surfactant. 

Surfactant conservation requires this diffusive flux (3.27) to balance the kinetic flux of 

adsorption/desorption to the interface (3.24), both of which equal the source term in the 

surface conservation equation (3.10):

jn = jkin = jdiff . (3.28)

If either adsorption kinetics or diffusion is so slow as to act as the rate-limiting step, then the 

surfactant exchange flux jn may be approximated by that process alone. In diffusion-limited 

adsorption, for example, the timescale τk associated with adsorption kinetics is negligibly 

short compared to the timescale τd for diffusion from the bulk. In that limit, the 

concentrations Γ(rs, t) and C(rs, t) of adsorbed and bulk surfactant are assumed to equilibrate 

instantaneously, so that jkin is ignored and diffusion-limited adsorption is governed by 

(3.26)–(3.27) alone. By contrast, adsorption is kinetically-limited when τd ≪ τk, in which 

case diffusion smooths bulk concentration gradients instantly, so that Cs(t) ≈ C0 and 

adsorption is governed by (3.24) alone.

In what follows, we examine dynamic adsorption in a model system that is particularly 

illustrative and relatively straightforward: surfactant dynamics on the interface of an 

oscillating gas bubble (Lucassen & van den Tempel 1972; Johnson & Stebe 1994; Ravera et 
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al. 2010; Kotula & Anna 2016). Beyond its pedagogic value, pulsing bubbles form the basis 

for a powerful experimental technique to characterize complex fluid interfaces.

3.2.1. Adsorption/desorption to an oscillating bubble—Here we adapt the work 

of Johnson & Stebe (1994), who considered oscillations of a bubble with rest radius R0 and 

equilibrium surface concentration Γ0 in a liquid containing dissolved surfactant at 

concentration C0 (figure 7). The bubble radius changes in response to a controlled oscillation 

of gas volume or pressure. Assuming departures from equilibrium to be small, the radius, 

surface concentration and bulk concentration are perturbed via

R(t) = R0 + δReiωt, Γ(t) = Γ0 + δΓeiωt, C(r, t) = C0 + δC(r)eiωt . (3.29)

The surfactant conservation equation (3.10) for purely radial oscillations becomes

∂Γ
∂t + 2urΓ

R = jn, (3.30)

where ur = dR/dt is the radial velocity at the interface. Perturbing (3.30) via (3.29) gives

iωδΓ + iωδR2Γ0
R0

eiωt = jn . (3.31)

In systems where the surfactant is insoluble (for which jn = 0), the change in surface 

concentration is

δΓ insol = − 2Γ0
R0

δR . (3.32)

We define Cs and δCs as the bulk concentration and the amplitude of its oscillatory 

perturbation at the interface:

Cs(t) = C(R, t), and δCs = δC(R) . (3.33)

Because the convective term in the bulk transport equation (3.26) is quadratic in perturbed 

quantities, the bulk concentration C obeys the diffusion equation to leading order, with 

solution

C(r, t) = C0 + δCs
R
r e iω/D(R − r)eiωt, (3.34)

where δCs is as yet unknown. The diffusive flux (3.27) onto the interface,

jdiff = D∂C
∂r R(t)

= DδCs − 1
R0

− iω
D eiωt, (3.35)

must equal the kinetic flux jkin (3.24), which is given to leading order by
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jkin = kCδCs − kΓδΓ eiωt . (3.36)

Here

kC C0, Γ0 = ∂ja
∂C Γ0, C0

− ∂jd
∂C Γ0, C0

, (3.37a)

kΓ C0, Γ0 = ∂ja
∂Γ Γ0, C0

− ∂jd
∂Γ Γ0, C0

(3.37b)

are effective rate constants associated with the equilibrium exchange fluxes (e.g. table 2). 

The ratio of kC and kΓ has units of length and is defined as the depletion depth:

Ld = kC
kΓ

. (3.38)

For example, the (linear) Henry isotherm (table 1) has kC = ka and kΓ = kd, so that the 

depletion depth is a constant equal to the equilibrium adsorption constant: Ld = Kideal.

Equating the diffusive (3.35) and kinetic fluxes (3.36) relates δCs to δΓ:

δCs = kΓR0

D + kCR0 + iωR0
2D

δΓ = Da
1 + Da + iW o

δΓ
Ld

, (3.39)

where the mass transfer Womersley number Wo and Damköhler number Da are

W o = diffusion time
oscillation period = ωR0

2

D , (3.40a)

Da = diffusion time
adsorption time = kCR0

D . (3.40b)

Then, using (3.39) in (3.35) or (3.36) to eliminate δCs and determine jn in terms of δΓ, and 

substituting into the surface conservation equation (3.31) reveals δΓ to be

δΓ
δΓ insol

= 1 − iSt 1 + iW o
1 + iW o + Da

−1
, (3.41)

where the Stanton number St is defined by

St = oscillation period
desorption time = kΓ

ω . (3.42)

The Damköhler number controls the transition from kinetically-limited (Da ≪ 1) to 

diffusion-limited (Da ≫ 1) surfactant exchange. In what follows (§3.2.2–3.2.3), we consider 
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kinetically- and diffusion-controlled regimes separately. For later use, we rewrite the 

surfactant exchange flux, from (3.35) or (3.36), as

jn = jdiff = jkin = − 1 + iW O
1 + iW O + Da kΓδΓeiωt . (3.43)

3.2.2. Kinetically-limited mass transfer (Da ≪ 1)—Adsorption is kinetically-limited 

(Da ≪ 1) when molecular exchange between the interface and the subsurface layer is 

significantly slower than surfactant diffusion through the bulk. In this limit, the subphase 

concentration is approximately uniform: (3.39) gives δCs → 0 as Da → 0, implying Cs(t) ≈ 
C0 (figure 7 e).

Setting Da = 0 in (3.41) gives the perturbed surface concentration:

δΓkin
δΓinsol

= 1
1 − iSt = 1

1 + St2 + i St
1 + St2 . (3.44)

The St → 0 limit corresponds to oscillations so rapid that surfactants do not have the times 

to adsorb or desorb, so that the monolayer behaves as if it were insoluble: δΓkin → δΓinsol. 

By contrast, the St → ∞ limit occurs when surfactants adsorb/desorb much faster than 

bubble oscillations. In that case, δΓkin → 0 and the interface maintains its equilibrium 

concentration Γ(t) ≈ Γ0.

Timescales for bubble oscillation and adsorption/desorption are comparable when St ~ O(1), 

which defines the characteristic timescale for kinetically-limited adsorption,

τk = 1
kΓ

. (3.45)

For finite τk (or finite St), δΓkin is always smaller than δΓinsol (figure 8 a). Additionally, the 

surface concentration lags the bubble radius by a phase shift tan−1(St).

When kinetically-limited (Da → 0), the adsorption flux (3.43) becomes

jn(Da 0) = − kΓδΓeiωt = Γ0 − Γ(t)
τk

. (3.46)

Throughout this work, we will use (3.46) as the kinetically-limited sorptive flux for small 

departures from equilibrium.

3.2.3. Diffusion-limited mass transfer (Da ≫ 1)—In diffusion-controlled surfactant 

exchange, adsorption kinetics are so fast that Γ equilibrates with the subsurface 

concentration Cs effectively instantaneously, via the appropriate isotherm Γ(Cs) (figure 7 d). 

In this limit, jkin can be ignored, so that jn = jdiff. The depletion depth Ld follows by 

expanding Γ(Cs) around Γ0(C0), and taking the Da → ∞ limit of (3.39) to give
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∂Γ
∂Cs Γ0, C0

= δΓ
δCs Da ∞

= Ld, (3.47)

which we non-dimensionalize by the bubble radius R0 to give

Λd = Ld
R0

= Da
StW o . (3.48)

The perturbed surface concentration (3.41) in the diffusion-controlled limit (Da → ∞) is 

then

δΓdiff
δΓinsol

= ΛdW o
ΛdW O − i − i iW O

, (3.49)

which can be expressed as

δΓdiff
δΓinsol

= 1 + ζd + iζd 1 + 2Λdζd
1 + 2ζd + 2ζd

2 1 + 2Λdζd + 2Λd
2ζd

2 , (3.50)

where

ζd = 1
Λd

1
2W O

= 1
Ld

D
2ω (3.51)

is a dimensionless ratio of the diffusive oscillatory boundary layer thickness δBL = D/2ω to 

the depletion depth Ld.

Bubbles with radii much larger than the depletion depth (Λd ≪ 1) behave like planar 

interfaces. Indeed, (3.50) recovers the celebrated results of Lucassen & van den Tempel 

(1972) in the Λd → 0 limit, which we examine in detail in §4.2.1. Adsorbed surfactants on a 

planar interface (Λd → 0) act as effectively insoluble if molecules in the subphase diffuse 

far less than the depletion depth in one oscillation (ζd ≪ 1). Conversely, the surface 

concentration remains close to its equilibrium value (δΓdiff → 0) if molecules diffusively 

escape Ld during an oscillation (ζd ≫ 1). Interfacial oscillations and diffusive mass transfer 

are comparable when ζd = O(1), which reveals the characteristic timescale for diffusion-

limited mass transfer in the planar limit (Λd → 0) to be

τd, p = τd Λd 0 = Ld
2

D . (3.52)

Diffusive mass transfer is sensitive to interfacial curvature when Λd ≳ 1, as shown in figure 

8 b. The perturbed surface concentration δΓdiff still vanishes if diffusion is fast (ζd ≫ 1) and 

approaches the insoluble limit if diffusion is slow (ζd ≪ 1). However, the transition occurs 

around Λdζd
2 = O(1), where
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2Λdζd
2 = D/LdR0

ω
oscillation period

diffusion time across  LdR0
, (3.53)

which reveals the characteristic time scale of diffusive-controlled surfactant exchange for 

small bubbles (Λd ≳ 1):

τd, s = τd Λd ≳ 1 = LdR0
D = τd, p

Λd
. (3.54)

Indeed, experiments and simulations show a smooth transition from τd,p to τd,s with 

decreasing bubble radius (Alvarez et al. 2010a, b).

Finally, the diffusion-limited surfactant exchange flux follows from the Da → ∞ limit of 

(3.43). For small bubbles (R0
2 ≪ D/ω, or Wo ≪ 1), the net adsorption flux is

jn(Da ∞) ≈ − kΓ
DaδΓeiωt = − D

LdR0
δΓeiωt = Γ0 − Γ(t)

τd, s
, (3.55)

which has the same form as (3.46), but with the diffusion-controlled timescale τd,s in place 

of the kinetically-controlled timescale τk. For the same reasons, δΓdiff(Λd ≫ 1) from (3.50) 

is identical to δΓkin from (3.44) with 2Λdζd
2 in place of St. In other words, diffusion-limited 

mass transfer to small bubbles ‘looks like’ it is kinetically-limited, albeit with a 

characteristic timescale τd,s that depends on the bubble radius via (3.54).

To summarize, the characteristic sorption time τs is

τs =
τk = 1/kΓ , Da ≪ 1,

τd, p = Ld
2/D, Da ≫ 1 & R0 ≫ Ld,

τd, s = LdR0/D, Da ≫ 1 & R0 ≲ Ld .
(3.56)

In systems with dynamic interfaces, the mechanical response of a surface to deformation 

depends not only on the equilibrium properties of the surfactant (such as E0, §2.3.1), but also 

on the adsorbed concentration profile Γ(rs, t) at any particular position and time. In §4.2, we 

will again use the oscillating gas bubble example to quantify the apparent viscoelasticity of 

soluble monolayers, and its dependence on surfactant properties such as kΓ, kC, D, and E0.

3.2.4. Adsorption to a clean interface—So far, we have discussed surfactant 

transport on interfaces that are perturbed only slightly from equilibrium. Ward & Tordai 

(1946) pursued a complementary problem: the diffusion-limited mass transfer to an initially 

clean planar interface. More recently, Jin et al. (2004) and Alvarez et al. (2010a,b) 

established the critical role of interfacial curvature on surfactant transport. In what follows, 

we explore their calculations of surfactant exchange to an initially clean static bubble, in 

both diffusion- and kinetically-limited regimes.

The system is the same as in § 3.2.1, except that the bubble interface is stationary, R(t) = R0, 

and is initially clean: Γ(0) = 0. Surfactant is dissolved in the bulk at concentration C0, and 
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the subsurface concentration is C(R, t) = Cs(t). The surface conservation equation (3.10) 

with the diffusive flux jdiff from the bulk is

∂Γ
∂t = D∂C

∂r r = R
, (3.57)

where C(R, t) follows from the solution of the bulk diffusion equation. Laplace transforming 

(3.57), denoted by tildes, gives

sΓ = D∂C
∂r r = R

, (3.58)

where s is the Laplace transform variable. Laplace transforming the bulk diffusion equation 

gives

sC − C0 = D∇2C, (3.59)

with solution

C(r, s) = C0
s + C1

r e−r s/D, (3.60)

where C1 is as yet unknown. Evaluating (3.58) with (3.60), then eliminating C1 in (3.60) in 

favor of Cs gives

Γ(s) = D C0
s3/2 − Cs(s)

s + D
R

C0
s2 − Cs(s)

s , (3.61)

Finally, inverting the Laplace transform of (3.61) gives

Γ(t) = D
π 2C0 t − ∫

0

t Cs t′
t − t′dt′ + D

R C0t − ∫
0

t
Cs t′ dt′ . (3.62)

The first term on the right hand side reflects the solution of Ward & Tordai (1946) for 

adsorption onto a clean planar interface, whereas the last two terms reflect interfacial 

curvature (Jin et al. 2004; Alvarez et al. 2010a).

The generalized Ward-Tordai result (3.62) is an implicit integral relation between Γ(t) and 

the yet undetermined subsurface concentration Cs(t). Solving for the surface concentration 

requires another relationship between Γ(t) and Cs(t), which follows from the kinetic flux 

condition (3.24). However, inverting this relation is not straightforward except for the 

simplest kinetic flux expressions, and is typically solved numerically (Jin et al. 2004; 

Alvarez et al. 2010a). For example, the 2D ideal gas assumption (table 2) gives

∂Γ
∂t = kaCs − kdΓ, (3.63)

with Laplace transform
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sΓ = kaCs − kdΓ . (3.64)

In principle, eliminating Cs between (3.64) and (3.61), and inverse Laplace transforming 

Γ(s) gives an explicit expression for Γ(t). In fact, Hansen (1961) employs this strategy to 

examine adsorption to a planar interface (R → ∞).

Even for the simplest kinetic flux (3.63), however, adsorption to a spherical interface is 

intractable at arbitrary Damköhler number. Instead, we highlight the kinetically-controlled 

(Da ≪ 1) and diffusion-controlled (Da ≫ 1) limits individually, by ignoring jdiff and jkin, 

respectively. These limits are easier to calculate, and are illustrative in light of the discussion 

around oscillating bubbles in the previous section. For later use, we note that the equilibrium 

surface concentration following (3.63) is

Γeq = LdC0, (3.65)

with depletion depth

Ld = ka
kd

= Kideal . (3.66)

When surfactant transport is kinetically-limited, diffusion in the bulk is assumed to be 

instantaneous, so that Cs(t) = C0. Laplace transforming (3.63) with Cs = C0 and using (3.65) 

gives

Γkin(s)
Γeq

= kd
s s + kd

, (3.67)

with inverse

Γkin(t)
Γeq

= 1 − e−kdt, (3.68)

which recovers the kinetically-limited sorption time τk = 1/kd (3.45). At short times, Γkin 

grows linearly with time, whereas Γkin approaches Γeq exponentially for t ≫ τk (figure 9 a). 

Like with adsorption to an oscillating bubble, kinetically-limited mass transfer is 

independent of bubble size.

By contrast, contact equilibrium is assumed between Γ(t) and Cs(t) when adsorption is 

diffusion-controlled, so that

Γdiff(t) = LdCs(t) . (3.69)

Using the Laplace transform of (3.69) to eliminate Cs in (3.61) gives

Manikantan and Squires Page 30

J Fluid Mech. Author manuscript; available in PMC 2021 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Γdiff(s)
Γeq

= s1/2 + D/R2

s3/2 + s D/R2 + s2 Ld
2/D

. (3.70)

Inverting (3.70) is laborious but straightforward, and yields:

Γdiff(t)
Γeq

= 1 + 1
β − α αeα2terfc(α t) − βeβ2terfc(β t) , (3.71)

where

α = D
2Ld

(1 + 1 − 4Λd), β = D
2Ld

(1 − 1 − 4Λd), (3.72)

and Λd = Ld/R (3.48).

The large- and small-bubble limits of (3.70) are particularly illustrative. Bubbles with radii 

much larger than the depletion depth (Λd → 0) have

Γdiff(t)
Γeq Λd 0

= 1 − eDt/Ld
2erfc Dt/Ld , (3.73)

recovering the result of Hansen (1961) for a planar interface. Indeed, the characteristic 

diffusion time in (3.73) is τd, p = Ld
2/D, like in diffusion-limited adsorption to large 

oscillating bubbles (3.52). Γdiff approaches Γeq algebraically at long times (figure 9 b), much 

more slowly than the exponential approach during kinetically-controlled adsorption (3.68).

When the bubble is much smaller than the depletion depth (Λd ≫ 1), however, surface 

concentration approaches equilibrium exponentially, via

Γdiff(t)
Γeq Λd ≫ 1

= 1 − e−Dt/LdR . (3.74)

The characteristic diffusion time τd,s = LdR/D that emerges is the same (eq. 3.54) that 

controls small, oscillatory bubbles. Like with oscillating bubbles, diffusion-limited 

adsorption to small bubbles (R ≪ Ld) has the same form as kinetically-limited adsorption 

(3.68), except with τd,s replacing τk. As shown in figure 9 (b), diffusion-limited adsorption 

is faster for smaller bubbles, and Γdiff approaches Γeq exponentially rather than algebraically 

over long times.

Finally, convection in the bulk fluid further enhances the rate of diffusive adsorption by 

‘screening’ the characteristic diffusion length by the thickness of the diffusion boundary 

layer δBL. Alvarez et al. (2012) demonstrated that the diffusion time is indeed τd, p
conv ∝ δBL

2

for large bubbles, and τd, p
conv ∝ δBL for smaller bubbles. This scaling suggests strategies to 

further speed up diffusive surfactant transport using flow, as the boundary layer thickness 

decreases with increasing bulk convection, thereby increasing the range of measurable 

kinetic-limited adsorption (Alvarez et al. 2012).
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3.3. Marangoni flows

Marangoni flows are driven by excess surface stresses due to gradients in surface tension. 

Scriven & Sternling (1960) provide a historical perspective, beginning with Plateau’s 

oscillating needle experiments on fluid interfaces, and subsequent explanations by 

Marangoni and Gibbs. Non-uniform surface tension may arise on surfactant monolayers due 

to surface convection of adsorbed surfactants or inhomogeneous adsorption from the bulk. 

Surface tension gradients can also be established by externally inducing gradients in 

properties that affect γ. For instance, interfaces of droplets suspended in a fluid with 

background gradients in temperature, surfactant concentration, or electrostatic potential 

exhibit Marangoni flows, leading to, respectively, thermo-, soluto-, or electrocapillary 

motion (Squires & Quake 2005). For simplicity, we assume throughout this article that 

gradients in temperature or electrical charge do not arise on fluid interfaces, such that 

Marangoni flows are driven by surfactant transport alone.

3.3.1. Surface concentration gradients and hydrodynamic coupling—Recall 

from §3.1.2 that spatial gradients in the surface chemical potential μs point to energetically 

unfavorable locations to place adsorbed surfactants. A thermodynamic force fs = −∇μs drives 

surfactants down the gradient with a velocity given by the molecule’s hydrodynamic 

mobility (3.15). However, a molecule moves not only because it is forced, but also because 

its neighbors are forced, and drive fluid flows that entrain the molecule. Readers familiar 

with suspension dynamics will recognize hydrodynamic coupling in a 3D fluid with 

background velocity V∞:

V i − V ∞ ri = F i
6πηRi

+ ∑
j ≠ i

G ri − rj ⋅ F j, (3.75)

where the tensor G(ri−rj) gives the velocity at ri in response to a force Fj on a particle 

centered at rj (Guazzelli & Morris 2012; Happel & Brenner 1965). In many cases (e.g. 

sedimentation), the hydrodynamic coupling sum may overwhelm the ‘self-mobility’ term.

The precise analog occurs at surfactant interfaces: the velocity of a surfactant molecule at ri 

is a combination of the background velocity us, the ‘self’ mobility, and the hydrodynamic 

coupling, so that (3.15) is modified to include

V i − us ri = − Ds
kBT ∇sμ ri − ∑

j ≠ i
G ri − rj ⋅ Γ rj ∇sμ rj , (3.76)

where the final term reflects the surface velocity at ri, established by all neighboring 

surfactant molecules – with concentration Γ, each forced by −∇sμ. The Green’s function G(ri

−rj) in this case gives the fluid velocity on the interface at ri, driven by a force at rj on the 

fluid interface. The precise form of the Green’s function depends on the geometry of the 

interface, the subphase depth, etc. (§3.4.2) The added velocity due to hydrodynamic 

interactions, however, corresponds to a boundary integral solution (Pozrikidis 1992) to the 

Stokes equations, where the fluid interface is driven by a specified traction:
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fM ≡ n ⋅ σ interface = − Γ ∇sμ, (3.77)

which, using the Gibbs adsorption relation (3.22), becomes

fM = − ∇sΠ = ∇sγ . (3.78)

The hydrodynamic coupling (3.76) between surfactant molecules is precisely equal to the 

net convective velocity driven by surface tension gradients. In other words, hydrodynamic 

coupling between surfactants is equivalent to the Marangoni flow driven on the interface by 

the surfactant monolayer.

Surface pressure gradients can drive or balance viscous shear stress following (3.78). Figure 

10 illustrates two examples of the conjugate effects that usually go by the name of 

Marangoni, both of which involve surfactant gradients. Gradients in surface pressure may 

arise due to non-uniform surface concentrations Γ(rs), or due to surface convective transport 

usΓ that establishes a concentration gradient. Depositing surfactant on an initially clean 

interface (figure 10 a) introduces a surface concentration gradient ∇sΓ, and therefore a 

surface pressure gradient that exerts a traction

fM = η∂v
∂z z = 0

= − ∇sΠ = − ∂Π
∂Γ ∇sΓ . (3.79)

Flows are therefore driven down surface pressure (or surface concentration) gradients.

The functional form of Π(Γ) depends on the particular surfactant isotherm (§2.4). It is 

common practice to assume an ideal gas monolayer, for which the Marangoni traction is

fMideal = − kBT ∇sΓ . (3.80)

As discussed in §2.3, however, the ideal gas assumption rarely holds in practice, and more 

accurate models or measured values of ∂Π/∂Γ would be more appropriate. For example, the 

Langmuir and Volmer isotherms give tractions

fML = − kBT
1 − Γ /Γ∞

∇sΓ, and fMV = − kBT
1 − Γ /Γ∞

2 ∇sΓ, (3.81)

both of which recover the ideal gas limit when Γ ≪ Γ∞.

The second example, shown in figure 10 (b), resembles the so-called ‘Reynolds ridge’ (Scott 

1982) and involves flows that compress (or dilate) a surfactant-laden fluid interface against a 

floating barrier. Such a flow creates surface concentration gradients that act against the 

interfacial compression (or dilatation). Marangoni stresses therefore act like surface excess 

elasticity (Langevin 2014), working to lessen surface compression or dilatation. In what 

follows, we quantify the degree to which reverse Marangoni flows resist inhomogeneous 

surface compression.
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3.3.2. Marangoni numbers and surface incompressibility—Surfactant 

monolayers are far more compressible than 3D fluids. Compressing an insoluble surfactant 

increases the surface concentration Γ and thus the surface pressure Π. Additionally, many 

surfactants exhibit phase transitions (Kaganer et al. 1999) and surface-pressure-dependent 

surface viscosity (Kurtz et al. 2006; Kim et al. 2011) even under facile compression, as 

discussed in §5. However, inhomogeneous compression of a surfactant monolayer drives 

reverse Marangoni flows that resist such deformations.

For example, a disk of radius R translating at velocity U within a planar surfactant-laden 

interface compresses the monolayer ahead of the disk, and dilates the monolayer in its rear 

(figure 11). The surfactant conservation equation for insoluble surfactants (3.10) at steady 

state, in the absence of surface diffusion, gives the surface divergence

∇s ⋅ us = − 1
Γ us ⋅ ∇sΓ = − 1

E0
us ⋅ ∇sΠ, (3.82)

where E0 is the Marangoni modulus (2.22). Balancing the surface pressure gradient ∇sΠ in 

(3.82) with traction on the subphase via the Marangoni boundary condition (3.79) gives

∇s ⋅ us = η
E0

us ⋅ ∂v
∂z z = 0

. (3.83)

Non-dimensionalizing gives a dimensionless surface divergence

∇s ⋅ us = 1
Maus ⋅ ∂v

∂z z = 0
, (3.84)

where the Marangoni number

Ma = E0
ηU (3.85)

balances surface compressibility E0/R against viscous traction ηU/R.

In the large Marangoni number limit (Ma ≫ 1), surfactant molecules resist compression so 

strongly that the surface flow is effectively divergence-free. In other words, the surface is 2D 

incompressible when the time scale to establish reverse Marangoni flows

τm = ηR
E0

, (3.86)

is much faster than the surface convection time scale τflow = R/U, so that Ma = τflow/τm ≫ 
1. Surface pressure then acts as a Lagrange multiplier to maintain surface incompressibility, 

much like bulk pressure in a 3D fluid (figure 11). In unidirectional surface flows, such as in 

figure 10 (b), surface incompressibility requires us to be constant. Marangoni flows then 

‘immobilize’ the interface, effectively modifying the interfacial boundary condition from a 

free surface (∂υ/∂z = 0) when Ma ≪ 1 to a rigid surface (us = υ(0) = constant) when Ma ≫ 
1.
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Insoluble surfactants are almost always surface incompressible around translating disks or 

particles. The Marangoni modulus of incredibly dilute monolayers with Γ ~ 1/(100 nm2) in 

the ideal gas limit is E0
ideal = kBTΓ 0.04mN/m. Even for such dilute monolayers with 

immeasurably small surface pressures (Π ~ 40 μN/m), a disk or particle must translate faster 

than 4 cm/s before Ma ≲ 1 and the interface compresses. The Marangoni modulus of real 

surfactants is much larger than E0
ideal (table 1), with typical values of E0 ≳ 1 mN/m (Kotula 

& Anna 2016; Arriaga et al. 2010), so that insoluble monolayers are effectively surface 

incompressible unless U ≳ 1 m/s.

Even the slightest amount of insoluble surfactant, therefore, fundamentally changes the 

interfacial boundary condition on the bulk fluid flow. Stone & Masoud (2015) illustrated the 

change in subphase flow by considering the continuity equation for the bulk fluid at the 

interface,

∇ ⋅ v z = 0 = ∇s ⋅ v z = 0 + ∂w
∂z = 0, (3.87)

where w is the z-component of subphase fluid velocity υ. At the interface, the tangential 

velocity is υ = us, and thus surface incompressibility implies ∂w/∂z = 0. The vertical 

velocity w vanishes at z = 0 for an interface that does not deform out of plane, and along 

with ∂w/∂z = 0 requires that w be zero throughout the subphase. Surface incompressibility 

therefore constrains subphase fluid to flow in planes parallel to the interface (figure 11 d). 

Such flows set up stronger velocity gradients, dissipating more energy than in surfactant-free 

systems, where flow in the bulk is three-dimensional (figure 11 b).

Insoluble surfactants therefore substantially modify subphase flow relative to surfactant-free 

systems, increasing the translational resistance of particles within monolayers. For example, 

the drag on a circular disk translating in an incompressible monolayer exceeds the drag in a 

clean interface by a factor of 3/2 (§4.6). In some cases, this increase in translational 

resistance has been misattributed to surface rheology, going back to Plateau’s experiments 

with oscillating needles on interfaces (Scriven & Sternling 1960), while in fact it arises due 

to Marangoni flows. Indeed, surface incompressibility increases the hydrodynamic drag on 

translating probes even for a completely inviscid surfactant, causing significant confusion in 

the measurement and interpretation of surface rheology of insoluble surfactants (Sickert & 

Rondelez 2003; Fischer 2004a, and §3.4).

Soluble surfactants, on the other hand, may desorb (or adsorb) as the interface is compressed 

(or dilated) to restore equilibrium coverage (figure 11 a). The strength of the Marangoni 

stress then depends on the balance between surface advective and surfactant exchange 

fluxes. For small perturbations δΓ in surface concentration around an equilibrium value Γ0, 

the surfactant balance (3.10) becomes

Γ0∇s ⋅ us = jn = − δΓ
τs

, (3.88)
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where τs is the longer among kinetic and diffusive surfactant exchange times (3.56). Using 

(3.88) in the Marangoni boundary condition (3.79) gives

η∂v
∂z z = 0

= − ∂Π
∂Γ ∇s(δΓ) = E0τs∇s ∇s ⋅ us , (3.89)

where E0 is the Marangoni modulus (2.22). Significantly, any finite adsorption time scale τs 

gives rise to a viscous-like force with apparent dilatational surface viscosity E0τs in (3.89) – 

a feature we will explore in detail in §3.4.3. Nondimensionalizing (3.89) gives

∇s ∇s ⋅ us = 1
MaK

∂v
∂z z = 0

, (3.90)

where

MaK = E0τs
ηR = τs

τm
(3.91)

is a modified Marangoni number, that now compares the time scale τm = ηR/E0 to establish 

Marangoni flow with the time τs for the surface to equilibrate via adsorption/desorption.

If a soluble monolayer equilibrates before Marangoni flows can be established (MaK ≪ 1), 

then the surface behaves as if it is compressible. Equation (3.90) recovers the stress-free 

boundary condition as MaK → 0, and fluid flows behave approximately as though the 

interface were clean (figure 11 b). In this limit, Γ and Π are largely unperturbed from the 

surfactant’s equilibrium isotherm. By contrast, if Marangoni flows are established before 

surfactants adsorb and desorb to equilibrate with the subphase concentration (MaK ≫ 1), 

then the surface divergence is

∇s ⋅ us ≈ constant = ϵ̇, (3.92)

where ϵ̇ is a uniform compression or dilatation rate. In fact, interfaces with fixed area require 

ϵ̇ = 0, and the interface acts as incompressible.

Finally, Marangoni flows may also be weakened by other surface processes, leading to 

alternative definitions of the Marangoni number. Table 3 summarizes common definitions of 

Marangoni numbers, obtained by comparing the Marangoni timescale τm against competing 

system-specific surfactant processes. In each case, a large Marangoni number implies that 

the surfactant monolayer resists inhomogeneous surface compression or dilatation, and the 

interface can be approximated as 2D incompressible. When Marangoni flows are weak, a 

fully compressible description becomes necessary (Barentin et al. 1999; Elfring et al. 2016).

3.4. Surface rheology

Thus far, we have focused on surface processes such as adsorption/desorption, Marangoni 

flows, and surface diffusion, which redistribute surfactants on the interface, and relax surface 

stresses in doing so. Additionally, however, some surfactants are known to exhibit surface 
rheology, exerting additional stresses when the surfactant layer deforms against itself.
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The origin, existence and interpretation of surface rheology have been debated since the mid 

nineteenth century by the likes of Gibbs, Plateau, Marangoni, and Rayleigh (Scriven & 

Sternling 1960). Part of the controversy arises because even relatively simple flows excite 

multiple surfactant processes, or drive mixed surface deformations. For example, translating 

probes deform the surface via compression and dilatation in addition to shear, driving a 

combination of surface viscous and Marangoni stresses. Surfactant-induced 2D 

incompressibility fundamentally changes the subphase flow from the stress-free surface 

arising in the absence of surfactant, and changes the translational drag of probes 

substantially, even for completely inviscid surfactant monolayers (Fischer 2004a, and 

§3.3.2). Experimental geometries specifically designed to drive purely shear deformations, 

like rotating disks (Choi et al. 2011) or translating needles (Brooks et al. 1999), however, 

probe surface shear rheology unambiguously.

More subtle difficulties arise when surface viscosity is indirectly inferred from observable 

phenomena such as the settling velocity of surfactant-covered drops, or the drainage time of 

thin films. For example, recall from §3.3.2 that Marangoni flows with finite-time adsorption 

introduces a surface-viscous-like force in the interfacial stress balance (3.89). In such 

systems, can this apparent surface dissipation alone account for all observed dynamics, or 

might the surfactant monolayer possess an ‘intrinsic’ surface dilatational viscosity? How 

does one differentiate between an ‘intrinsic’ and ‘apparent’ surface viscosity if both are 

present? In many cases, it might not be easy or even possible to deconvolve the origins of 

surface dissipation, leading to thousandfold discrepancies in surface viscosities interpreted 

from decades of experiments (Stevenson 2005).

In this section, we will explore the simplest of surface rheological models – monolayers that 

behave like 2D Newtonian fluids. We use this model to (a) interpret experiments that 

confirm and characterize ‘intrinsic’ surface shear viscosities, (b) illustrate the relative 

contributions of subphase and interfacial viscous resistance to flow, and (c) highlight 

difficulties in determining ‘intrinsic’ surface dilatational viscosities from experiments. The 

2D Newtonian model will also set the stage for treating surface rheology in the paradigmatic 

problems outlined in §4. The richer and more complex surface rheological responses that 

arise more commonly are described in §5.

3.4.1. The Boussinesq-Scriven model—Boussinesq (1913) was the first to explicitly 

account for a viscous-like resistance to surface dilatation, using it to explain the anomalous 

settling velocity of drops (§4.1). Scriven (1960) generalized Boussinesq’s model by treating 

the interfacial layer as a 2D Newtonian fluid with intrinsic surface shear (ηs) and surface 

dilatational (κs) viscosities, both with dimensions of 3D viscosity × length, so that the extra 

rheological stress τrheo in (3.8) is Newtonian:

τrheo = κs − ηs ∇s ⋅ u Is + ηs ∇su ⋅ Is + Is ⋅ ∇su T , (3.93)

where Is = I−nn is the surface identity tensor. Using (3.93) in the surface stress balance (3.8) 

for a planar liquid-air interface gives
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η∂v
∂z z = 0

= − ∇sΠ + ηs∇s
2us + κs∇s ∇s ⋅ us , (3.94)

which is the 2D analog of the Stokes equation for compressible fluids, with viscous traction 

from the subphase entering as a body force. More generally, out-of-plane deformations and 

2D viscous flow along curved interfaces introduce additional forces that have no analog in 

3D Newtonian fluids (Scriven 1960; Aris 1962; Edwards et al. 1991; Slattery et al. 2007).

The Boussinesq-Scriven model simplifies in many typical surfactant systems. As discussed 

in §3.3.2, insoluble surfactants almost always behave as surface incompressible, in which 

case (3.94) reduces to the incompressible 2D Stokes equation, forced by viscous traction 

from the subphase:

∇sΠ = ηs∇s
2us − η∂v

∂z z = 0
, ∇s ⋅ us = 0. (3.95)

Surface pressure then acts to enforce 2D incompressibility, analogous to bulk pressure in a 

3D incompressible fluid.

Solving such problems is generally difficult, because two- and three-dimensional Stokes 

flows must be solved separately, but coupled via boundary conditions enforcing surface 

incompressibility and subphase traction. In systems where the subphase is very shallow, 

though, this coupling simplifies significantly, because the lubrication approximation relates 

the subphase velocity gradient to interfacial velocity and the subphase depth H,

∂v
∂z z = 0

= us
H, (3.96)

in which case the subphase flow need not be solved explicitly (Evans & Sackmann 1988). 

The lubrication approximation is particularly useful for compressible monolayers, where 

eliminating u permits analytical solutions (Barentin et al. 1999; Elfring et al. 2016).

3.4.2. 2D vs. 3D hydrodynamics and the Boussinesq number—Momentum 

propagation through a viscous interfacial layer fundamentally modifies familiar 3D fluid 

dynamics, even when no other surfactant process is excited. For example, pure shear 

deformations like the swirling flow driven by rotating a circular disk at an interface (figure 

12) do not generate surface concentration gradients, and thus do not give rise to Marangoni 

stresses. The planar Boussinesq-Scriven equation (3.94) then becomes

η∂v
∂z z = 0

= ηs∇s
2us, (3.97)

which couples to the Stokes equations for u in the subphase. Flow is driven by the rotation 

of a disk of radius R at constant angular velocity Ω:us(r ⩽ R) = Ωrθ .. Nondimensionalizing 

(3.97) gives
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∂v
∂z z = 0

= Bq∇s
2us, (3.98)

where the Boussinesq number,

Bq = ηs
ηR, (3.99)

compares surface and subphase viscous stresses.

Subphase-dominant flows (Bq ≪ 1) in pure shear recover the stress-free condition at the 

interface. Solving the Stokes equations in the subphase with a stress-free interface driven 

driven by a rotating disc gives (Goodrich 1969)

us(Bq = 0) = 2ΩR
π

r
Rsin−1 R

r − 1 − R2

r2

1/2
θr ≫ R 4Ω

3π
R3

r2 θ . (3.100)

The velocity field due to rotation decays as 1/r2 in the absence of surface excess rheological 

stresses, as expected in Stokes flow (Guazzelli & Morris 2012).

By contrast, (3.98) implies that ∇s
2us ≈ 0 when the flow is interface-dominant (Bq ≫ 1), and

us(Bq ∞) = ΩR2

r θ . (3.101)

A viscous interfacial layer propagates momentum more extensively within the interface, 

resulting in a slower decay (~ 1/r) of the surface velocity field relative to (3.100), as shown 

in figure 12 (b). The torque required to sustain constant rotation transitions from ~ R3 for an 

inviscid interface (Bq = 0) to ~ R2 for a viscous monolayer (Bq → ∞; see §4.6). This 

striking difference arises in systems where no other surfactant transport process – e.g. 

Marangoni flow, adsorption/desorption, surface dilatation – is active. Measurements of the 

rotational torque and flow field around a rotating disk can thus unambiguously and 

quantitatively detect surface shear viscosity (Choi et al. 2011; Zell et al. 2014).

The translation of a particle embedded within a monolayer is more complex, as it deforms 

the surface via compression, dilation, and extension, in addition to shear. Even in the 

seemingly simpler case of insoluble (and, therefore, 2D incompressible from §3.3.2) 

monolayers, translation introduces subtleties due to momentum transfer between a surface-

shear-viscous interface and the underlying 3D fluid.

Saffman & Delbrück (1975) noticed this transition from 2D to 3D hydrodynamics in their 

seminal work on particle diffusion in biological membranes. The incompressible 

Boussinesq-Scriven equation (3.95) decouples from the subphase in the interface-dominant 

(Bq → ∞) limit. However, there is no solution for steady translation of a cylinder in 2D 

creeping flow (Leal 2007, the ‘Stokes paradox’). Saffman (1976) recognized that subphase 

viscous stresses (~ ηUℓSD) eventually catch up with surface viscous stresses (~ ηsU) beyond 

a distance
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lSD = ηs
η , (3.102)

ultimately regularizing the divergence inherent to 2D Stokes flow. Surface viscous stresses 

dominate within the Saffman-Delbrück length ℓSD, and viscous traction from the subphase 

prevail beyond ℓSD.

The crossover from 2D to 3D hydrodynamics is evident in the flow driven by a tangential 

point force on the interface (Lubensky & Goldstein 1996; Levine & MacKintosh 2002; 

Fischer 2004b; Oppenheimer & Diamant 2009). Velocity fields driven by arbitrarily shaped 

particles moving on an interface can be constructed using appropriate boundary integrals of 

the point-force solution (§4.6).

An incompressible Newtonian monolayer along the x–y plane acted upon by an in-plane 

point force F at x0 is governed by

∇sΠ = ηs∇s
2us − η∂v

∂z z = 0
+ Fδ(r), ∇s ⋅ us = 0, (3.103)

where r = x – x0. The two-dimensional Fourier transform,

ϕ(x) = ∫ ϕ(k)eik ⋅ rdk, (3.104)

is defined so that k · êz = 0, and transforms (3.103) to give

ikΠ = − ηsk2us − η∂v
∂z z = 0

+ F, k ⋅ us = 0. (3.105)

The (3D) hydrodynamic pressure field p associated with flow on an incompressible surface 

is a constant everywhere (Stone & Ajdari 1998), such that momentum balance for Stokes 

flow in the bulk reduces to Laplace’s equation: ∇2υ = 0. If the subphase extends to a finite 

depth H such that υ(−H) = 0, then

v(k) = sinh(kz)
tanh(kH) + cosh(kz) us(k) . (3.106)

Using (3.106) in (3.105) and eliminating Π by premultiplying by I − kk/k2 gives

us(k) = G(k) ⋅ F = k2I − kk
k4ηs + k3ηcoth(kH)

⋅ F (3.107)

The Green’s function Ĝ(k) depends on the ratio kηs/η, which is the Boussinesq number 

(3.99) for a length scale λ = 2π/k. In real space, the second-order tensor G(r) is the surface 

analog of the Oseen tensor in classical hydrodynamics. However, inverting Ĝ is not 

straightforward except in specific limits. We will focus on the deep subphase limit (H → 
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∞), where the inverse transform gives (Fischer 2004b; Lubensky & Goldstein 1996; Levine 

& MacKintosh 2002)

us(x) = 1
4ηs

μ∥(r)rr
r2 + μ⊥(r) l − rr

r2 ⋅ F , (3.108)

where r = |r|. The mobility coefficients μ∥ and μ⊥ are

μ∥(r) = H1(d)
d − 2

πd2 − Y 0(d) + Y 2(d)
2 , (3.109a)

μ⊥(r) = H0(d) − H1(d)
d + 2

πd2 − Y 0(d) − Y 2(d)
2 , (3.109b)

where Hν and Yν are, respectively, Struve functions and Bessel functions of the second kind 

of order ν, and

d = rη
ηs

= r
lSD

, (3.110)

is distance scaled by the Saffman-Delbrück length ℓSD (3.102). Alternatively, non-

dimensionalizing r by the probe size R makes d in (3.110) equivalent to

d = r
Bq , (3.111)

where Bq = ηs/ηR is the Boussinesq number (3.99).

Momentum transport is interface-dominated over length scales smaller than ℓSD (d ≪ 1 or Bq 
≫ 1), and the mobility coefficients (3.109) become

μ r ≪ lSD ≈ 1
π −log d

2 + 1
2 − γE , (3.112a)

μ⊥ r ≪ lSD ≈ 1
π −log d

2 + 1
2 − γE . (3.112b)

To within an additive constant, the interfacial velocity driven by a point force in the Bq → 
∞ (or d → 0) limit is then

us(x, Bq ∞) = 1
4πηs

−log(r)I + rr
r2 ⋅ F , (3.113)

which is, indeed, the 2D Stokeslet.

The logarithmic divergence in (3.113) as r → ∞ reflects the Stokes paradox, which is here 

resolved by viscous traction from the subphase. Subphase viscous stresses become dominant 

over length scales larger than ℓSD (d ≫ 1 or Bq ≪ 1), in which case
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μ r ≫ lSD ≈ 2
πd − 2

πd2 , (3.114a)

μ⊥ r ≫ lSD ≈ 2
πd2 . (3.114b)

The surface velocity profile becomes

us(x, Bq 0) = 1
2πη

rr
r3 ⋅ F (3.115)

in the surface-inviscid limit (Bq → 0). Notably, (3.115) is not a 2D slice of the flow due to a 

3D Stokeslet – surface incompressibility (§3.3.2) modifies fluid streamlines to ensure that 

the resultant velocity profile is surface-divergence free (figure 11).

Prasad et al. (2006) experimentally mapped out surface velocities on surface-viscous protein 

monolayers via passive (colloid-tracking) two-particle microrheology. The displacement 

correlations between two points on the interface along and perpendicular to the line joining 

their centers are proportional to mobility coefficients μ∥ and μ⊥, respectively. Experiments 

over a wide range of surface viscosities (from O(1) nNs/m to O(1) μNs/m) clearly show this 

transition from a logarithmic decay in the interface-dominated regime to μ∥ ~ 1/r and μ⊥ ~ 1/

r2 when subphase stresses dominate (figure 13). Surface streamlines following (3.108) also 

transition distinctly between subphase-dominant and interface-dominant flows (figure 14).

3.4.3. Intrinsic and apparent surface viscosity—As discussed in §3.3, surface 

flows that compress or dilate the interface establish surfactant concentration gradients, 

generating Marangoni stresses. Surfactant exchange with the subphase returns the system to 

equilibrium. For small departures from equilibrium, the Marangoni stress due to a soluble 

surfactant (3.89) is

− ∇sΠ = E0τs∇s ∇s ⋅ us , (3.116)

where E0 is the Marangoni modulus (2.22), and τs is the characteristic sorption time (3.56). 

Using (3.116) in the Boussinesq-Scriven equation (3.94) gives

−n ⋅ 〚 σ 〛 = ηs∇s
2us + E0τs + κs ∇s ∇s ⋅ us . (3.117)

As noted previously in §3.3.2, adsorption/desorption introduces an apparent dilatational 

surface viscosity κsads = E0τs. Equation (3.117) highlights the pitfalls of inferring a ‘true’ 

dilatational surface viscosity of a soluble surfactant. Any measurement that is sensitive to 

surface viscous dissipation due to pure compression/dilatation would at best report κs + 

E0τs. An intrinsic dilatational surface viscosity κs, should it exist, can only be established 

with complementary measurements of E0 and τs.
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Furthermore, (3.117) reveals the coupling between surface shear and dilatation in one-

dimensional stretching or compression, as occurs in plate coating or thin-film drainage 

(§4.4). The 1D version of (3.117) corresponding to deformation along the x-direction is

η∂vx
∂z z = 0

= E0τs + ηs + κs
∂2us
∂x2 . (3.118)

Surface viscous dissipation in 1D derives from a combination of surface shear viscosity, 

surface dilatational viscosity, and the apparent viscous-like term E0τs. Surface shear 
viscosity inferred from such systems, therefore, is also prone to mischaracterization when 

E0τs ≠ 06. This rate- and system-dependent viscous-like contribution arising from 

adsorption/desorption is responsible, at least in part, for widely dissimilar values (spread 

over four orders of magnitude) reported for the surface viscosity of the same soluble 

surfactant (Stevenson 2005; Zell et al. 2014).

Nondimensionalizing (3.118) gives

∂vx
∂z z = 0

= Ψ ∂2us
∂x2 , (3.119)

wherein Ψ reflects a general ‘degree of immobilization’ in 1D systems:

Ψ = E0τs + ηs + κs
ηL = MaK + Bqη + Bqκ . (3.120)

Here, Bqη,κ are Boussinesq numbers defined separately for the intrinsic surface shear and 

surface dilatational viscosities. Written this way, the exchange Marangoni number MaK = 

E0τs/ηL (table 3) can be interpreted as a modified Boussinesq number defined with the 

apparent surface dilatational viscosity, κsads = E0τs, in place of an intrinsic surface viscosity.

The immobilization parameter Ψ controls the transition from a stress-free interface (Ψ → 0) 

to a no-slip surface (Ψ → ∞) in 1D compression/dilatation. In the following sections, we 

will see this combination appear in the contexts of settling drops, coating flows, and foams. 

In each of these applications, a macroscopically measureable quantity (such as the velocity 

of a settling drop) depends on Ψ in a manner that does not differentiate between ηs, κs, and 

E0τs.

4. Surfactant dynamics in paradigmatic problems

Having discussed surfactant properties and their role in modifying fluid flows, we now turn 

to quantifying the effect of dynamic surfactant properties and processes on a series of 

paradigmatic problems. In particular, we will explore the motion of surfactant-covered drops 

and bubbles (§4.1), oscillatory compression of interfaces (§4.2), damping of surface waves 

(§4.3), coating and drainage of thin films (§4.4), flow through foams (§4.5), and particles 

and probes on surfactant-laden interfaces (§4.6). In each case, our objective is to identify the 

distinct ways in which surfactant dynamics impact measurable properties, such as the 

buoyant rising velocity of a bubble, the thickness of fluid entrained in dip coating, or the 
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drag on a probe translating on an interface. When possible, we quantify how each effect 

scales with system properties, geometries, and material parameters. In so doing, we aim to 

connect common threads that underlie these very different systems. Perhaps more 

importantly, we will highlight situations where it is difficult, or even impossible, to tease 

apart these processes in a typical experiment. Complementary experiments might be 

required to unambiguously identify the ‘hidden’ surfactant and/or transport variable 

responsible for the observed dynamics.

4.1. Motion of surfactant covered drops and bubbles

We will start with the ‘simple’ example that initially motivated this entire perspective – the 

motion of surfactant covered drops and bubbles (figure 1). Distinct surfactant processes 

manifest in often indistinguishable ways, even in such a mundane flow. In this section, we 

will quantitatively examine the impact of surfactant variables – specifically, surface viscous 

dissipation, Marangoni stresses as impacted by adsorption/desorption, and surface diffusion 

– in modifying the motion of a drop or bubble at low Reynolds numbers (figure 15).

The translation of a rigid sphere in a viscous fluid is a classic low-Reynolds-number 

problem. The terminal velocity of a rigid sphere of density ρ′ and radius R settling due to its 

own weight (or rising due to buoyancy) through a liquid with viscosity η and density ρ is

Urigid = 2
9

ρ′ − ρ gR2

η , (4.1)

where g is the gravitational acceleration. A clean drop (or bubble) with viscosity η′ of the 

same size settling (or rising) through the same liquid instead follows the Hadamard-

Rybczynski formula (Levich 1962; Happel & Brenner 1965):

UHR = 2
3

ρ′ − ρ gR2

η
η + η′

2η + 3η′ = Urigid
λ + 1
λ + 2/3 , (4.2)

where

λ = η′
η (4.3)

is the viscosity ratio. Equation (4.2) recovers the Stokes formula (4.1) when λ ≫ 1. By 

contrast, UHR = (3/2)Urigid when λ ≪ 1, such as an air bubble rising through a viscous fluid.

The picture changes when surfactants populate the interface between the two fluids. The 

interfacial boundary condition is then controlled by the interplay between convection, 

kinetics of adsorption/desorption, diffusion both in the bulk and on the interface, and surface 

viscous stresses (figure 1). Early experiments revealed discrepancies with the Hadamard-

Rybczynski formula, and were attributed to impurities that modify the surface tension. In 

particular, Bond & Newton (1928) established that drops with radius under a critical value 

settle like rigid spheres, whereas larger drops followed (4.2). They suggested that internal 

circulation occurs only when the driving force (i.e.gravity) is much larger than the surface 

tension force, giving the critical radius R2 ≪ γ/(ρ′ − ρ)g. The well-known Bond(-Newton) 
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number derives directly from this study. However, as we show in what follows, later studies 

have established that this change in the settling velocity can be attributed to dynamic 

surfactant processes, rather than the equilibrium surface tension.

4.1.1. Surface immmobilization due to surface viscosity—One of the first 

quantitative attempts to address the inconsistency between (4.2) and measurements came 

from Boussinesq (1913), who hypothesized that a thin interfacial layer provides its own 

‘surface viscous’ resistance. In writing the tangential surface stress balance, Boussinesq 

neglected surface tension gradients and instead introduced a surface viscosity:

n ⋅ 〚 σ 〛 ⋅ t = κst ⋅ ∇s ∇s ⋅ us . (4.4)

Here, n and t are the normal and tangent, respectively, to the drop surface, 〚 σ 〛 is the 

stress jump across the interface, and κs is an interfacial dilatational viscosity. Solving the 

boundary-value problem with (4.4) as the boundary condition, the terminal settling velocity 

of a drop is (Boussinesq 1913; Levich 1962; Agrawal & Wasan 1979)

U = Urigid
3η + 3η′ + 2ϑ
2η + 3η′ + 2ϑ, (4.5)

where

ϑ = κs
R (4.6)

is a retardation coefficient due to surface dilatational viscosity. Thus, surface viscosity has 

an effect analogous to increasing the effective viscosity of the drop from η′ to η′ + 2ϑ/3.

The retardation coefficient ϑ has units of bulk shear viscosity, and can be argued based on 

excess energy dissipation. The energy dissipated in the drop via conventional shear viscosity 

scales like

P η′ϵ̇2R3, (4.7)

where ϵ̇ is the strain rate within the fluid; the dissipation per unit volume then becomes

Φ η′ϵ̇2 . (4.8)

By extension, the retardation coefficient ϑ scales like the surface-excess energy Ps dissipated 

by the surfactant, normalized by the volume of the drop:

Φs
Ps
R3 ϑϵ̇2 . (4.9)

The Boussinesq number quantifies the relative strength of surface and bulk viscous stresses:
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Bqκ = ϑ
η = κs

ηR, (4.10)

and the drop settling speed (4.5) can be rewritten as

U = Urigid
λ + 1 + 2Bqκ/3
λ + 2/3 + 2Bqκ/3 . (4.11)

Surface viscosity is negligible when Bqκ ≪ 1, whereas the interface is effectively 

immobilized and the drop behaves like a rigid sphere when surface viscous stresses 

dominate (Bqκ ≫ 1). Because Bqκ decreases as R increases, Boussinesq’s calculation 

reveals that bulk viscous stresses dominate over surface viscous stresses for sufficiently large 

drops. For fixed λ and κs, therefore, the Hadamard-Rybczynski prediction improves with an 

increase in drop size.

4.1.2. Marangoni stress and adsorption/desorption—The Boussinesq correction 

due to surface viscosity does not explicitly account for the Marangoni flow associated with 

surface tension gradients. Levich (1962) accounted for convection, adsorption/desorption 

and diffusion in both the surface and the bulk. When drops or bubbles translate, the 

interfacial fluid motion advects adsorbed molecules to the rear (figure 15 c), thereby 

establishing a gradient in Γ. This sets up reverse Marangoni flows, and the tangential stress 

balance at the interface becomes

n ⋅ 〚 σ 〛 ⋅ t = − t ⋅ ∇sγ . (4.12)

The strength of Marangoni stresses depends on the speed with which gradients are 

established, compared with how quickly various processes can cause them to relax. For 

small departures from equilibrium surface coverage, the terminal velocity takes the same 

form as (4.5), but with a retardation coefficient ϑ that depends on the dominant surfactant 

transport process (Levich 1962; Agrawal & Wasan 1979). In what follows, we outline the 

cases of adsorption and surface diffusion as the rate-limiting steps to illustrate the relative 

strength of Marangoni flows in immobilizing the interface.

The adsorption/desorption of soluble surfactants contributes an apparent dilatational surface 

viscosity (§3.4.3),

κs
app,ads = E0τs, (4.13)

where E0 = Γ0|∂γ/∂Γ| is the Marangoni modulus and τs is the sorption time (3.56). The 

retardation coefficient in this case is identical to (4.6) but with κs
app,ads in place of an intrinsic 

dilatational surface viscosity κs (Levich 1962):

ϑK = E0τs
R . (4.14)

The drop settles at a velocity
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U = Urigid 
λ + 1 + 2MaK /3
λ + 2/3 + 2MaK /3 , (4.15)

where the strength of Marangoni-induced retardation relative to bulk viscous drag defines 

the exchange Marangoni number (table 3):

MaK = ϑK
η = E0τs

ηR . (4.16)

Marangoni flows immobilize the interface (U → Urigid) when surfactant exchange with the 

bulk fluid is slow (τs ≫ τm = ηR/E0), so that MaK ≫ 1. For the same fluid and surfactant 

properties, smaller drops (with R ≪ E0τs/η) settle like rigid spheres, whereas larger drops 

follow the Hadamard-Rybczynski prediction.

As discussed in §3.2, the timescale τs depends on bulk diffusion gradients if exchange 

kinetics at the interface are sufficiently fast (τs ≈ τd, τk ≈ 0). Additionally, if the bulk 

concentration C is above the critical micelle concentration (CMC), micelles act as surfactant 

reservoirs that dissociate to maintain a constant monomer concentration. As bulk 

concentration gradients vanish, τs ≈ τd → 0, and surface concentration gradients also 

disappear (figure 15 d). Micelles thus act to diminish reverse Marangoni flows and reduce 

adsorption/desorption-based retardation by ‘remobilizing’ the interface (Stebe & Maldarelli 

1994).

4.1.3. Marangoni stress and surface diffusion—Diffusion of surfactant molecules 

on the interface can also relax surface concentration gradients, particularly when the 

surfactant is insoluble. Surface diffusion acts against gradients in Γ established by surfactant 

advection, and the resultant profile γ(Γ) dictates the strength of the Marangoni reverse flow. 

Solving for a dilute system that is slightly perturbed from equilibrium, Levich (1962) 

obtained (4.5) again, but now with the retardation coefficient

ϑsd = RE0
Ds

, (4.17)

where Ds is the surface diffusivity of the surfactant.

This retardation coefficient captures the work dissipated as surfactant molecules are forced 

along the interface by chemical potential gradients. The rate of work done by a surfactant 

molecule of mobility bs forced to translate along the interface at velocity U is U2/bs ϵ̇2R2/bs, 

and the surface excess power Ps dissipated by ~ ΓR2 surfactants is

Ps
Γϵ̇2R4

bs
. (4.18)

Following (4.9), the retardation coefficient ϑsd is then related to the dissipation Φ per unit 

volume of the drop,
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Φ Ps
R3

RΓ
bs

ϵ̇2 ϑsdϵ̇2 . (4.19)

The term within the brackets is the 3D-viscosity-like coefficient ϑsd associated with 

dissipation in this process. In the dilute limit, the Marangoni modulus E0 and surface 

concentration Γ are related via Γ = E0/kBT, and the surface mobility and diffusivity are 

related via the Stokes-Einstein relation Ds = kBTbs. Substituting Γ and b in (4.19) recovers 

Levich’s form (4.17) for the retardation coefficient ϑsd.

The surface diffusion of insoluble surfactants thus modifies the droplet settling velocity to

U = Urigid
λ + 1 + 2MaD/3
λ + 2/3 + 2MaD/3 . (4.20)

where the Marangoni number MaD (table 3) is

MaD = ϑsd
η = RE0

ηDs
. (4.21)

The interface is immobilized by reverse Marangoni flow (U → Urigid) when the surface 

diffusive timescale R2/Ds is much longer than the Marangoni timescale ηR/E0 (or MaD ≫ 
1). By contrast, the surface is mobile if MaD ≪ 1, in which case surface diffusion relaxes 

surface concentration gradients quickly enough that Marangoni flows do not develop.

It is tempting to express ϑsd from (4.17) in terms of an apparent surface viscosity, following 

(4.6), giving

κs
app,sd = R2E0

Ds
= E0τd, (4.22)

where τd = R2/Ds is the surface diffusive timescale. In this case, however, the apparent 

surface viscosity κs
app,sd depends on the size of the drop, and therefore clearly does not 

represent an intrinsic material property. By extension, the R2 dependence of κs
app,sd differs 

from both intrinsic surface viscosity κs and as well as the apparent κs
app due to other dynamic 

surfactant processes like adsorption/desorption (4.13), suggesting experimental strategies to 

differentiate between the possible mechanisms.

4.1.4. Inferring retardation mechanisms from measurements—The three 

different mechanisms of surface stress relaxation considered here – surface viscosity, 

Marangoni reverse flow with adsorption/desorption, and Marangoni reverse flow with 

surface diffusion – all lead to drop settling velocities of the form

U = Urigid
λ + 1 + 2Ψ /3
λ + 2/3 + 2Ψ /3 . (4.23)
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The immobilization parameter Ψ (§3.4.3) acts in way that resembles an increase in the shear 

viscosity of the drop. The drop settles like a rigid sphere when Ψ → ∞, and like a clean 

drop when Ψ → 0. Equation (4.23) qualitatively maps out the illustrative plot in figure 1, 

where Ψ is determined by the ‘hidden’ surfactant variable(s). More general immobilization 

parameters Ψ = Ψ(Ma, Pe, Da, Bqκ) arise when surfactant transport in the bulk becomes 

comparable to surface processes (Levich 1962; Agrawal & Wasan 1979), but the form of 

(4.23) remains unchanged. Here, the Péclet number Pe = UR/D compares advection and 

diffusion in the bulk, and the Damköhler number Da = kCR/D compares adsorption to bulk 

diffusion.

Experimentally measuring drop settling velocity U alone can not reveal exactly what the 

surfactant does to the interface. Equation (4.23) links a measured velocity to the parameter 

Ψ, which could be Bqκ, some form of Ma, a function of Pe and Da, or some non-trivial 

combination. How can we, if at all, demarcate the specific process responsible for slowing 

the drop?

Since one can at best measure the lumped parameter Ψ, one approach is to exploit the 

scaling of Ψ with experimentally controllable quantities such as the bubble radius or 

surfactant concentration. If Ψ, interpreted from measurements via (4.23), increases linearly 

with drop size, then Marangoni flow with surface diffusion would be consistent as the 

dominant mechanism (Ψ = MaD). Alternatively, if experiments suggest Ψ ∝ 1/R, surface 

viscosity (Ψ = Bqκ), adsorption-based retardation (Ψ = MaK), or both would be consistent. 

However, one might expect these two mechanisms to scale differently with bulk surfactant 

concentration C: an intrinsic surface viscosity κs likely increases with C or stays constant, 

whereas κs
app,ads likely decreases with C, since adsorptive equilibration speeds up as more 

surfactant is added to the bulk.

4.2. Oscillatory compression of soluble monolayers

The oscillatory compression of surfactant monolayers – whether in Langmuir troughs or in 

pulsing bubbles – provides an important method to characterize interfaces and the impact of 

surfactant processes on surface mechanics (Lucassen & van den Tempel 1972; Johnson & 

Stebe 1994; Ravera et al. 2010; Arriaga et al. 2010; Kotula & Anna 2016). The mechanical 

response of a dynamic interface as it is compressed depends not only on the equilibrium 

properties (via the isotherm) but also on the surface concentration profile Γ(rs, t) at any 

particular position and time. By extension, the Gibbs modulus E of soluble surfactants 

depends on the relative timescales of interfacial compression/dilatation and re-equilibration 

of Γ. For example, during a compression so rapid that surfactants do not have time to desorb, 

the surface concentration must increase as Γ ~ 1/A, so that

Esoluble(t 0) = − A∂Π
∂A t 0

≈ Γ ∂Π
∂Γ t 0

= E0 . (4.24)

In other words, the Gibbs modulus E is equal to the Marangoni modulus E0 in the rapid 

deformtion limit. By contrast, over long enough time scales, adsorption/desorption returns Γ 
(and therefore Π) to its equilibrium level, so that
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Esoluble(t ∞) = − A∂Π
∂A Π ≈ constant

≈ 0 (4.25)

for slow (or quasi-static) compression.

In general, the Gibbs modulus measured during the oscillatory compression of a soluble 

monolayer ranges between 0 and E0. Moreover, Γ(t) may oscillate with some phase lag 

relative to the oscillating surface area A, as discussed in §3.2.1. Just like in shear rheology, 

out-of-phase responses reflect dissipative processes, meaning that the dynamic Gibbs 

modulus captures the apparent surface elasticity and the apparent surface dilatational 

viscosity, both of which depend on frequency. In what follows, we will revisit classic studies 

that quantified the apparent rate-dependent surface viscoelasticity originating from 

surfactant exchange between interface and subphase during oscillatory compression.

4.2.1. Apparent oscillatory surface rheology—Lucassen & van den Tempel (1972) 

computed the surface pressure Π(t) on a planar surfactant monolayer whose area A(t) is 

forced to oscillate, and connected the monolayer response to a rate-dependent surface 

viscoelasticity. Figure 16 depicts the model system, consisting of a soluble monolayer at z = 

0 subjected to an oscillatory dilatational deformation at frequency ω (e.g. by moving barriers 

in a Langmuir trough), while surfactants adsorb/desorb over a timescale τs.

As discussed in §3.2, the molecular exchange of surfactant between the surface and the 

subphase can be diffusion- or kinetically-limited. Lucassen & van den Tempel (1972) 

focused on the diffusion-limited regime (Da ≫ 1), for which the sorption timescale 

τs ≈ τd Ld
2/D. The equilibrium surface area, surface concentration, and bulk concentration 

fields are perturbed via

A(t) = A0 + δAeiωt, (4.26a)

Γ(t) = Γ0 + δΓeiωt, (4.26b)

C(z, t) = C0 + δCei(ωt + kz), (4.26c)

where the disturbance is homogeneous along the interface, and surfactant is dissolved in the 

bulk fluid below the interface (z < 0). The bulk concentration C satisfies the diffusion 

equation (3.26), with solution

k = (1 − i) ω
2D . (4.27)

Both real and imaginary components of δΓ resist interfacial dilatation, and a convenient 

measure of the net resistance is the complex dilatational modulus
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E * = − dΠ
dlnA = − dΠ

dlnΓ
dlnΓ
dlnA = − E0

dlnΓ
dlnA, (4.28)

where E0 = dΠ/d ln Γ is the Marangoni modulus (§2.4.2). We will assume that Π(t) is in 

phase with and uniquely determined by Γ(t), so that E0 is independent of ω. Note, however, 

that Γ and A may not vary precisely in phase: even monolayers of insoluble surfactant 

monolayers may relax to equilibrium over surprisingly long times, as discussed in §5. 

Surfactant transport thus affects E* via the dynamic behavior of Γ(A) in (4.28). The real part 

of E* is the dynamic Gibbs modulus, whereas the imaginary or out-of-phase component 

captures the viscous-like dissipation associated with surfactant exchange.

Surfactant conservation at the interface with diffusion-limited adsorption (§3.2) requires

1
A

∂(ΓA)
∂t = jdiff = − D∂C

∂z z = 0
. (4.29)

Contact equilibrium is assumed between the surface concentration Γ(t) and the bulk 

concentration Cs(t) = C(0, t) when diffusion-controlled, so that

1
A

∂(ΓA)
∂t = 1 + ∂ lnΓ

∂ lnA
∂Γ
∂t = 1 + ∂ lnΓ

∂ lnA Lp
∂C
∂t z = 0

, (4.30)

where Lp = ∂Γ/∂Cs is the depletion depth (3.47). Using (4.30) in (4.29) gives

∂ lnΓ
∂ lnA = − 1 + D

Ld

∂C/ ∂z z = 0
∂C/ ∂t z = 0

−1
. (4.31)

Substituting perturbed variables (4.26) in (4.31) then gives the complex modulus (4.28):

E * = E0
1 + ζd − iζd

, (4.32)

where

ζd = 1
Ld

D
2ω (4.33)

is a dimensionless ratio of the diffusive boundary layer thickness δBL = D/2ω to the 

depletion depth Lp = ∂Γ/∂Cs, first introduced as (3.51) in §3.2.

The apparent surface-elastic and surface-viscous moduli are the real and imaginary parts of 

E*, respectively:

E = Re E * = E0
1 + ζd

1 + 2ζd + 2ζd
2 , (4.34a)
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κsads = Im E *
ω = E0

ω
ζd

1 + 2ζd + 2ζd
2 . (4.34b)

During ‘fast’ oscillations (ζd ≪ 1), surfactant molecules do not diffusively escape the 

depletion depth before the barrier reverses direction, so the interface behaves as insoluble, 

with E → E0. By contrast, during ‘slow’ oscillations (ζd ≫ 1), the oscillatory boundary 

layer is thicker than the depletion depth (δBL ≫ Lp). In this limit, dissolved molecules 

diffuse across the depletion depth during each oscillation and restore the sublayer 

concentration to C0 before the barrier reverses. Molecules then adsorb/desorb much more 

quickly than the interface is compressed and dilatated, so that Γ(t) ≈ Γ0 and the Gibbs 

modulus vanishes. The apparent dilatational surface viscosity Ks
ads is highest when ζd = 

O(1), i.e., when τω ~ τd.

More generally, the complex dilatational modulus E* depends on the Damköhler number Da 
(3.40). We will generalize E* for finite Da and non-planar interfaces in the next section, but 

simply note that the qualitative trends of E* resemble those in Figure 16b, regardless of 

system geometry: |E*| → E0 for slow adsorption/desorption (or rapid deformation), and |E| 

→ 0 for slow deformations.

4.2.2. Oscillating bubble tensiometry—Oscillating bubbles make excellent 

experimental probes of dilatational surface rheology (Kotula & Anna 2016; Ravera et al. 
2010). Indeed, §3.2.1 illustrated kinetically and diffusion-limited surfactant exchange via 

oscillating bubbles. Here, we will follow Johnson & Stebe (1994) in examining the surface 

stresses that arise in oscillating bubbles, and how they depend on adsorption/desorption, 

surface rheology, and subphase viscosity.

Alvarez et al. (2010a) developed a microbubble microtensiometer, which simultaneously 

measures radius the radius and gas pressure of O(100μm) bubbles. For a static bubble with 

equilibrated surface coverage, the surface tension (or surface pressure) is then determined 

via the Young-Laplace equation (2.6). Indeed, the equilibrium isotherm of insoluble 

monolayers can be mapped out by quasi-static compression of a spherical bubble (Kotula & 

Anna 2016).

To quantify the impact of surfactant adsorption/desorption,mass transport and surface 

rheology on dynamic bubbles, we return to the work of Johnson & Stebe (1994), first 

introduced in §3.2.1, involving an oscillating air bubble of radius R(t), with dynamic surface 

concentration Γ(t), in a liquid containing dissolved surfactant at concentration C(t). Fluid 

pressure and radial velocity in both gas and liquid phases are perturbed as before (3.29), via

vr(r, t) = δvr(r)eiωt, p(r, t) = p0 + δp(r)eiωt . (4.35)

Solving the unsteady Stokes equations gives
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δv(r) = iωR0
2

r2 δR, (4.36a)

δp(r) = − ρω2R0
2

r δR, (4.36b)

in the liquid phase.

Assuming the gas viscosity to be negligible, the gas pressure is uniform throughout the 

bubble (pg = pg(R)) and is determined by the stress balance at the interface (3.8). Assuming 

also that the adsorbed surfactant forms a Newtonian monolayer and simplifying the 

Boussinesq-Scriven stress tensor (3.93) for radial deformation gives (Scriven 1960):

pg − pl(R) + 2η∂vr
∂r r = R

= 2γ
R + 4κsvr(R)

R2 . (4.37)

The perturbed surface tension is

γ = γ Γ0 + ∂γ
∂Γ Γ0

δΓeiωt = γ0 − E0
Γ0

δΓeiωt, (4.38)

so that the leading-order interfacial stress balance (4.37) is the Young-Laplace equation:

pg, 0 − pl, 0 R0 = 2γ0
R0

. (4.39)

At O(δR), however, the pressure jump at the interface has contributions due to Young-

Laplace from the radial change, the resistance to dilatation due to changes in adsorbed 

surfactant concentration (and therefore Π), the viscous resistance from the bulk liquid, and 

dilatational surface viscous resistance:

δpg − δpl(R) = − 2γ0
R0

2 + 4E0
R0

2
δΓ

δΓinsol
+ 4iωη

R0
+ 4iωκs

R0
2 δR, (4.40)

where

δΓ insol = − 2Γ0
δR
R0

(4.41)

is the surface concentration change in the insoluble limit (3.32). Recall from §3.2.1 that δΓ 
in (4.40) is complex, with components both in and out of phase with δR.

Nondimensionalizing length and pressure in (4.40) using R0 and the Laplace pressure 2γ0/

R0 respectively gives

δpg − δpl(R) = χδR, (4.42)
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where

χ = − 1 + 2Maγ
Re[δΓ]
δΓinsol

+ 2iCa 1 + Bqκ +MaIm[δΓ]
δΓinsol

(4.43)

and the capillary, Marangoni, and Boussinesq numbers are

Ca = ηR0ω
γ0

, Ma = E0
ηR0ω, Maγ = Ma × Ca = E0

γ , Bqκ = κs
ηR0

. (4.44)

Evaluating (4.42)–(4.44) requires the solution for δΓ/δΓinsol, described in §3.2.1 and given 

by (3.41) and reproduced here

δΓ
δΓ insol

= 1 − iSt 1 + iW o
1 + iW o + Da

−1
, (4.45)

where the Stanton, Womersley, and Damköhler numbers are

St = kΓ
ω , W o = ωR0

2

D , and Da = kCR0
D . (4.46)

Surfactant-free bubbles lack surface viscous and surface elastic stresses (Ma = Bqκ = 0). The 

interfacial stress balance (4.42) then recovers the linear limit of the classic Rayleigh-Plesset 

equation (Marmottant et al. 2005):

δpg − δpl(R)
δR clean

= − 1 + 2iCa . (4.47)

The normal stress jump balances the perturbed Laplace pressure due to change in radius and 

the viscous stress from the liquid phase.

Bubbles with insoluble surfactants have surface concentrations that change in phase with the 

oscillations, giving Re[δΓ] = δΓinsol and Im[δΓ] = 0, so that (4.42) becomes

δpg − δpl(R)
δR insol

= − 1 + 2Maγ + 2iCa + 2iBqκCa . (4.48)

The pressure jump across the interface then balances additional surface stresses: the terms 

proportional to Maγ and BqκCa quantify the elastic and intrinsic surface viscous resistance 

to interfacial dilatation/compression, respectively.

Surface elastic resistance to bubble expansion decreases for soluble surfactants, however, 

since adsorption/desorption diminishes perturbations to surface concentration, and Re[δΓ] < 

δΓinsol. Solubility also introduces an out-of-phase component of surface concentration, so 

that Im[δΓ] ≠ 0, giving rise to an additional surface-viscous-like stress as in §4.2.1.
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The dynamic Gibbs modulus E and the apparent dilatational surface viscosity κsads are the 

real and imaginary parts of the complex modulus E* (§4.2.1). For small oscillatory 

perturbations around a spherical bubble, (4.28) gives

E *
E0

= − dlnΓ
dlnA = − R0

2Γ0
δΓ
δR = δΓ

δΓ insol
, (4.49)

so that using (4.45) for δΓ gives

E *
E0

= 1 − iSt 1 + iW o
1 + iW o + Da

−1
. (4.50)

Surfactant exchange between the interface and subphase is kinetically-limited when the bulk 

diffusion time τd is much smaller than the kinetic time τk (see §3.2.1). In the kinetically-

limited (Da = τd/τk → 0) case, (4.50) becomes

Ekin*
E0

= 1
1 − iSt = 1

1 + St2
+ i St

1 + St2 . (4.51)

The monolayer is effectively insoluble, and the Gibbs modulus E approaches the Marangoni 

modulus E0, in the limit that adsorption kinetics are so slow that Γ(t) does not change 

appreciably before the oscillatory cycle reverses (or St → 0). By contrast, Γ(t) is 

approximately constant if adsorption/desorption is fast relative to bubble oscillations (St → 
∞), so that the monolayer provides no resistance to compression/dilatation. Bubble size 

does not affect Ekin*  when transport is kinetically-limited: the oscillatory mechanical 

response of a soluble planar monolayer (§4.2.1) also follows (4.51) in the kinetically-limited 

regime Da → 0.

Alternatively, adsorption is diffusion-limited when τd ≫ τk (or Da ≫ 1), and surface 

concentration rapidly equilibrates with the subsurface concentration Cs(t) = C(R,t) via an 

isotherm Γ(Cs). In the diffusion-controlled limit (Da → ∞), (4.50) becomes

Ediff*
E0

= ΛdW o
ΛdW O − i − i iW O

, (4.52)

where Λd = (∂Γ/∂Cs)/R0 is the dimensionless depletion depth (3.47). The monolayer behaves 

as if it were insoluble, so that Ediff* E0 when diffusive transport is so slow that surfactants 

desorbed during bubble compression do not diffuse away before they readsorb during bubble 

expansion (Wo → ∞). By contrast, Γ(t) remains nearly in equilibrium if the bubble 

oscillates much more slowly than required for diffusion (Wo → 0), in which limit the 

monolayer offers no resistance.

The real and imaginary parts of (4.52) correspond to the excess elastic and dissipative terms 

in (4.42). Separating these contributions and simplifying gives
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Ediff*
E0

= 1 + ζd
1 + 2ζd + 2ζd

2 1 + 2Λdζd + 2Λd
2ζd

2

+ i ζd 1 + 2Λdζd
1 + 2ζd + 2ζd

2 1 + 2Λdζd + 2Λdζd
2 ,

(4.53)

where

ζd = 1
Ld

D
2ω (4.54)

is the ratio of the diffusive oscillatory boundary layer thickness to the depletion depth (3.51),

Ld = ∂Γ
∂Cs

. (4.55)

Bubbles with radii significantly larger than the depletion depth (Λd = Ld/R ≪ 1) recover the 

classic results of Lucassen & van den Tempel (1972) for oscillatory compression of planar 
interfaces, presented in §4.2.1.

In the examples so far, the subphase was assumed to be infinitely deep so that the bulk fluid 

always contained enough surfactant to adsorb on to the interface given enough time. 

However, the bulk fluid may be entirely depleted of surfactant if the subphase is shallow, as 

may occur in thin films, coating flows, foams and concentrated emulsions. The film 

thickness h then ‘cuts off’ the depletion depth Ld, and the film is said to be confined (Quéré 

1999; Delacotte et al. 2012). Surface concentration perturbations are not diminished by 

adsorption/desorption if h ≪ Ld, and the effective dilatational modulus is maximal (equal to 

the Marangoni modulus E0) for confined flows.

4.3. Damping of capillary waves

The calming effect of oil poured on the surface of water has been known among seafarers 

since the times of the ancient Greeks. Benjamin Franklin gave one of the earliest systematic 

accounts, claiming that a mere teaspoonful of oil was capable of rendering a half-acre pond 

“as smooth as a looking-glass” (Franklin et al. 1774). His own hypothesis was that the film 

of oil prevented wind from “catching” the water, in turn preventing friction by gliding on the 

surface and damping wave formation. However, wave damping occurs far too quickly to 

result from a reduction in wind input alone.

Instead, surfactants dissipate wave energy and therefore play the dominant role in wave 

damping (Levich 1962; Lucassen & Hansen 1966; Alpers & Hühnerfuss 1989). In what 

follows, we will first outline wave motion on a clean interface, and later contrast it with 

waves on surfactant-laden interfaces. The surfaces of clean fluids are dilated or compressed 

at the nodes of surface waves, and surface rheology or Marangoni stresses resist such a 

deformation. Large surface elasticity or surface viscosity makes the interface act as 

effectively incompressible, suppressing the propagation of surface waves.
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4.3.1. Waves on a clean liquid surface—The vertical displacement ζ of a surface 

due to plane waves of wavelength λ propagating along the x direction (figure 17) can be 

written

ζ(x, t) = ζ0ei(kx − ωt), (4.56)

where k = 2π/λ and ω are, respectively, the wave number and frequency. For small wave 

amplitudes, the nonlinear term in the Navier-Stokes equation is negligible (Levich 1962; 

Probstein 1994) and the hydrodynamic governing equations are the unsteady Stokes 

equations.

Waves are driven by the balance between fluid inertia and the restoring forces of gravity 

and/or surface tension. The excess hydrostatic pressure due to the disturbance is

pg = ρgζ, (4.57)

and the excess capillary pressure, following the Young-Laplace equation and assuming small 

curvatures, is

pc = − γ ∂2ζ
∂x2 = γk2ζ . (4.58)

The ratio of hydrostatic and capillary pressures is the Bond number,

Bo = pg
pc

= ρg
γk2 . (4.59)

Short wavelengths (Bo ≪ 1) correspond to capillary waves (λ ≲ O(1cm) for water), whereas 

large wavelengths (Bo ≫ 1) correspond to gravity waves.

Inviscid flows are simplest, as they are irrotational in this configuration, and can therefore be 

described by a velocity potential:

v = ∇ϕ, and ∇2ϕ = 0. (4.60)

Linearity and continuity require

ϕ(x, z, t) = Aekzei(kx − ωt), (4.61)

so that the linearized inviscid Navier-Stokes equation give

∂ϕ
∂t z = 0

= − g + γk2

ρ ζ, (4.62)

approximating the interface to be at z = 0, with O(ζ2) corrections. Imposing the kinematic 

condition Dζ/Dt = vz at the interface then gives
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ω0 = gk + γk3

ρ
1/2

= γk3

ρ (1 + Bo)1/2, (4.63)

where Bo is the Bond number (4.59). From the dispersion relation (4.63), the wave velocity 

is given by

c = ω0
k , (4.64)

with a minimum cmin ≈ 20 cm/s for water.

Waves described by (4.63) neither grow nor decay when the fluid is inviscid and the 

interface is clean. However, waves decay in fluids with finite viscosity. The relative strength 

of wave damping is captured by the ratio of viscous stresses to inertial stresses,

m = νk2

ω0
= 2πν

cλ , (4.65)

where ν = η/ρ is the kinematic viscosity. Based on the minimum phase velocity in water, m 
< 1 for wavelengths larger than λ ≳ 0.1mm (Levich 1962). Viscous stresses are therefore 

typically weak relative to inertia, and it is safe to assume that the wave frequency departs 

only slightly from its inviscid value ω0, so that

ζ(x, t) = ζ0ei kx − ω0t + βt, (4.66)

where |β| ≪ ω0 gives a weak viscous damping. The negative real part of β is the decay rate, 

and its imaginary part gives a small correction to the wave frequency due to fluid viscosity.

The non-irrotational nature of viscous flows necessitates a stream function ψ in addition to 

the potential function ϕ. Solving for the velocity, pressure, and β based on ϕ and ψ is tedious 

– see Levich (1962) for details – here we simply present the resultant damping rate,

βclean = Re[β] = − 2mω0 = − 2νk2 . (4.67)

The damping timescale βclean
−1  can be interpreted as the time taken for vorticity generated by 

shear stresses to diffuse a depth comparable to the wavelength λ.

In what follows, we examine how surfactants modify the damping rate β. Levich (1962) 

shows the effect of surfactants to be significant only when λ ≲ 10 cm, and therefore affect 

capillary waves more prominently than gravity waves. We will therefore restrict our 

attention to capillary waves (Bo ≪ 1) in the following sections, and approximate 

ω0 ≈ γk3/ρ. As Franklin et al. (1774) noted over two centuries ago, large waves on a stormy 

sea are unaffected, whereas smaller ripples are smoothed out resulting in ‘glassy’ surfaces.

4.3.2. Marangoni damping due to insoluble and surface inviscid surfactants
—Surfactants strengthen wave damping through two main mechanisms – Marangoni 
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stresses and surface rheology – and we start with the former. The simplest case is a surface 

inviscid monolayer, for which ηs = κs = 0. Additionally, surface concentration gradients do 

not relax by adsorption/desorption in insoluble monolayers, in which case E is equal to the 

Marangoni modulus E0 (§2.4.2). Surface diffusion may also weaken the Marangoni effect by 

smoothing out gradients in Γ, but we will neglect diffusion by assuming the time to diffuse 

the wavelength λ2/Ds is much longer than the oscillation period ω0.

The surface concentration is perturbed away from its equilibrium value Γ0 via

Γ(x, t) = Γ0 + δΓei kx − ω0t + βt, (4.68)

where δΓ ≪ Γ0. Like with the vertical displacement ζ(x, t) (4.66), we assume that subphase 

viscous effects are weak, so that the frequency is well-approximated by its inviscid value ω0, 

and that the damping rate |β| ≪ ω0. For small surface velocities, the surfactant conservation 

equation (3.10) gives

δΓei kx − ω0t + βt = Γ0
−iω0 + β

∂vx
∂x (4.69)

to leading order, so that the normal and tangential stress boundary conditions (3.8) for a 

surface-inviscid monolayer are:

−p + 2η∂vz
∂z = γ Γ0

∂2ζ
∂x2 , (4.70a)

η ∂vx
∂z + ∂vz

∂x = − E0
Γ0

∂Γ
∂x = E0

iω0 − β
∂2vx
∂x2 . (4.70b)

The capillary force in (4.70a) drives the wave, whereas the Marangoni stress in (4.70b) 

resists it. We therefore anticipate the damping rate β to depend on the relative magnitudes of 

γ(Γ0) and E0(Γ0).

Solving the unsteady Stokes equations with boundary conditions (4.70) gives the fluid 

velocity and the damping rate β. The calculation is tedious, but analytically tractable, in the 

limits of weak viscosity (m = νk2/ω0 ≪ 1) and small damping rate (|β| ≪ ω0), giving 

(Levich 1962; Alpers & Huühnerfuss 1989)

Re[β]
ω0

≈ − 1
2 2

Maγ2 m − 4Maγm3/2 + 4 2m2

Maγ2 + m −Maγ 2m
. (4.71)

Here, the modified Marangoni number Maγ (table 3) quantifies the competition between 

interfacial area creation due to capillary forces and resistance to interfacial stretching due to 

Marangoni forces:

Maγ = E0 Γ0
γ Γ0

= E0
ηc × ηc

γ = Ma × Ca . (4.72)
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Reverse Marangoni flows immobilize the interface when Maγ ≫ 1 or E0 ≫ γ, in which case 

the interface behaves like an incompressible sheet with

βstiff = Re β Maγ ∞ = − 1
2 2ω0 m = − 1

2 2 ω0νk2 . (4.73)

By contrast, weak E0 gives Maγ ≪ 1 and recovers the clean interface limit βclean (4.67). The 

ratio of the damping coefficient in the two limits is

βstiff
βclean

= 1
4 2m = 1

8 π
cλ
ν

1/2
. (4.74)

Because wave speeds are greater than cmin ≈ 0.2m/s on water-air interfaces, βstiff > βclean for 

waves with millimeter (or larger) wavelength. Typical capillary waves therefore decay more 

rapidly when surfactants are present.

Notably, the damping coefficient depends nonmonotonically on Maγ (figure 18), with a 

maximum value βmax ≈ 2βstiff that occurs at an intermediate Marangoni number, as reported 

in both experiments and simulations (Davies & Vose 1965; Alpers & Hühnerfuss 1989). 

Lucassen (1968) ascribes this maximum to a resonance-like mechanism between transverse 

capillary waves and longitudinal Marangoni waves. Damping is maximum when the 

wavelengths of these transverse and longitudinal waves are equal.

Probstein (1994) notes that βstiff can be estimated by treating the interface as an 

incompressible plate. The damping coefficient in general takes the form β ~ −νk/d, where d 
is viscous gradient length scale in the bulk. Without surfactants, the dissipation extends to a 

depth d ~ k−1, and β = βclean ~ −νk2 in agreement with (4.67). When surfactants immobilize 

the surface via Marangoni flows, the viscous boundary layer under the surface is akin to that 

of an incompressible plate oscillating at frequency ω. This is Stokes’ second problem, 

revealing a viscous boundary layer that extends to a depth d ~ (ν/ω)1/2, with damping rate 

βstiff ~ −(νω)1/2k.

The enhanced damping mechanism is illustrated in figure 19. Fluid elements on and near a 

surfactant-free interface travel in circular trajectories. Surfactants drive Marangoni flows that 

act to immobilize the interface, distorting these circular trajectories. The change from near-

vertical motion at the interface to circular trajectories in the subphase increases velocity 

gradients and viscous dissipation. Notably, damping still occurs due to bulk viscous 

dissipation: surface incompressibility due to reverse Marangoni flow modifies the bulk 

velocity field in a manner that amplifies viscous dissipation in the bulk (§3.3.2).

4.3.3. Damping due to soluble and/or surface viscous surfactants—The 

surface flow generated by the motion of a wave creates alternating regions of dilatation and 

compression (figure 19). Any putative surface viscous stresses would resist such a 

deformation. Note also that surface shear and surface dilatational viscosities appear 

inseparably in the Boussinesq-Scriven equation (3.118) for 1D deformations, as occurs in 

plane waves. In other words, a monolayer with finite surface shear viscosity ηs resists one-
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dimensional stretching and compression, even if the surface dilatational viscosity κs is 

negligible.

Recall from the oscillatory dynamics of surfactant-covered bubbles (4.2.2) that additional 

viscous stresses arise due to excess surface rheology as well as adsorption/desorption. The 

tangential stress balance (3.94) for a Newtonian monolayer undergoing 1D deformation is

η ∂vx
∂z + ∂vz

∂x = − E0
Γ0

∂Γ
∂x + ηs + κs

∂2vx
∂x2 , (4.75)

where changes in Γ now drive adsorption/desorption fluxes. In what follows, we will assume 

diffusion-limited adsorption (§3.2); kinetically-limited systems follow similar trends. 

Solving the bulk diffusion equation and substituting in (4.75) while assuming small 

perturbations as in (4.68) gives

η ∂vx
∂z + ∂vz

∂x = Eeff
iω0 − β

∂2vx
∂x2 , (4.76)

which is similar to the insoluble tangential stress balance (4.70b) except with a complex 
effective modulus:

Eeff = E * + iω0 − β ηs + κs , (4.77)

where E*(ω) is the complex modulus for uniform oscillatory deformation (4.34).

The real part of the effective dilatational modulus Eeff (4.77) quantifies the strength of 

reverse Marangoni flows. Rapid adsorption eliminates Marangoni forces, giving Re[Eeff] ≈ 0 

(assuming |β| ≪ ω0). By contrast, reverse Marangoni flows are strongest for negligibly slow 

adsorption, whereupon Re[Eeff] ≈ E0 (4.34). Solubility effectively reduces the dynamic 

Gibbs modulus E = Re[E*] (figure 16) and therefore decreases the damping rate β(E). 

Indeed, Franklin et al. (1774) and Levich (1962) note that sailors report that waves are 

damped more with animal and vegetable oils (with insoluble fatty acids) than with soluble 

mineral oils. The imaginary part of Eeff (4.77) quantifies surface viscous resistance to wave 

motion. In addition to ηs and κs, Im[Eeff] contains a contribution κsads = Im E *  (4.34), 

which becomes significant when ω0 is comparable to the sorption time.

The full calculation of β is complicated, and we do not pursue it here. However, the 

similarity between (4.76) and (4.70b) suggests that the damping rate β depends on the ratio 

of Eeff and γ. An effective immobilization parameter,

Ψ * = Eeff
γ ≈ Maγ

Re E *
E0

+ iCa Bqη + Bqκ +MaIm E *
E0

(4.78)

takes the place of Maγ = E0/γ in (4.71), since β ≪ ω0, where Ma and Maγ are defined in 

table 3, and
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Ca = ηc
γ , Bqη = ηsk

η , Bqκ = κsk
η . (4.79)

Equation (4.78) is the analog of (4.43) for the mechanical response of oscillating bubbles.

The damping rate is a nontrivial function of Maγ, Bqη or Bqκ in general, with limiting 

values of βclean (4.67) when |Ψ*| → 0 and βstiff (4.73) when |Ψ*| → ∞. The rate of 

damping therefore does not distinguish between the specific surfactant processes responsible 

for the damping. Measurements of a partially immobilized interface can at best be used to 

determine the lumped immobilization parameter Ψ*.

4.4. Thin films: surfactant dynamics affect thickness of coating

Thin fluid films are central to engineering and biophysical flows, most of which involve 

surfactants. Every blink or breath involves the dynamics of a tear film or the alveolar fluid 

film, and every stroke of a paintbrush leaves a thin liquid film that eventually dries. 

Industrial machinery is often coated with thin films of lubricant, and fibers, parts and 

products are coated by thin liquid films that are flowed over the objects. As with §4.1–4.3, 

the effects of surface viscosity and Marangoni flows can not always be neatly differentiated 

in many of these applications. In this section, we will quantify surfactant-covered thin film 

flows and highlight how the observable quantity (e.g. film thickness) relates to one or many 

“hidden” surfactant variables.

4.4.1. Plate coating: the Landau-Levich-Derjaguin problem—Dip coating is 

perhaps the easiest way to deposit a thin liquid film on an object: dip the object in a liquid 

reservoir, then pull it out. The thickness h of the entrained liquid layer depends on the 

velocity V of the substrate, and the density, viscosity and surface tension of the liquid being 

drawn out (figure 20) as given by the classic Landau-Levich-Derjaguin (LLD) law,

ℎLLD
lc

≈ 0.946Ca2/3, (4.80)

where

lc = γ
ρg (4.81)

is the capillary length (Landau & Levich 1942; Quéré 1999), and Ca = ηV/γ is the capillary 

number.

The LLD scaling follows from dividing the film into three regions: a film of uniform 

thickness coating the plate far above the reservoir, a static or undisturbed meniscus (figure 

20a), and an intermediate dynamic meniscus of length ℓd that smoothly matches the 

interfacial curvature between the uniform coating and the static meniscus (figure 20b). 

Neglecting fluid inertia, the viscous stress in a dynamic meniscus of thickness h scales with 

ηV/h2, and balances the capillary stress, which is the gradient of the Laplace pressure (γ/ℓc) 
along the dynamic meniscus of length ℓd:
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ηV
ℎ2

γ
lcld

. (4.82)

Near the liquid reservoir, the curvature of the dynamic meniscus must smoothly match to the 

static meniscus, which is set by the capillary length ℓc, giving

1
lc

ℎ
ld

2 . (4.83)

Combining (4.82) and (4.83) to eliminate ℓd gives the Ca2/3 scaling in the LLD law.

The fluid being drawn out of the bath is rarely pure in most applications, and it has long 

been known that surfactants enhance the thickness h0 of the film. Reverse Marangoni 

stresses and possibly surface rheological stresses immobilize the interface, dragging excess 

liquid along with the surface. In the following sections, we will outline recent studies that 

adapt the LLD approach to accommodate various surfactant processes, which first requires a 

description of the fluid dynamics of the entrained film.

For simplicity, we assume that the balance between viscous and capillary stresses dominate 

the dynamic meniscus. In particular, both inertia and gravity are weak, such that 

ρV 2/ℎ0 ≪ ηV /ℎ0
2 and ρg ≪ ηV /ℎ0

2, where V is the withdrawal velocity and h0 is the film 

thickness. Under these assumptions, fluid does not drain to leading order: the film 

asymptotes to a uniform upward flow far from the reservoir. For sufficiently thin films (h0 ≪ 
ℓc), lubrication theory holds within the dynamic meniscus:

η ∂2u
∂x2 = ∂p

∂z , ∂p
∂x = 0. (4.84)

Near the plate, the slope and curvature of the liquid surface h(z) is small, and the Young-

Laplace equation (2.6) gives the capillary pressure:

pc ≈ − γ d2ℎ
dz2 . (4.85)

However, ∂p/∂x = 0 within the lubrication layer, and therefore bulk fluid pressure p is 

constant across the film, and equal to the local capillary pressure pc(z). Substituting p(z) = 

pc(z) in (4.84) and solving with boundary conditions u(x = 0) = V and u(x = h) = us gives

u(x, z) = − γ
2η

d3ℎ
dz3 x2 − xℎ + us − V x

ℎ + V . (4.86)

Note that the surface velocity us(z) and film thickness h(z) are yet unknown.

Since gravitational drainage is negligible, h(z) follows from mass conservation 

(∫0
ℎudx = V ℎ0), to give
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γ
η

∂3ℎ
∂z3 = 12V ℎ0

ℎ3 − 6V + 6us
ℎ2 . (4.87)

The surface velocity us(z) is then determined by the interfacial stress condition. For a 

surfactant-free film, imposing η ∂u/∂x|x=h = 0 in (4.86) and substituting (4.87) gives

us
V = 3

2
ℎ0
ℎ − 1

2 . (4.88)

Notably, a stagnation point appears at h(z) = 3h0, meaning that the surface velocity is 

directed along the plate motion for only a section of the dynamic meniscus. Surfactants 

modify this stagnation point, enabling more fluid to be drawn.

Substituting (4.88) in (4.87) gives the LLD equation

γ
ηℎ‴ = 3V

ℎ3 ℎ0 − ℎ , (4.89)

where primes represent derivatives in z. In dimensionless variables, (4.89) becomes

ℎ3ℎ‴ = 1 − ℎ, (4.90)

where ℎ = ℎ/ℎ0 and z = z/ld, and the dynamic meniscus length is

ld = ℎ0
(3Ca)1/3 . (4.91)

Far from the reservoir, ℎ(∞) 1, ℎ′(∞) 0, and ℎ″(∞) 0.

Landau & Levich (1942) realized that ℎ″ must asymptotically match the curvature of the 

static meniscus near the reservoir. Using the Young-Laplace law and assuming zero contact 

angle, the static meniscus has height 2lc and curvature 2/lc. In dimensionless terms, this 

inner boundary condition on (4.90) becomes

ℎ″ = 2ℎ0
lc

γ
3ηV

2/3
≈ 0.64, (4.92)

where the constant is found by numerically integrating (4.90). Rearranging (4.92) for the 

residual thickness h0 then gives the classic LLD law (4.80).

In anticipation of the immobilizing effect of surfactants, we calculate the extreme case of 

complete surface immobilization. An incompressible surface has us = V , and (4.87) 

becomes

γ
ηℎ‴ = 12V

ℎ3 ℎ0 − ℎ , (4.93)
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Comparing (4.93) with (4.89) reveals this limit to be identical to the standard LLD problem, 

but with a modified dynamic meniscus length

ld
immob = ℎ0

(12Ca)1/3 . (4.94)

In other words, the dimensionless problem and the matching proceeds exactly like for LLD, 

but with a capillary number that four times larger, thereby modifying this LLD scaling to

ℎ0
immob

lc
≈ 0.946(4Ca)2/3 = 42/3ℎLLD

lc
. (4.95)

An incompressible interface entrains more fluid as the plate is withdrawn, increasing the 

film thickness up to 42/3 more than a fully mobile interface (figure 21). In what follows, we 

will treat specific surfactant processes based on illustrative works in dip coating (Park 1991; 

Quéré 1999; Shen et al. 2002; Scheid et al. 2010), each of which reveals a similar transition 

between the clean and immobilized limits.

4.4.2. Insoluble and surface-inviscid surfactant—Surfactants give rise to 

Marangoni and surface viscous forces that resist interfacial stretching. The Boussinesq-

Scriven equation (3.94) modifies the interfacial stress balance to

∂γ
∂z + ηs + κs

∂2us
∂z2 = η ∂u

∂x x = ℎ
= η − 6V ℎ0

ℎ2 + 2V + 4us
ℎ , (4.96)

where u(x, z) follows from (4.86) and (4.87). We will first consider insoluble surfactants that 

are surface inviscid, so that ηs = κs = 0. Surface fluid flows establish gradients in Γ, which 

exert reverse Marangoni stresses. Without surfactant exchange, surface diffusion is the only 

mechanism to relax gradients in γ(Γ). Perturbing the surface concentration via Γ(z) = Γ0 + 

δΓ(z), the steady-state surface conservation equation (3.10) becomes

Γ0
∂us
∂z = Ds

∂2(δΓ)
∂z2 . (4.97)

Integrating (4.97) and imposing ∂Γ/∂z(z → ∞) → 0 and us(z → ∞) → V gives

∂(δΓ)
∂z = Γ0

Ds
us − V . (4.98)

The Marangoni stress is then given by

∂γ
∂z = − E0

Γ0
∂δΓ
∂z = − E0

Ds
us − V . (4.99)

Substituting into the interfacial stress balance (4.96) with ηs = κs = 0 and nondimen-

sionalizing gives
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MaD 1 − us = − 6
ℎ2 + 2 + 4us

ℎ
, (4.100)

where the surface diffusive Marangoni number (table 3) is:

MaD = E0ℎ0
Dsη

= E0
ηV × V ℎ0

Ds
= Ma × Pes . (4.101)

When MaD ≫ 1, the interface is immobilized relative to the moving plate, and (4.100) gives 

us 1, or us → V . This surface immobilization occurs when the Marangoni modulus is 

large or surface diffusivity is weak. By contrast, weak Marangoni flows or strong surface 

diffusion (MaD ≪ 1) recovers the us corresponding to clean surfaces (4.88).

The film thickness equation (4.87) for an inviscid, insoluble surfactant, using (4.100) for us, 

is

ℎ3ℎ‴ = (1 − ℎ) 1 + 3ℎMaD
4 + ℎMaD

. (4.102)

As MaD → 0, (4.102) is identical to the classic LLD equation for a clean interface (4.90). 

For strong immoblization as MaD → ∞, the right-hand side increases four-fold, amplifying 

the apparent capillary number four-fold, and increasing the film thickness by 42/3 (Park 

1991; Quéré 1999).

4.4.3. Soluble and/or surface viscous surfactant—Adsorption/desorption weakens 

the Marangoni effect, and reduces the thickening factor α = h/hLLD (Ou Ramdane & Quéré 

1997). However, as with oscillating bubbles (§4.2.2) and wave damping (§4.3), the distinct 

effects of adsorption/desorption and intrinsic surface viscosities are not easy to tease apart. 

The role of surface viscosity in dip coating has only recently gained attention (Scheid et al. 
2010; Delacotte et al. 2012; Seiwert et al. 2014) in systems with negligible Marangoni 

forces; e.g. when rapid adsorption/desorption eliminates surface tension gradients.

Assuming surface diffusion to be negligible, gradients in γ(Γ) are governed by the balance 

of flow and adsorption (§3.2):

Γ0
∂us
∂z = − δΓ

τs
. (4.103)

Taking perturbations δΓ from equilibrium Γ0 to be small gives a Marangoni stress

∂γ
∂z = − E0

Γ0
∂(δΓ)

∂z = E0τs
∂2us
∂z2 . (4.104)

Substituting (4.103) in the interfacial stress condition (4.96) gives
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E0τs + ηs + κs
η

∂2us
∂z2 = − 6V ℎ0

ℎ2 + 2V + 4us
ℎ . (4.105)

Nondimensionalizing over h0, V and ℓd = (3Ca)−1/3h0 for h(z), us(z) and z gives

Ψ ∂2us
∂z2 = − 6

ℎ2 + 2 + 4us
ℎ

, (4.106)

where

Ψ = (3Ca)2/3Ψlc
ℎ0

, (4.107)

and Ψ is the surface immobilization parameter, described in §3.4.3:

Ψ = E0τs + ηs + κs
ηlc

= MaK + Bqη + Bqκ . (4.108)

If E0, τs, ηs, and κs are known separately, (4.106) can be solved numerically along with the 

film thickness equation (4.87) for arbitrary values of Ψ (Scheid et al. 2010). The limits of 

large and small Ψ are easy to interpret: the surface is fully mobile as Ψ → 0, recovering the 

classic LLD solution. By contrast, the interface is immobilized as Ψ → ∞, in which case us 

≈ V everywhere. The same factor of 4 found in the MaD → ∞ limit of (4.102) appears in 

the LLD equation, and the film thickness increases by 42/3.

Measured film thickness depends on the lumped parameter Ψ and does not distinguish 

between three distinct phenomena – surface shear viscosity, surface dilatational viscosity, 

and apparent dilational viscosity due to adsorption/desorption (§3.4.3). More information, 

e.g. from complementary experiments, would be required to deconvolve the impact of each.

It may also be possible to suppress one surfactant process to isolate the effect of another in 

specific systems. For example, intrinsic surface viscosity becomes the dominant 

immobilizing component when Bq ≳ MaK. The Marangoni contribution to immobilization is 

weakest when adsorption/desorption is fast: gradients in Γ are small if τs ≪ τflow, so that

MaK = E0
ηV × V τs

lc
= Ma × τs

τflow
≪ 1. (4.109)

This condition, however, does not account for finite subphase depth and the availability of 

surfactant molecules in the thin film. Effective surfactant exchange requires the film to be 

thicker than the depletion depth Ld = ∂Γ/∂Cs (§3.2), so as to not be ‘confined’ (Quéré 1999; 

Delacotte et al. 2012) by the lack of sufficient dissolved molecules. Suppressing Marangoni 

flows therefore requires large surfactant concentrations (so Ld is small), large withdrawing 

velocities (so h0 is large), and eliminating energetic barriers to adsorption (so τs is small). 

Following this strategy, Delacotte et al. (2012) measured enhanced film thickness in 

unconfined films despite rapid adsorption, suggesting that surface viscosity does indeed play 

Manikantan and Squires Page 67

J Fluid Mech. Author manuscript; available in PMC 2021 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a role in immobilizing interfaces. However, the two surface viscosities ηs and κs still remain 

indistinguishable in 1D surface deformations.

Finally, the presence of micelles at high bulk surfactant concentrations influences thickness 

of the coating in nontrivial ways. Above the critical micelle concentration (CMC), micelles 

dissociate to maintain a reservoir of free monomers, thereby eliminating diffusion limitation 

to adsorption. Bulk concentrations above the CMC thus lead to a thinner coating, as 

Marangoni flows are suppressed and the interface is ‘remobilized’ (Stebe & Maldarelli 

1994, see also §4.1.2). However, micelles may dissociate at timescales comparable to or 

slower than the bulk diffusion time at very high concentrations, thereby depleting the bulk of 

free monomers and enhancing the Marangoni effect, which again leads to a thicker entrained 

film (Shen et al. 2002).

4.4.4. Thin film drainage—Gravitational drainage is negligible in the LLD problem, 

and fluid flow is driven entirely by capillary pressure. For illustration and completion, we 

will briefly examine one case where gravity drives thin film flow. Approximating the flow in 

a thin film draining down a vertical wall using lubrication theory, the velocity u(x, z, t) obeys

η ∂2u
∂x2 = − ρg, (4.110)

where z is positive downward, and x is perpendicular to gravity. Solving with a no-slip wall 

at x = 0 and a (yet unknown) surface velocity us(z, t), the fluid velocity is

u(x, z, t) = − ρg
2η x2 − ℎx + xus

ℎ . (4.111)

Conservation of mass requires

∂ℎ
∂t + ∂Q

∂z = 0, (4.112)

Where Q(z, t) = ∫0
ℎu(x, z, t)dx is the vertical flux. Substituting (4.111) in (4.112) gives the 

film thickness equation:

ℎt + ρg
4η ℎ2ℎ′ + ℎus ′

2 = 0, (4.113)

where primes represent z derivatives, and the subscript t denotes time derivatives.

A clean fluid interface is stress-free, and enforcing this at x = h in (4.111) gives

us = ρgℎ2

2η . (4.114)

Substituting (4.114) in (4.113) gives the evolution equation for a clean fluid film draining 

under gravity,
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ℎt + ρg
η ℎ2ℎ′ = 0. (4.115)

By contrast, surfactant processes resist interfacial deformation, which modifies us. Rather 

than explicitly treating surface rheology and transport, we will consider the extreme case 

when the surface is immobilized due to some combination of reverse Marangoni flow and 

surface viscous resistance. Setting us = 0 in (4.113) gives

ℎt + ρg
4η ℎ2ℎ′ = 0. (4.116)

Notably, the same factor of 4 between the stress-free interface and the immobile interface 

appears here, as in the LLD problems (4.95).

To solve the appropriate film equation, we use R as a system-specific lengthscale (such as 

length of the plate) in the flow direction. Nondimensionalizing over R, h0, and ηR/ ρgℎ0
2  for 

z, h and t, respectively, gives

ℎt + 1
β ℎ2ℎ′ = 0, (4.117)

where β = 1 for a clean surface (4.115) and β = 4 for an immobile surface (4.116). The film 

thickness obeys a similarity solution, h = F(ζ), where ζ = z/t , and F obeys

F′F2 − βζ2F′ = 0 (4.118)

with solution F(ζ) = βζ. The dimensional film thickness is then

ℎ(z, t) = βηz
ρgt . (4.119)

The clean interface limit (β = 1) recovers the classic Jeffreys’ solution (Jeffreys 1930). More 

generally, the h ~ t−1/2 scaling persists even with surfactant. Drainage takes longer with 

surfactant, however, and the film is β1/2 or twice as thick when the surface is completely 

immobile. Surface viscosity, Marangoni flows or some nontrivial combination acts to retard 

surface flow, thereby slowing film drainage. This effect is responsible in part for the long 

lives of soapy bubbles and foams (§4.5), and the increased coalescence time of surfactant-

covered bubbles.

Bhamla et al. (2014) developed an experimental platfrom that mimics drainage dynamics of 

tear films. A hemispherical dome is raised from a reservoir of liquid containing a particular 

surfactant, and the drainage is measured. Insoluble (DPPC) monolayers do indeed retard 

drainage. Measurements and numerical simulations captured the transition between the 

expected Reynolds’ thinning law for clean fluids (4.115) and drainage with a surface-

immobilized surface (4.116) (Bhamla et al. 2014). Working with the same system, Hermans 

et al. (2015) later identified that Marangoni effects and dilatational viscosity cannot be 
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deconvoluted in this process. In other words, the surface is immobilized as a function of Ψ ≈ 
Bq+Ma. Surface immobilization is controlled not by Ma or Bqη or Bqκ alone, but by a 

combination of the three that is not easy to separate except in specific geometries, or with 

independent measurements of surfactant properties.

4.5. Foams: surfactant properties impact macroscopic flows

Foams are examples of complex multiphase materials, with ubiquitous applications in the 

kitchen (e.g. whipped cream), in cleaning (e.g. soap suds), in packaging (e.g. Styrofoam), 

and superlight construction materials (e.g. metal foams). Most relevant to our discussion are 

aqueous foams, which are stabilized against rupture by adsorbed surfactant molecules. The 

type and rheology of the surfactant influences its stability and its macroscopic flow (Buzza 

et al. 1995; Cohen-Addad et al. 2013). Here we focus on foam drainage, the gravity-driven 

flow of liquid within an aqueous foam.

The geometry of soap foams is intricate, but can be described by few basic rules of energy 

minimization, as first laid out by the Belgian scientist Joseph Plateau in the 19th century (at 

a time when he was already blind). The liquid content in a foam resides mostly in a network 

of channels (‘Plateau borders’) connected to each other at nodes, where four channels meet 

in a tetrahedral configuration (figure 22). The principal geometric parameters are the typical 

length L of a channel, and the transverse radius of curvature r, which is also the 

characteristic channel width. The volume of fluid in each channel is O(r2L), whereas each 

node contains a volume O (r3). The macroscopic foam occupies a volume of O (L2), so that 

the volume fraction of the liquid phase is

ϵ = δϵ
r
L

2
+ δϵ′

r
L

3
, (4.120)

where δϵ and δϵ′ are constants. When ϵ ≪ 1, the foam is said to be ‘dry’, and then 

r ≈ δϵ−1/2Lϵ1/2.

Surfactants modify fluid flow within these channels and nodes, systematically altering 

macroscopic foam drainage. In what follows, we will review and illustrate past works 

(Verbist et al. 1996; Koehler et al. 2000; Durand & Langevin 2002) first using a surfactant 

transport model that accounts for flow within channels and nodes, and then using a 

macroscopic model that lumps all surfactant processes into course-grained coefficients. 

Together, the two models paint a qualitative picture of how surfactant processes impact 

measurable macroscopic foam properties.

4.5.1. Physicochemical model—We simplify the geometry by considering only a 

planar projection of a vertical liquid channel (figure 22) of width 2h(z). The non-trivial 

shape of the channel and its orientation relative to gravity will modify the following 

analysis, but only by numerical prefactors (Koehler et al. 2000; Durand & Langevin 2002). 

Like with coating flows, we exploit the fact that r ≪ L, and use lubrication theory for the 

bulk fluid flow:
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η ∂2u
∂x2 = ∂P

∂z , (4.121)

where P(z) = p(z) − ρgz. Integrating (4.121) and imposing boundary conditions u(x = ±h) = 

us gives

u(x, z) = x2 − ℎ2

2η
∂P
∂z + us, (4.122)

where the surface velocity us is yet unknown and will be determined by the surface stress 

balance. The fluid pressure, p, relative to the gas pressure in the bubbles obeys the Young-

Laplace equation, giving

∂P
∂z ≈ γ

ℎ2
∂ℎ
∂z − ρg, (4.123)

where the total curvature is assumed to be 1/h(z).

Conservation of mass within the channel requires

∂ℎ
∂t + ∂

∂z ∫
−ℎ

ℎ
u(x, z)dx = 0, (4.124)

and substituting u(x,z) from (4.122) gives the drainage equation for each channel

∂ℎ
∂t + ∂

∂z − ℎ3

3η
∂P
∂z + 2usℎ = 0. (4.125)

The surface velocity us in (4.125) is dictated by the interfacial stress balance (3.94):

− E0
Γ0

∂Γ
∂z + ηs + κs

∂2us
∂z2 = ℎ∂P

∂z . (4.126)

Reverse Marangoni stresses are driven by gradients in Γ, as described by the balance 

between surface convection and diffusion, or adsorption/desorption, as pursued in previous 

sections.

We will choose one illustrative case that is analytically tractable. If the surfactant is surface 

inviscid (ηs = 0, κs = 0) and insoluble (τs−1 = 0), gradients in Γ can only relax via surface 

diffusion. Durand & Langevin (2002) solved the surfactant conservation equation for Γ, 

using (4.126) to obtain

us = − Ds
E0

ℎ∂P
∂z , (4.127)

which when substituted in (4.125) along with (4.123) gives the drainage equation
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∂ℎ
∂t + ∂

∂z
1
3η ρgℎ3 − γℎ∂ℎ

∂z + 2Ds
E ρgℎ2 − γ ∂ℎ

∂z = 0. (4.128)

Analogous drainage equations can be derived for more general 3D networks and written in 

terms of the cross-sectional area A ∝ h2 of the channel. A measureable quantity is the 

volume fraction ϵ(z, t) of liquid in the foam, which relates to the channel cross-sectional 

area A(z, t) via ϵ ~ (AL)/L3. A generalized 3D foam drainage equation emerges,

∂ϵ
∂t + ∂

∂z δ1
L2

η ρgϵ2 − δ0
γ
L

∂ϵ3/2

∂z + δ2
DsL
E0

ρgϵ3/2 − δ0
γ
L

∂ϵ
∂z = 0, (4.129)

where δ0, δ1, and δ2 are numerical constants that depend on the particular geometry of the 

Plateau borders (Koehler et al. 2000; Durand & Langevin 2002). Nondimensionalizing 

length and time in (4.129) over δ0γ/ρgL and δ0γη/δ1ρ2g2L3 gives

∂ϵ
∂t + ∂

∂z ϵ
2 − ∂ϵ3/2

∂z + δ2
δ1MaD

ϵ3/2 − ∂ϵ
∂z = 0, (4.130)

where the surface diffusive Marangoni number is MaD = E0L/ηDs, as in table 3.

Marangoni reverse flows are strongest when surface diffusion is weak, and MaD ≫ 1, in 

which case (4.130) becomes

∂ϵ
∂t + ∂ϵ2

∂z − ∂2ϵ3/2

∂z2 = 0. (4.131)

In this rigid-interface limit, the channels are essentially no-slip walls, and bulk fluid flow 

within the channels is Poiseuille-like. This model was was first given by Verbist et al. 
(1996), who derived it from a macroscopic perspective as we illustrate in the next section. 

The dominant resistance to foam drainage in the rigid-interface limit arises from bulk 

viscous dissipation.

By contrast, strong surface diffusion quickly eliminates surface concentration gradients 

when MaD ≪ 1, thereby weakening Marangoni reverse flows. Rescaling the characteristic 

time in (4.130) by δ1MaD/δ2 in this limit gives

∂ϵ
∂t + ∂ϵ3/2

∂z − ∂2ϵ
∂z2 = 0. (4.132)

This mobile-interface drainage equation represents channels with plug-like bulk flow: the 

surface is completely stress-free or ‘remobilized’ in this limit. The resistance to fluid flow 

arises from dissipation at the channel surfaces. In the following sections, we will explore the 

measurable macroscopic signatures of these two limits.

4.5.2. Macroscopic model—The analysis thus far ignored the nodes that connect 

Plateau borders within the foam network. Mixing, merging and bending of streamlines at 
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nodes occur over length scales r ≪ L, and therefore increase viscous dissipation. The 

detailed flow in the nodes (Cohen-Addad et al. 2013) is beyond the scope of our discussion, 

and we will instead outline a course-grained model (Koehler et al. 2000) that treats the foam 

as a porous macroscopic material.

Mass conservation in the foam network requires

∂ϵ
∂t + ∂(ϵv)

∂z = 0, (4.133)

where the mean velocity υ obeys Darcy’s law:

∂P
∂z + ηv

k(ϵ) = 0. (4.134)

All details of the network and dissipation within the foam are lumped into a permeability 

k(ϵ) in (4.134). The foam is driven by both capillary and hydrostatic pressures:

P(z) = pgas − γ
r − ρgz ≈ pgas − γδϵ1/2

Lϵ1/2 − ρgz, (4.135)

where the radius of curvature is assumed to be small (r ≪ L), and the foam is assumed to be 

dry (ϵ ≪ 1) so that r ≈ δϵ−1/2Lϵ1/2 from (4.120). Using (4.135) in (4.134) gives

ρg + γδϵ1/2

L
∂ϵ−1/2

∂z = ηv
k(ϵ) , (4.136)

which can be solved for υ in terms of the permeability k(ϵ). Mass conservation (4.133) then 

becomes

∂ϵ
∂t + ∂

∂z
ρg
η k(ϵ)ϵ − γδϵ1/2

ηL k(ϵ)∂ϵ1/2

∂z = 0, (4.137)

which is the generalized macroscopic foam drainage model.

The permeability k(ϵ), in general, depends on the geometry and boundary conditions for the 

flow within the foam network (Koehler et al. 2000). When Marangoni and/or surface viscous 

effects immobilize the interface, bulk flow within the channels is Poiseuille-like. The 

permeability k(ϵ) then comes from balancing the fluid pressure gradient ηV/r2 with that 

driving the Darcy flow ηV/k(ϵ), implying

k(ϵ) ∝ r2 ∝ L2ϵ . (4.138)

Using k(ϵ) ~ L2ϵ in (4.137) gives the (dimensional) rigid-interface drainage equation, 

(4.131).

By contrast, if surface stresses are negligible and interfaces are mobile, flow in the channels 

is plug-like. The dominant viscous resistance then comes from the merging flows at nodes, 
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which occupy a fraction of O(r/L) of the total fluid volume. When the resistance to Darcy 

flow, ηV/k(ϵ), arises from the volume-averaged viscous resistance at nodes, (ηV/r2)(r/L), the 

foam permeability becomes

k(ϵ) ∝ rL ∝ L2ϵ1/2 . (4.139)

Substituting k(ϵ) ~ L2ϵ1/2 in (4.137) gives the node-dominated foam drainage equation 

(Koehler et al. 2000), which is identical to the mobile-interface drainage equation (4.132). 

However, the resistance to fluid drainage in this limit arises due to bulk viscous dissipation 

at the nodes, rather than surface stresses. In other words, flow in channels can be plug-like 

even when channel-dominated if the driving pressure gradient balances surface stresses via 

(4.126).

More generally, we expect surfactant processes to impact flow in foams via a lumped 

immobilization parameter

Ψ = E0τ + ηs + κs
ηL , (4.140)

where τ is the timescale of the dominant surfactant process that relaxes Marangoni stresses. 

If the channel walls are not immobilized, the surface ‘slips’ as the foam drains. Surface 

stresses associated with such a deformation scale like (E0τ +ηs+κs)V/L2, which translates to 

a force per unit volume of the fluid of (E0τ +ηs +κs)V/rL2. Equating this force to the 

macroscopic driving force density ηV/k(ϵ) gives permeability

k(ϵ, Ψ) ∝ ηL2r
Eτ + ηs + κs

∝ L2ϵ1/2

Ψ . (4.141)

The permeability of channels increases with decreasing degree of immoblization: a ‘slip-

pier’ interface makes flow more plug-like. Substituting k(ϵ) ~ L2ϵ1/2/Ψ in (4.137) and 

setting Ψ = MaD gives the dimensional analog of the mobile-interface drainage equation 

(4.132).

4.5.3. Foam drainage: predictions vs observations—Forced foam drainage 

experiments introduce fluid from the top at flow rate Q into a dry foam, and track the 

velocity υ of a wet front as it moves downwards through the foam. The front moves at a 

velocity

v ∝ Qα, (4.142)

where the exponent α is typically between 1/3 and 1/2 (Verbist et al. 1996; Koehler et al. 
2000; Durand & Langevin 2002). Surfactant processes impact this exponent in a measurable 

way.

The drainage equation in both channel- and node-dominated limits can be solved by 

modeling the wetted front as a soliton wave
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ϵ(z, t) = f(s) = f(z − vt) (4.143)

which travels downward at a constant front velocity υ. The foam is assumed to be dry far 

ahead of the moving front, and uniformly wetted far behind the front:

f(s ∞) = 0, and f′(s − ∞) = 0. (4.144)

Verbist et al. (1996) and Koehler et al. (2000) describe this solution in detail for (4.131) and 

(4.132), respectively. Fortunately, the exponent α can be deduced without solving for the 

front profile. In the channel-dominated or rigid-interface limit, transforming (4.131) using s 
= z – υt, and integrating once gives

−vf + f2 − f3/2 ′ = 0. (4.145)

the s → −∞ condition (4.144) in (4.145) then gives

f(s − ∞) = ϵ(z − ∞) v . (4.146)

For a foam of cross-section area A, a macroscopic volume vAΔt is wetted behind the 

moving front by a volume QΔt of fluid supplied at the top. The wetted volume fraction is 

then

ϵ = Q
vA . (4.147)

For the wetted region far behind the front, (4.146) gives

Q
vA v v ∝ Q1/2, i.e., α = 1/2. (4.148)

This scaling would be expected in a foam drainage experiment when the channel surfaces 

are immobilized, and the foam is essentially a network of connected tubes with Poiseuille 

flow through each channel.

By contrast, transforming and integrating (4.132) for the mobile-interface or node-

dominated regime gives

−vf + f3/2 − f′ = 0. (4.149)

The boundary condition as s → −∞ (4.144) gives

f(s − ∞) = ϵ(z − ∞) v2 . (4.150)

Then, in the wetted region far behind the moving front,

ϵ = Q
vA v2 v ∝ Q1/3, i.e., α = 1/3. (4.151)
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The transition from Poiseuille-like flow in immobilized channels to plug-like flow in mobile 

channels manifests as a change in the exponent α in (4.142) from 1/2 to 1/3.

Surfactants change the character of drainage based on the extent of surface immobilization. 

Durand et al. (1999) measured the exponent α to transition between the two types of flow 

upon modifying surface rheology. The foam literature historically quantifies this transition in 

terms of the ‘Kraynik criterion’ (Koehler et al. 2000; Durand & Langevin 2002) based on 

the surface shear viscosity:

MK = rη
ηs

= 1
Bq . (4.152)

Large MK (or small Bq) corresponds to mobile channel surfaces, and small MK (or large Bq) 

justifies the assumption of rigid channel walls.

However, ηs, κs, and E0τs play indistinguishable roles in 1D compression/dilatation of 

interfaces, as noted in §3.4.3. What was previously attributed to dissipation due to a surface 

shear viscosity might arise from an intrinsic surface dilatational viscosity, or due to 

Marangoni stresses with finite-time adsorption/desorption, or some combination (Buzza et 
al. 1995). More generally, therefore, the transition from one drainage regime to the other 

should depend on the degree of immobilization Ψ. When Ψ ≫ 1, the surface is immobilized, 

flow within the channels is Poiseuille-like, and the drainage exponent α is closer to 1/2. By 

contrast, channel surfaces are mobile when Ψ ≪ 1, flow within the Plateau borders are plug-

like, and α ≈ 1/3.

4.6. Particles and probes on surfactant-laden interfaces

Early descriptions of particle motion within viscous interfaces were motivated by the 

dynamics of membrane-bound proteins. Saffman & Delbrück (1975) approximated the 

phospholipid membrane as a thin fluid layer of thickness h and 3D viscosity ηm atop a 

subphase of viscosity η (figure 12). A modern interpretation of this system would introduce 

a surface shear viscosity ηs = ηmh. Saffman (1976) solved this problem asymptotically in 

the interface-dominated (Bq ≫ 1) limit. The leading-order 2D problem has no steady 

solution for the translation of a cylinder – the well-known Stokes paradox. This far-field 

singularity must be regularized by some additional force – Saffman & Delbrück (1975) 

examined fluid inertia, finite system size, and viscous coupling with subphase liquid. 

Saffman (1976), and later Hughes et al. (1981), showed that subphase viscous resistance 

resolves the paradox in many practical systems. In addition to predicting membrane protein 

diffusivity, these relations help deduce surface rheology from the measured mobility of 

surface-attached probes (Prasad et al. 2006; Fuller & Vermant 2012; Zell et al. 2014), and 

form the basis for interfacial microrheology.

4.6.1. Translation and rotation of cylinders—A surface-attached particle translating 

within an insoluble surfactant monolayer disturbs the surface concentration distribution, 

potentially setting up reverse Marangoni flows. Assuming weak surfactant diffusivity (MaD 

≫ 1, table 3), these reverse flows modify the fluid streamlines to that of a surface 

incompressible flow (§3.3.2). Using the Green’s function derived in §3.4.2, the surface 
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velocity field around a moving particle embedded within the monolayer can be written as a 

boundary integral,

us(r) = ∫
S
G r − r′ ⋅ f r′ dS, (4.153)

where S is the area occupied by the particle, and r′ ∈ S. The force density f(r′) is chosen 

such that us satisfies the boundary conditions at the probe surfaces (Fischer 2004b). The 

drag force on the particle is then

Fdrag = ∫
S
f(r)dS . (4.154)

Alternatively, flow fields can be obtained directly when the system geometry simplifies the 

Boussinesq-Scriven equations. For example, both the surface velocity us and bulk velocity u 
can be obtained directly for a cylindrical probe (Hughes et al. 1981; Barentin et al. 1999) by 

projecting the governing equations into Fourier-Bessel functions. Then, the drag force can 

be written as the sum of viscous contributions from the subphase and the monolayer:

Fdrag = ∫
S
ez ⋅ σdS + ∫

∂S
er ⋅ σsdl . (4.155)

where σ and σs are stress tensors corresponding to the bulk and the interface, respectively. In 

the following, we will outline key results from Hughes et al. (1981) to illustrate key 

differences between interface- and bulk-dominated systems.

The classic Saffman-Delbrück problem consists of a disk of radius R translating or rotating 

on a planar insoluble interface of surface viscosity ηs atop an infinitely deep subphase fluid 

with viscosity η. The drag F against translation at a constant velocity U when the interfacial 

viscous stresses dominate (Bq ≫ 1) is (Hughes et al. 1981)

F(Bq ≫ 1) = − 4πηsU
ln(2Bq) − γE + 4/(πBq) − ln(2Bq)/ 2Bq2 , (4.156)

where γE is Euler’s constant and the Boussinesq number is Bq = ηs/ηR = ℓSD/R. The 

Saffman-Delbrück length ℓSD = ηs/η (3.102) establishes a ‘cutoff’ beyond which subphase 

drag dominates over momentum transfer on the interface.

By contrast, when the drag force is dominated by the subphase (Bq ≪ 1), the drag on a disk 

in an insoluble monolayer is

F(Bq ≪ 1) = − 8ηRU . (4.157)

This result may at first glance seem surprising, as the drag within an inviscid interface is 

greater than the drag on a probe translating within a clean interface (Happel & Brenner 

1965),

Manikantan and Squires Page 77

J Fluid Mech. Author manuscript; available in PMC 2021 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fclean = − 16
3 ηRU . (4.158)

In other words, the simple addition of a surfactant – even with zero surface viscosity – 

increases the drag on a disk by a factor of 3/2, owing to the effective surface 

incompressibility boundary condition imposed by the surfactant (§3.3.2) in the limit Ma ≫ 
1.

Reverse Marangoni flows modify surface streamlines, which in turn force the bulk fluid to 

flow in planes parallel to the interface (figure 11). The excess drag in (4.157) arises due to 

bulk viscous dissipation associated with this modified flow, and not due to surface rheology 

(Fischer 2004a). Only drag forces much larger than (4.157) should be atrributed to surface 

rheology.

The Saffman-Delbrück problem assumes an infinitely deep subphase, and may not be valid 

for a finite subphase of depth H. The general solution for arbitrary depth obtained 

numerically by (Stone & Ajdari 1998) is shown in figure 23. In the shallow subphase limit 

(H ≪ R), Evans & Sackmann (1988) used the lubrication approximation (3.96) to obtain

F(H ≪ R) = − 2πηR2

H
K2 1/Bq1
K0 1/Bq1

U, (4.159)

where Kn are modified Bessel functions, and Bq1 is a Boussinesq number modified to 

account for finite depth:

Bq1
2 = BqHR = ηsH

ηR2 . (4.160)

When drag force is dominated by the subphase (Bq ≪ 1), (4.159) gives

F(H ≪ R, Bq 0) = − 2πηR2

H U . (4.161)

For comparison, the drag on a probe on a clean interface with a shallow subphase is 

(Barentin et al. 1999)

Fclean(H ≪ R) = − 8πηR2

5H U . (4.162)

Even surface-inviscid surfactants thus increase drag on the disk in the shallow subphase limit 

by 25% due to surface incompressibility (§3.3.2).

All the above discussion was restricted to insoluble and incompressible monolayers.Sur-face 

pressure gradients set up by moving probes can be relaxed by adsorption/desorption when 

the surfactant is soluble. Marangoni flows are set up over the time scale τm = ηR/E0 (3.86), 

and the mobility relations discussed thus far hold only if sorption is slow (τs ≫ τm) so that 

MaK → ∞.
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For finite MaK, the interface still generates Marangoni flows, but the surface flow is 

compressible. The drag on a probe translating within such an interface has not been 

computed except in asymptotic limits (Elfring et al. 2016). In what follows, we only 

highlight the limiting case of MaK → 0, whereupon Marangoni flows entirely vanish due to 

rapid surfactant exchange. Any drag in excess of that on a clean interface then arises due to 

surface viscous stresses. Following Barentin et al. (1999), the drag on a disk translating 

within a monolayer with constant surface pressure (MaK → 0) atop a thin subphase (H ≪ R) 

is

Fcompr = − 8πηR2

H
K2 1/Bq1 K2 1/Bq2

K2 1/Bq1 K0 1/Bq2 + 4K0 1/Bq1 K2 1/Bq1
U, (4.163)

where

Bq2
2 = Bq1

2 1 + κs/ηs
4 = BqHR

1 + κs/ηs
4 (4.164)

is yet another modified Boussinesq number that accounts for a surface dilatational viscosity 

κs.

The surface-inviscid (Bq → 0) limit of (4.163) recovers the drag on a clean interface 

(4.162). In this limit, the surface stress tensor σs vanishes as ∇sΠ → 0 and ηs, κs → 0, and 

the only resistance comes from the bulk fluid flow constrained by a stress-free boundary 

condition. Another interesting limit is Bq2 → ∞ along with κs ≫ ηs, so that the surface 

strongly resists dilatational deformation and the drag is then identical to that of an 

incompressible monolayer. Table 4 summarizes the interface-/subphase-dominant limits as a 

function of Bq and H/R.

Rotating circular probes, by contrast, do not perturb surface concentrations and therefore do 

not establish Marangoni flows or adsorption/desorption fluxes. Rotating disks excite pure 

shear deformations and the resistance to rotation arises from viscous stresses alone, 

regardless of the solubility and the Marangoni elasticity of the monolayer. For the same 

reason, rotating microbuttons (Zell et al. 2014) make excellent probes for unambiguous 

measurements of ηs in interface-dominated systems. The torque on a disk rotating within a 

monolayer at angular velocity Ω is

T(Bq ≫ 1) = − 4πηsR2Ω (4.165)

when interface-dominated, and is

T(Bq ≪ 1) = − 16
3 ηR3Ω (4.166)

when subphase-dominated. The latter recovers the clean interface limit (Happel & Brenner 

1965), highlighting a crucial difference between translational and rotational motion on 

interfaces. No Marangoni flows are set up by pure shear, and the rotational resistance in 

surface-shear-inviscid monolayers is identical to that in a clean interface.
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4.6.2. Elongated particles—Drag coefficients can be evaluated in the same manner for 

elongated particles (Fischer 2004b), flexible particles (Levine et al. 2004), or particles that 

extend into the subphase (Stone & Masoud 2015). We will briefly mention the results for 

elongated rod-like particles in insoluble (and incompressible) monolayers, due to their 

applicability in devices like the interfacial stress rheometer (Verwijlen et al. 2011).

Consider a rod of length L and width d, where d ≪ L and d ≪ ℓSD = ηs/η. The traction on 

the surface of the rod can then be approximated as a line distribution of point forces, which 

can be integrated following (4.154). For comparison, translational drag in directions 

perpendicular and parallel to the long axis of the rod differ by a factor of 2 in 3D bulk fluids:

F⊥
3D = 2F3D ≈ − 4πηLU

ln(aL/d) , (4.167)

where a is a constant. The drag on a rod translating on a clean liquid-gas interface is then 

Fclean ≈ F3D/2.

The drag on a rod translating in an incompressible, interface-dominant monolayer is (Fischer 

2004b; Levine et al. 2004)

F , ⊥ (Bq ≫ 1) = − 4πηsU
ln(8Bq) − γE ± 1/2 , (4.168)

where Bq = ℓSD/L = ηs/ηL and the + (or −) applies to motion in a direction parallel (or 

perpendicular) to the long axis of the rod. Unlike 3D fluids, F⊥ ≈ F|| for translating rods 

when Bq ≫ 1. The drag on the particle depends only weakly on its shape and orientation 

when L ≪ ℓSD. In fact, (4.168) closely resembles the leading-order force on a circular disk 

(4.156), despite significant shape differences.

By contrast, the drag for subphase-dominant systems (particularly, when d ≪ ℓSD ≪ L),

F (Bq ≪ 1) = − πηLU
ln(0.48/Bq) , (4.169)

resembles the drag on a rod moving in a bulk fluid (4.167), but with an effective width of ℓSD 

instead of d. The bulk fluid under the rod does not ‘see’ the smaller length scale d, and 

provides bulk viscous resistance to an ‘effective’ rod of width comparable to the 2D-to-3D 

crossover length scale ℓSD. The most striking difference with 3D fluids, however, occurs in 

perpendicular translation when Bq ≪ 1:

F⊥(Bq ≪ 1) = − πηLU . (4.170)

The drag on a rod moving broadside-on becomes much larger than F||, owing to surface 

incompressibility. On a clean interface (or on a compressible monolayer with instantaneous 

adsorption/desorption), Π remains approximately uniform, and the surface flow has a non-

zero divergence ahead and behind the rod (figure 24a). Insoluble surfactants that impose 

surface incompressibility (§3.3.2) then perturb velocities over the largest dimension of the 

rod (figure 24b), giving rise to the linear dependence on L.
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5. Additional complexities with real-world surfactants

We have thus far treated surfactant monolayers in a way that is natural to most fluid 

mechanicians – as featureless continuum materials, isotropic and homogeneous. While some 

multi-component monolayers do form homogeneous mixtures – as do miscible liquids and 

dissolving solutes in 3D liquids – some surfactant species may associate with each other, or 

phase separate to form heterogeneous monolayers more akin to emulsions or dispersions. 

Even single-component monolayers often exhibit non-trivial morphologies, for example, 

forming condensed phases with liquid crystalline order that coexist with disordered phases. 

Monolayers in phase coexistence typically consist of ‘grains’ of one phase dispersed in 

another, acting like dilute dispersions at low surface pressure, then forming grainy, poly-

crystalline phases or jammed suspensions (like compressed emulsions or suspensions) upon 

further compression, depending on the details and dynamics of compression and domain 

relaxation.

In what follows, we briefly describe some aspects that give surfactant monolayers additional 

richness and complexity. §5.1 describes the unexpectedly rich phase behavior and 

morphologies that arise in even simple surfactant monolayers, and how those can be 

understood in terms of the characteristics of the surfactants themselves. §5.2 then addresses 

how monolayer heterogeneities and anisotropies impact the surface rheology and therefore 

the fluid dynamics of such systems. In many cases, these surface rheologies can be 

understood by analogy with three-dimensional non-Newtonian fluids: suspensions and 

emulsions with effective viscosities, surface viscoelasticity, surface shear thinning and 

surface yield stresses. New phenomena arise in surface rheology as well, as described in 

§5.3: surface rheology very often depends exponentially on surface pressure, which leads to 

qualitative differences in flow phenomena that would not be expected by a fluid mechanician 

accustomed to thinking about incompressible, constant-viscosity liquids.

5.1. Phase behavior of surfactant monolayers

In describing Π-Γ isotherms in §2 and table 1, we introduced the simplest of phase 

transitions: surfactants that experience intermolecular attractions (β > 0) undergo a phase 

transformation from a gaseous (G) phase at very low surface concentration Γ to a disordered 

liquid phase (‘liquid expanded,’ or LE), frequently with G/LE phase coexistence over a 

range of Γ, shown in figure 25d. Compression to higher Γ often reveals phase behaviors 

(figure 25) that are significantly richer than the simple gas-liquid transition described by the 

van der Waals or Frumkin isotherms, forming a host of additional condensed phases with 

various translational and orientational ordering (Kaganer et al. 1999; Knobler & Desai 

1992).

Perhaps the simplest, ‘canonical’ surfactants are saturated fatty alcohols or acids, shown in 

figure 25(a), which consist of a linear alkyl chain as a hydrophobic tail, and a small polar 

group (e.g. alcohol or carboxilic acid) as the hydrophilic head. Figure 25b depicts a generic 

isotherm for Langmuir monolayers of saturated fatty acids or alcohols. When a disordered 

liquid (LE) is compressed past a particular concentration Γ* (or below an area per molecule 

A* = 1/Γ*), ‘liquid condensed’ (LC) domains with liquid crystalline ordering nucleate and 

grow within the continuous, disordered LE phase. Within each LC domain, the hydrophilic 
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head groups form a hexagonal lattice, and the hydrophobic tails tilt towards neighboring tails 

to maximize attractive van der Waals interactions (figure 25e). The difference between 

surfactant concentrations (ΓC and ΓE) in the LC and LE phases imparts different electrostatic 

dipole densities to the two phases, giving rise to dipole-dipole repulsions between LC 

domains that effectively stabilize the dispersion against coalescence (McConnell 1991). 

Increasing Γ (or decreasing A) grows LC grains at the expense of LE, and ultimately forms a 

fully LC phase. The LE-LC ‘condensation’ process reflects a balance between favorable 

interactions between tilted tails, and unfavorable entropic losses: head groups lose 

translational entropy by forming lattices, whereas tails lose orientational entropy by tilting. 

In this balance, lengthening the alkyl tail of a surfactant increases the van der Waals ‘benefit’ 

to condensation, with relatively small entropic penalties. Consequently, the melting 

temperature of the LC phase increases with hydrocarbon tail length, typically by 5–10 K per 

carbon (Bibo & Peterson 1990).

When facing a fully LC phase, the fluid mechanician might breathe a sigh of relief, in the 

hopes that LC monolayers act like familiar homogeneous liquids. That fluid mechanician 

should prepare for disappointment, however. Such LC phases are generally polycrystalline, 

consisting of compressed LC grains (e.g. figure 27b), each of which has a headgroup lattice 

that is oriented differently from its neighbors; moreover, tail groups generally tilt in one of 

six energetically equivalent directions relative to the lattice (figures 25e, 26a–b). Even grains 

whose headgroup lattices were aligned would only coalesce if their tail tilts were also 

aligned. The complexity continues: upon further compression, LC monolayers may go 

through other phase transitions, to any of a veritable menagerie of liquid crystalline phases.

Double bonds within the alkyl tail change the phase behavior rather dramatically. For 

example, oleic acid is chemically nearly identical to stearic acid, but with one double bond 

that ‘kinks’ the tail in a way that frustrates packing with neighboring tails and therefore 

weakens van der Waals attractions (figure 25 a). Unsaturated tails therefore discourage or 

even prevent liquid condensed phases from forming. In fact, 2D surfactant ‘dispersions’ can 

be designed by spreading a mixture of saturated and unsaturated fatty acids or alcohols: 

upon compression, saturated lipids condense to form LC grains, but unsaturated lipids 

remain in a continuous LE phase (figure 27 e, from Ding et al. (2002)).

Phospholipids – the primary surfactants that form the membranes of cells, vesicles and 

organelles – show even more complex phase behavior than fatty acids. This complexity 

arises in part because phospholipids have two hydrocarbon tails; additionally, these tails 

attach to the head group in a chiral fashion. As with fatty acids, head groups condense to 

form hexagonal lattices, and (saturated) tails tilt (some towards nearest neighbors, others 

towards next nearest neighbors). The chiral attachment of each pair of tails, however, 

promotes a gradual precession of tail tilt direction, causing LC domains to ‘wind’ with a 

particular handedness (see, e.g., the counter-clockwise spiral arms in LC domains of the 

common phospholipid Dipalmitoylphosphatidylcholine (DPPC) in figure 27 a).

Frustration arises between the packing preferences of the heads and the tails, however, since 

the tail tilt orientation can only precess by straining the headgroup lattice. Since each LC 

domain represents a single crystal of hexagonally-packed head-groups, this frustration 
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becomes untenable once LC domains grow large enough. LC DPPC domains ultimately 

resolve this tension between ordered headgroup lattices and winding tailgroup tilt orientation 

by forming tilt mosaics (figure 26). Within each ‘patch’ of the mosaic, tail groups tilt in one 

of 6 directions relative to the HCP lattice, and precess gradually (Dreier et al. 2012). Tilt 

orientation changes discontinuously from one patch of the mosaic to the next, however, 

across tilt-grain boundary lines where tilt orientations are disordered and thus energetically 

more costly. These high-energy defects exert additional ‘line tensions’ within the domain. 

Stretching these LC domains significantly disrupts the balance in frustration between the 

headgroup lattice and tail tilt precession, and can trigger the nucleation and growth of new 

tilt grain defects (figure 26 c) that stabilize the stretched LC arms against shape relaxation, 

akin to plastic deformations in solids.

LC DPPC domain shapes thus reflect a variety of competing forces (McConnell 1991; 

Mohwald 1990; Dreier et al. 2012): dipole-dipole repulsions within each domain tend to 

favor elongation of each domain, whereas the line tension introduced by the higher energetic 

state of surfactants at the LC/LE boundary acts to reduce the perimeter to area ratio. Tilt 

orientation precession promotes the chiral winding of spiral arms, which competes with the 

headgroup lattice trying to maintain its preferred crystaline order. Frustration between tilt 

precession and headgroup lattice ordering is resolved by high-energy tilt grain boundaries 

that exert their own line tension within each domain, ‘pulling inwards’ at various points 

along the domain boundary, causing the concave ‘kinks’ and invaginations along the domain 

boundary.

Figure 27 highlights a small sliver of the wild menagerie of morphologies formed by 

condensed mixtures of DPPC and other insoluble surfactants. The chirality of LC DPPC 

domains is apparent in both LC/LE coexistence (figure 27 a) and in the fully condensed, 

polycrystalline LC phase (figure 27 a), growing with the ratio of left- to right-handed DPPC 

in the mixture (figure 27 c), as studied by Kim et al. (2018).

Saturated fatty acids or alcohols may co-crystallize with LC phospholipids, since their small 

head-groups enable them to insert into the head-group lattice without deforming it 

significantly, while reaping the benefits of tail-tail packing. Such co-crystallization tends to 

stiffen these domains. Just like fatty acids and alcohols, unsaturated phospholipids generally 

don’t form LC phases, and so can be used to control the area fraction of LC/LE dispersions 

(figure 27 d, from Ding et al. (2002)).

By contrast, cholesterols have small head groups but big ring ‘tails’ that act to promote 

defects within LC grains. Moreover, just as surfactants lower surface energy when they 

adsorb to 2D interfaces between 3D liquids, ‘line-actant’ molecules adsorb to 1D boundaries 

of 2D surfactant domains to lower line energy (Trabelsi et al. 2008). Cholesterol is a line-

actant for LC-DPPC (Kim et al. 2013) and promotes thinner LC spiral arms that wind more 

tightly (figure 27 e). Mixing all three components (phospholipid, fatty alcohol, and 

cholesterol) forms LC grains that are as complex as they are beautiful: stiff ‘cores’ of DPPC-

hexadecanol form first, followed by wispy spirals of DPPC-cholesterol mixtures (figure 27 

f , from (Sachan et al. 2017)).
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These examples serve only to give a very cursory sense of the incredibly rich variety of 

monolayers, phases, and domains that form in even seemingly simple systems with one or 

two small-molecule surfactants. Additional complexities arise when solutes in the subphase 

interact with surfactants in the monolayer. Multivalent ions may electrostatically bridge 

multiple ionic surfactants: for example, calcium ions (Ca2+) adsorb to two stearic acid 

molecules, stiffening monolayers (Ghaskadvi et al. 1999) and even growing multilayer films 

of calcium distearate (de Ruiter et al. 2011). However exotic and beautiful this process may 

appear to the curious scientist, those who shower with ‘hard’ water call it soap scum.

5.2. Rheological implications of surface heterogeneities

Because surfactant monolayers are frequently heterogeneous (e.g. figure 27), determining 

their rheological properties and predicting their mechanical response to flows and stresses 

can be challenging. A detailed discussion of the complex structure and non-Newtonian 

rheology of surfactant monolayers is beyond the scope of this work, and recent reviews 

provide a more exhaustive survey of the state of the field Fuller & Vermant (2012); Langevin 

(2014); Jaensson & Vermant (2018). Instead, in what follows, we merely outline aspects of 

2D heterogeneous monolayers that qualitatively resemble familiar 3D systems, and where 

intuition and physical concepts from classical fluid dynamics can be borrowed to describe 

and design these 2D systems.

5.2.1. Line tension: liquid crystalline domains as 2D drops—Recall from §2.1 

that molecules on the interface between 3D fluids are in an energetically unfavorable state, 

giving rise to surface tension (figure 2). The 2D analog occurs on the ‘interface’ between 

surfactant phases – LC domain boundaries are higher energy and give rise to a line tension 

λ, or energy per unit perimeter. The attractive interaction energy between molecules in the 

condensed phase must be O(kBT). Condensation involves moving molecules from the 

disordered phase to LC and therefore requires an energy ~ kBT per molecule. Molecules 

pack with a line density of about one per nanometer, giving λ ~ kBT/nm ~ pN.

Just like surface tension acts to restore the equilibrium shapes of deformed, 3D emulsion 

drops or bubbles, the LC line tension acts to force deformed LC domains to relax back to 

their equilibrium shapes, at a rate that is limited by the surface viscosity of the LC phase 

when Bq ≫ 1 (or by subphase viscosity when Bq ≪ 1). Indeed, λ can be identified by 

measuring the relaxation dynamics of stretched LC ‘droplets’ (Mann et al. 1995; Trabelsi et 
al. 2008). When interface-dominant (Bq ≫ 1), balancing the line tension force (~ λ) with the 

surface viscous force ( ηsṘ, with R the characteristic domain length scale) gives a 

characteristic relaxation time

Tc(Bq ≫ 1) ηsR
λ . (5.1)

By contrast, the bulk fluid offers the dominant viscous resistance ( ηRṘ) when subphase-

dominant (Bq ≪ 1), giving
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Tc(Bq ≪ 1) ηR2

λ . (5.2)

Extending the analogy, fully LC phases act like compressed emulsions – like two-

dimensional mayonnaise. Interlocking domains impart a yield stress to fully LC monolayers, 

enabling them to sustain elastic stresses over system-spanning lengthscales. The dynamics of 

LC domains are then described by a surface capillary number,

Cas = ηsV
λ , (5.3)

which for domains of some size R, sheared at rate γ̇ or frequency ω, becomes

Cas = ηsRω
λ , Cas = ηsRγ̇

λ . (5.4)

Surface capillary stresses dominate at low frequencies, acting to restore domain shapes and 

imparting a solid-like response. By contrast, viscous stresses dominate at high frequencies, 

as the LC phase resists deformation within each grain. From the crossover frequency ωc, the 

line tension can be identified (Choi et al. 2011).

The healing of deformed LC monolayers, however, is qualitatively different from traditional 

yield-stress materials. Unlike 3D drops, elongated domains do not ‘pinch off’ due to 

capillary forces. The classic Rayleigh-Plateau instability is suppressed by the absence of out-

of-plane curvature of LC domains. Even thread-like domains are therefore stable for long 

times (Trabelsi et al. 2008). Deformed LC phases heal via line-tension-driven relaxation of 

highly stretched domains back to more compact equilibrium shapes. Additional viscous 

losses may be incurred in sliding domains against each other, or in irreversible topological 

rearrangements. The net effect is a viscoelastic recovery – one that can take hours (Choi et 
al. 2011).

5.2.2. 2D ‘suspensions’ of condensed domains: effective surface viscosities

Liquid condensed phases are typically much stiffer rheologically than LE phases. Langmuir 

monolayers in LE-LC phase coexistence can thus be treated as a suspension of ‘stiff’ 2D 

particles dispersed in a continuous ‘liquid’. In fact, Ding et al. (2002) measured the effective 

surface shear viscosity of DPPC-palmitic acid mixtures over a wide range of LE-LC 

coexistence, finding a power-law divergence

ηseff 1
1 − A/Ac

n , (5.5)

as the domain area A approached some critical area Ac. Analogous behavior had been 

known and shown in 3D suspensions (Brady 1993; Stickel & Powell 2005).

In system where domains are effectively rigid inclusions suspended in an incompressible, 

continuous phase that is surface viscous enough to be interface dominant (Bq ≫ 1), the 
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subphase may be ignored and the monolayer rheology corresponds to the Einstein viscosity 

correction in 2D. This classic problem in low-Reynolds-number hydrodynamics (Brady 

1983) gives the effective shear viscosity of a 2D suspension with a domain area fraction ϕ ≪ 
1 to be

ηseff(Bq ≫ 1) = ηsc(1 + 2ϕ), (5.6)

Where ηsc is the surface shear viscosity of the continuous phase.

Additionally, surfactant monolayers are far more compressible than 3D fluids, and the flow 

of a compressible 2D ‘fluid’ around incompressible domains dissipates excess surface 

viscous stresses. The ‘Einstein correction’ to the 2D dilatational viscosity is (Khair 2006)

κseff(Bq ≫ 1) = κsc + ϕηsc

1 − ϕ , (5.7)

where κsc is the dilatational surface viscosity of the continuous phase. Notably, κseff depends 

on the surface shear viscosity of the continuous phase, ηsc. Even if κsc is immeasurably small, 

rigid inclusions modify surface flows in a manner that imparts an effective dilatational 

viscosity κseff ≈ ϕηsc to the monolayer.

Stiff inclusions suspended in an inviscid monolayer, e.g. a dispersion of repulsive colloidal 

microparticles on a clean fluid interface, might also impart an effective surface shear 

viscosity (Buttinoni et al. 2015). The colloids do not deform, and the suspending fluid 

interface is clean and therefore offers no surface viscous resistance. Viscous dissipation in 

the subphase fluid due to the relative motion of colloids against interparticle potentials 

appears as a ‘surface viscosity’ of the 2D colloidal layer.

5.2.3. Apparent surface dilatational rheology during phase coexistence—
§4.2.1 described how dynamic adsorption and desorption of soluble surfactants as an 

interface is compressed relaxes surface stresses, thereby diminishing the dilatational 

modulus E and imparting an apparent surface viscosity κs
app E0τs. Similar processes can 

arise within monolayers at phase coexistence, where exchange between condensed and 

expanded phases plays a role analogous to adsorption/desorption. To illustrate, we treat the 

kinetics of exchange between phases with a simple adsorption-like model, using ΓC and ΓE 

to represent the surface concentration in the condensed and expanded phases, respectively. 

The total number of molecules is conserved between the two phases,

1
AE

d ΓEAE
dt = − jp, (5.8a)

1
AC

d ΓCAC
dt = jp, (5.8b)
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where jp is the net line flux (across domain boundaries) as a result of molecules hopping 

between phases, and AE and AC are the areas of the expanded and condensed phase, 

respectively.

Rheologically, we assume that the condensed domains act like rigid inclusions, so that all 

compressibility (and fluidity) of the heterogeneous monolayer originates in the expanded 

phase. Under weak sinusoidal surface dilatation at frequency ω, the surface concentration 

and area of the expanded phase are perturbed via:

AE(t) = AE
0 + δAEeiωt, (5.9a)

ΓE(t) = ΓE
0 + δΓEeiωt . (5.9b)

The condensed phase concentration ΓC(t) is assumed to remain a constant ΓC
0 .

Although the exchange flux jp could be diffusion- or kinetically-limited, we will assume a 

simple kinetically-limited condensation process, with the flux from either phase proportional 

to the local concentration:

jE C = kE CΓE, jC E = kC EΓC = jC
0 , (5.10)

so that jE→C = jC→E at equilibrium. When perturbed via (5.9), the net flux into (or out of) 

the condensed phase is

jp = jE C − jC E = kpδΓEeiωt, (5.11)

where kp = jC
0 /ΓE

0 . Perturbations in surface concentration thus relax over a timescale kp
−1.

Substituting (5.9) and (5.11) in the conservation equation (5.8a) gives

dlnΓE
dlnAE

= − 1
1 − iζp

, (5.12)

where

ζp = kp
ω (5.13)

is the ratio of phase change rate to oscillation rate.

When ζp ≫ 1, condensed domains incorporate excess molecules from the expanded phase 

much faster than Γ oscillates, so that the monolayer evolves quasistatically. Conversely, 

when ζp ≪ 1, compression oscillates so rapidly that little condensation can occur (figure 

28).

Because the condensed phase domains are assumed incompressible, the compressibility 

modulus originates from the expanded phase, giving:
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E * = E * = Eapp + iωκs
app = − dΠ

dlnA = − E0
LE dlnΓE

dlnAE
, (5.14)

where

E0
LE = dΠ

dlnΓE
(5.15)

is the Marangoni modulus of the expanded phase. Substituting (5.12) in (5.14), the apparent 

surface dilatational elasticity and viscosity are

Eapp = E0
LE 1

1 + ζp
2 , κs

app = E0
LE

ω
ζp

1 + ζp
2 . (5.16)

Equation (5.16) has the form of a Maxwell fluid with a characteristic relaxation timescale 

τ = kp
−1, analogous to kinetic-limited adsorption of soluble surfactants (4.51).

Domains grow freely in the low-frequency limit (ω ≪ kp or ζp ≫ 1) and the LE phase offers 

no resistance to compression (figure 28a). By contrast, a finite and rate-dependent 

dilatational modulus emerges during the LE-LC coexistence when the compression rate and 

phase change rate are comparable, which derives from temporary compression of the LE 

‘fluid’ before phase change has had a chance to occur. For surfactants with inherent surface 

viscosity (§3.4), measured surface dissipation must be interpreted as the appropriate 

combination of a true material property and apparent rate-dependent contributions due to 

phase changes and adsorption/desorption.

5.3. Non-constant surface viscosity

All discussion of surface rheology thus far has assumed surface shear and dilatational 

viscosities to be constant. However convenient this approximation may be, many factors can 

impart spatial, temporal, and concentration-based heterogenities to surface rheological 

properties. Phase transitions in Langmuir monolayers are typically accompanied by changes 

in surface viscous and elastic properties. Liquid condensed domains can deform, reorient, 

jam, or slip against each other in response to hydrodynamic forcing, leading to non-

Newtonian behavior. This nonlinear behavior depends on the precise phase behavior, which 

in turn varies based on surfactant type, hydrocarbon chain length, chain orientation and 

intermolecular interactions, as described in §5.1. An exhaustive discussion on the resulting 

non-Newtonian behavior is beyond the scope of this work, and we direct the reader to Fuller 

& Vermant (2012) and references within. Here, we will only provide a flavor of the richness 

and uniqueness of non-Newtonian surface rheology by outlining two examples – one with 

familiar 3D analogs, and another which is almost never observed in 3D – both of which arise 

due to phase transitions in Langmuir monolayers.

5.3.1. Surface-shear-thickening and -thinning—Gradients in surface pressure drive 

flows along interfaces, just like bulk pressure gradients drive (Poiseuille) flows in pipes. For 

example, increasing the surface pressure on one end of an interfacial slit ‘pumps’ a 
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monolayer through a 2D channel, making a 2D analog of a syringe (Schwartz et al. 1994; 

Fuller & Vermant 2012). Indeed, the subphase decouples from the interfacial stress balance 

(3.94) when interface-dominant (Bq = ηs/ηR ≫ 1), and the surface velocity us(y) of an 

incompressible monolayer obeys the familiar parabolic profile of Poiseuille flow in 2D:

us(y, Bq ≫ 1) = − R2

ηs
dΠ
dx 1 − y2

R2 , (5.17)

where R the slit half-width (figure 29a).

However, viscous coupling with the subphase modifies the surface flow from (5.17). When 

subphase-dominant (Bq ≪ 1), the solution to the incompressible Boussinesq-Scriven 

equation (3.94) is (Stone 1995)

us(y, Bq ≪ 1) = − R
η

dΠ
dx 1 − y2

R2 . (5.18)

Subphase-dominant flow (5.18) is insensitive to ηs, and the flow profile is elliptic rather than 

parabolic, consistent with direct observation of Langmuir monolayers of negligible surface 

shear viscosity (Schwartz et al. 1994).

Increasing the surface shear viscosity – e.g. by compressing the monolayer so that 

rheologically stiff domains nucleate – transitions the surface velocity from (5.18) to (5.17). 

However, direct observation of the velocity profiles of heterogeneous arachidic acid 

monolayers by Kurnaz & Schwartz (1997) reveals a non-Newtonian viscous response (figure 

29 b). The velocity profile is shear-rate-dependent at sufficiently large flow rates, and 

approximately fits

us ∝ 1 − y
R

(1 + α)/α
, (5.19)

with α > 1 when surface-shear-thickening, and 0 < α < 1 when surface-shear-thinning.

Kurnaz & Schwartz (1997) observed shear-thinning in arachidic acid monolayers at high 

shear rates (≳ 0.1 s−1) and low surface pressures, but shear-thickening at higher Π. The 

transition between the two occurs around Π ≈ 20 mN/m, where arachidic acid undergoes a 

tail group tilt-untilt transition (Kaganer et al. 1999). This phase transition is associated with 

changes in surface rheology (Kurtz et al. 2006; Zell et al. 2014), suggesting that surfactant 

phase behavior is at least in part responsible for the non-Newtonian dynamics. Other classes 

of surfactants show rate-dependent rheology upon phase transition as well; e.g. power-law 

models capture experimentally measured surface-shear thinning of DPPC at high surface 

pressures (Raghunandan et al. 2018).

5.3.2. Π-dependent viscosity—Surface viscosities of Langmuir monolayers change 

appreciably over surface pressure variations accessible in typical experiments. For instance, 

the surface shear viscosity of DPPC grows exponentially when Π is increased from 5 to 15 

mN/m (Kim et al. 2011, 2013; Fuller & Vermant 2012; Hermans & Vermant 2014), unlike 
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3D liquids which show such changes only under truly extreme pressures. The exponential 

dependence of surface viscosity on surface pressure can be understood in terms of the free-

area analog of classical free-volume theories of viscosity (Kim et al. 2013), and can be 

written as

ηs(Π) = ηs0e Π − Π0 /Πc, (5.20)

where Πc is a characteristic surface pressure change required to appreciably change ηs, and 

ηs0 is a reference viscosity at reference pressure Π0. DPPC is a ‘Π-thickening’ surfactant with 

Πc ≈ 8 mN/m, whereas setting Πc → ∞ in (5.20) retrieves the Newtonian limit of constant 

ηs.

By contrast, the surface viscosity of some surfactants decreases with increasing surface 

pressure. For example, the surface viscosity of eicosanol (Kurtz et al. 2006; Zell et al. 2014) 

drops tenfold upon increasing Π from 10 to 20 mN/m as it undergoes a tilt-untilt transition 

(Kaganer et al. 1999). Such ‘Π-thinning’ behavior can be modeled as in (5.20) by inverting 

the sign of Πc: for eicosanol, Πc ~ −3 mN/m.

The fact that ηs can vary over orders of magnitude in rather mundane flows gives rise to 

qualitatively new flow phenomena. For example, flow through a thin gap (figure 29) 

amplifies surface pressure variations and therefore accentuate the Π-dependent nature of ηs. 

Using lubrication theory, the interface-dominant (Bq ≫ 1) incompressible Boussinesq-

Scriven equation reduces to (Manikantan & Squires 2017b)

∂Π
∂x = ηs(Π)∂2us

∂y2 . (5.21)

Fortunately, (5.21) is solvable by separation despite the strong nonlinearity of ηs, whether 

using the assumed form (5.20) or a measured η(Π).

The impact of surface-pressure-dependent surface viscosity is best illustrated using the flux 

pumped through the channel. For a surface pressure gradient ΔΠ applied across a channel of 

length L ≫ R, the interfacial flux Q is (Manikantan & Squires 2017b)

Q = 2
3

ΠcR3

ηs0L
1 − e−ΔΠ/Πc . (5.22)

The familiar Newtonian flux is recovered when Πc ≫ ΔΠ:

Q ΔΠ ≪ Πc QNewt = 2
3

ΔΠR3

ηs0L
. (5.23)

Qualitative differences arise when ΔΠ is comparable to Πc. Indeed, Q approaches a limiting 

value when ΔΠ ≫ Πc for a Π-thickening surfactant (Πc > 0):
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Q ΔΠ ≫ Πc Qmax = 2
3

ΠcR3

ηs0L
, (5.24)

which is insensitive to ΔΠ, with Πc effectively setting the surface pressure scale beyond 

which the channel is ‘choked’. When ΔΠ ≫ Πc, the surface pressure drops rapidly near the 

entrance of the channel, where the surface viscosity is extremely high. The pressure in the 

rest of the channel remains of the order of Πc, setting the scale for the maximum flux that 

may be pumped through the channel.

Similarly, Q grows exponentially with applied surface pressure difference when ΔΠ ≫ |Πc| 

for a Π-thinning surfactant (Πc < 0). For large ΔΠ, therefore, Π-thinning increases channel 

‘permeability’. Indeed, some surfactants (e.g. arachidic acid) might simultaneously shear-

thicken and Π-thin, so that the monolayer may be more permeable through an interfacial slit 

than is expected for traditional shear-thickening materials (Kurnaz & Schwartz 1997).

While thin gaps naturally give rise to large surface pressures and are easier to approach 

analytically, the consequences of Π-dependent ηs are not restricted to lubrication flows 

(Manikantan & Squires 2017a). For example, a disc translating while rotating on an 

unbounded and otherwise undisturbed Π-thickening/thinning monolayer experiences a force 

perpendicular to the direction of motion, analogous to the 3D Magnus effect (figure 30), 

breaking the reversibility expected from Stokes flows. More generally, Π-dependent surface 

viscosities result in non-intuitive and kinematically irreversible trajectories of pairs of 

particles on the interface, which could lead to hydrodynamic aggregation, separation, and 

‘lane formation’.

6. Conclusion

However long this Perspective may seem, it has at most laid out an intellectual skeleton for 

the mechanics and dynamics of surfactants in fluid systems. We have omitted many 

complications and subtleties that impact many different fields of science, industry, and life. 

Still, we hope to have helped bridge the gap between the fluid mechanics community and the 

surfactant communities in physical chemistry, colloid and interface science.

We close this perspective with a philosophical reflection on the admittedly loose analogy we 

drew between surfactants in fluid dynamical systems, and the ‘hidden variables’ that were 

desperately sought in the early decades of quantum mechanics. As fluid mechanicians, we 

do not often stop to appreciate how remarkable the Navier-Stokes equations have been in 

capturing flows from nanometers to thousands of kilometers (fifteen orders of magnitude!) 

In many cases – particularly in turbulent flows – the challenges in solving fluid mechanics 

problems relate to the actual challenges in the mechanics of solving those problems. More 

powerful computers, more efficient algorithms, and more insightful approximations are 

sought to improve predictions, elucidate new mechanisms, and design new technologies. The 

basic equations that need to be solved, however, are generally not in question.

Surfactants, by contrast, introduce something different to the study of fluid systems. 

Although surfactants generally do nothing to alter the Navier Stokes equations that govern 
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the bulk fluid, they do change the boundary conditions that constrain them – and in so doing, 

completely change both the quantitative and qualitative aspects of the flow. As should be 

evident from this Perspective, any particular change in observed dynamics might be caused 

by any of a number of distinct surfactant processes. Moreover, the ‘invisible’ nature of 

surfactants makes it difficult to know a priori what the surfactant is actually doing. This 

lands the typical fluid mechanician in unfamiliar terrain – of needing to determine what 

equations and boundary conditions must be solved in order to understand a fluid system, and 

ultimately predict its behavior. We hope that our Perspective will help provide a conceptual 

map for this endeavor.

Finally, we close by noting that surfactants are by no means the only ‘hidden variables’ in 

fluid systems. So-called ‘complex fluids’ impact almost every industry and every aspect of 

life: shampoos and toothpastes, eggs and espressos, blood and mucous, paints, vaccines, 

lubricants and drilling muds. These natural and ‘formulated’ products generally contain a 

multitude of ingredients – liquids, solutes, surfactants, colloids, and polymers – that impart 

mesostructures of various length scales, and affect the dynamic response properties on a 

variety of time scales. Still, these materials often appear homogeneous when viewed 

macroscopically. To understand, design, and model the dynamics of these systems, one must 

identify and incorporate the additional concentration and stress fields associated by each 

component. And – just like with surfactants – one must often determine the actual equations 

that govern these additional components. The challenges are both rich and rewarding, and 

offer fertile ground for the curious fluid mechanician.
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Figure 1. 
(a) ‘Hidden’ surfactant variables modify the interfacial flow of a rising bubble such that it 

might behave like a clean drop, a rigid particle, or somewhere in between. The associated 

surfactant transport processes are not often easy to differentiate, and systems may exhibit 

one or a non-trivial combination of several processes. (b)–(d) For instance, an interfacial or 

surface excess viscosity can resist the surface flow. The solid lines depict surface flow, and 

dashed red arrows indicate tangential (viscous) stresses resisting deformation. (e)–(g) 

Alternatively, surfactants swept to the rear of the bubble build a concentration gradient and 

generate a counter-acting Marangoni stress (dashed red arrows) that resists surface 

convection (blue arrows). These Marangoni forces may be weakened by surface diffusion 

against the gradient. (h)–(j) If the surfactant is soluble, adsorption/desorption from the bulk 

can drive the surface concentration back to equilibrium over a finite time. This process might 

be controlled by (i) diffusive transport in the bulk across bulk concentration gradients over a 

timescale τd, or by (j) the finite-rate kinetics over a finite timescale τk.
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Figure 2. 
A liquid molecule in the bulk of a fluid experiences no net force due to a (time-averaged) 

symmetric distribution of neighhbors. Creating an interface, however, requires breaking 

intermolecular ‘bonds’ on the interface and is energentically expensive.
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Figure 3. 
(a) Schematic representation of an amphiphilic molecule. (b)–(c) Surfactant molecules 

adsorb to the interface to an extent determined by the competition between (loss of) entropy 

and energetically favorable interactions during adsorption. Also shown in (c) are the 

concentration profiles of surfactant (solid line) and water (dashed line) molecules. The 

‘excess’ surface concentration is in gray, which represents the amount of surfactant in excess 

of a hypothetical state where the concentration of dissolved surfactant is constant up until 

the surface.
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Figure 4. 
Examples of change in surface energy upon deformation of a drop with surface-active 

molecules or particles.
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Figure 5. 
(a) Γ(C) and (b) Π(Γ) relations corresponding to Frumkin adsorption from an ideal subphase. 

Intermolecular interactions are attractive when β = βΓ∞/kBT > 0 (blue lines), and repulsive 

when β < 0 (red lines). β = 0 (gray solid lines) recovers Langmuir adsorption. The black line 

in each panel is the 2D ideal gas limit (the Henry isotherm).
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Figure 6. 
(a) Geometry of a typical surfactant-laden interface. (b)–(e) Mass transport processes on the 

interface: (b) convection due to imposed (or Marangoni) velocity us; (c) diffusion due to a 

surface concentration gradient; (d) surface concentration evolution due to curvature 

modification; and (e) adsorption/desorption from the sublayer, showing the depletion length 

Ld.
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Figure 7. 
(a) A surfactant-covered bubble oscillating in a liquid containing dissolved surfactant. (b) If 

surfactant exchange is negligibly slow, the number of adsorbed molecules is unchanged (or 

the surface concentration changes by δΓ). (c) By contrast, rapid surfactant exchange 

equilibrates the surface so that Γ(t) ≈ Γ0 and δΓ ≈ 0. Surfactant exchange can be (d) 

diffusion-controlled or (e) kinetically-controlled if either process is rate-limiting.
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Figure 8. 
(a) Real (solid line) and imaginary (broken line) components of the perturbed surface 

concentration for kinetically-limited adsorption (Da → 0) to an oscillating bubble, from 

(3.44). (b) Surface concentration in diffusion-limited mass transfer (Da → ∞), from (3.50). 

Λd = 0 represents a planar interface following (3.48). The vertical dashed lines show 

locations where 2Λdζd
2 = 1 when Λd ≳ 1, indicating modified diffusion times for small 

bubbles via (3.53).
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Figure 9. 
(a) Kinetically-controlled adsorption (3.68) to an initially clean spherical surface. (b) 

Diffusion-controlled adsorption (3.71) to a spherical surface. Adsorption occurs over a faster 

time scale τd,s in smaller bubbles (Λd = Ld/R ≳ 1), and approaches equilibrium 

exponentially, rather than as 1/ t in the case of large bubbles (Λd → 0).
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Figure 10. 
Two conjugate effects commonly termed ‘Marangoni’ effects: (a) A local increase in 

surfactant concentration, shown here by the addition of a surfactant-rich drop, establishes a 

surface concentration gradient (and, therefore, a surface pressure gradient) that drives an 

outward surface flow (red arrows). (b) Surface compression due to flow (in this case, 

towards an interfacial barrier) establishes a surface tension gradient due to non-uniform 

surface concentration. This introduces a reverse Marangoni flow that ‘immoblizes’ the 

surface.
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Figure 11. 
Illustration of surfactant-induced incompressibility. (a) Motion of a probe establishes a 

surface concentration gradient, shown in top and side views. In a soluble monolayer with 

instantaneous adsorption/desorption, surface concentration gradients are rapidly eliminated. 

(b) In this limit, ΔΠ ≈ 0 and reverse Marangoni flows are absent. The surface flow has a 

non-zero divergence ahead and behind the disk. Bulk fluid flow is indicated by the dashed 

arrows and is indistinguishable from that corresponding to a stress-free clean interface. (c) 

By contrast, if the surfactant is insoluble, a surface concentration gradient is sustained, and 

(d) the surface pressure difference ΔΠ generates a reverse Marangoni flow that resists 

interfacial compression/dilatation. The modified surface flow is divergence-free, which 

changes the bulk flow by constraining it to flow in planes parallel to the interface (see 

discussion).
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Figure 12. 
(a) A disk of radius R rotating at a constant angular velocity Ω within a monolayer of surface 

shear viscosity ηs. (b) Surface velocity us follows (3.100) when subphase-dominant (Bq ≪ 
1, blue squares) and (3.101) when interface-dominant (Bq ≫ 1, green circles); adapted from 

Zell et al. (2014).
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Figure 13. 
Mobility coefficients in the radial (μ∥) and azimuthal (μ⊥) directions (in arbitrary units) 

extracted from two-particle microrheology. In the surface-dominated regime (Bq ≫ 1 or d ≪ 
1), both coefficients decay logarithmically with distance, following (3.112). In subphase-

dominated cases (Bq ≫ 1 or d ≪ 1), the coefficients decay as 1/r and 1/r2. The symbols 

correspond to two-particle displacement correlations along the line of centers (filled 

symbols) and perpendicular to it (empty symbols), and the solid lines are fits to (3.109). The 

shapes of the symbols correspond to different surface viscosities. Adapted from Prasad et al. 
(2006).
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Figure 14. 
Streamlines of surface velocity as a result of a point force applied at the origin, following 

(3.108). Length is in units of R such that Bq = ηs/ηR.
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Figure 15. 
(a) A drop settling in a viscous fluid with terminal velocity U, and (b) streamlines 

corresponding to the Hadamard-Rybczynski solution for a clean interface. (c) The uniform 

retardation regime: with adsorption-desorption or diffusion over finite time scales, a surface 

concentration gradient is established, and a reverse Marangoni flow immobilizes the surface. 

(d) The remobilization regime: molecules freely desorb at the downstream pole and adsorb 

at the upstream pole if τs is small and bulk concentration is above CMC. The resulting near-

uniform surface concentration suppresses Marangoni flows and remobilizes the interface.
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Figure 16. 
(a) Response of a surfactant monolayer to a dilatational deformation that is fast or slow 

relative to rate of replenishment by adsorption from the bulk. The monolayer is effectively 

insoluble as ζd → 0, and the elastic modulus is highest (= E0) in this limit. Conversely, 

perturbations of surface concentration from equilibrium are rapidly eliminated by adsorption 

and the surface elasticity is weak when ζd ≫ 1. (b) The dynamic Gibbs modulus E and 

apparent dilatational surface viscosity κsads from (4.34).
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Figure 17. 
A planar wave of amplitude ζ0, length λ and frequency ω.
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Figure 18. 
Capillary wave damping rate β (4.71) as a function of the Marangoni number Maγ = E0/γ 
and the normalized fluid viscosity m = νk2/ω0. The damping rate asymptotes to βclean = 

−2mω0 when Marangoni flows are weak (Maγ ≪ 1) and to βstiff = − ω0/2 m/2 when the 

interface is immobilized (Maγ ≫ 1). Waves decay faster in a more viscous fluid (larger m) 

for all Maγ.
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Figure 19. 
(a) Circular motion of interfacial fluid particles on the clean surface of a wave moving to the 

right. The solid blue arrows along the interface depict compression and expansion of the 

surface. (b) Surfactants distort circular trajectories via Marangoni flows (red dashed arrows) 

that oppose the compression and expansion of the interface. The trajectories of fluid 

elements are then distorted, becoming straight lines in the Maγ → ∞ limit.
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Figure 20. 
(a) A static meniscus form next to a stationary wall and the liquid level rises to a height 

2lc. (b) When the wall is drawn upward, a film of liquid of asymptotic thickness h0 is 

entrained, and a dynamic meniscus connects the coating with the liquid reservoir. When the 

surface is clean, the the LLD scaling gives h0 ~ Ca2/3ℓc. (c) When surfactants occupy the 

liquid-air interface, Marangoni effects (and/or surface viscosity, see discussion) resist 

surface dilatation, drawing more fluid along with the moving plate. The coating is thicker by 

the factor α. (d) If the entrained film is thick enough, or if bulk concentration is large 

enough, surface concentration gradients are suppressed by adsorption of surfactant 

molecules to the interface, weakening the Marangoni effect.
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Figure 21. 
Surface velocity of the entrained film. The surface flow has a stagnation point for a clean 

interface (α = 1) beyond which the fluid flow is in the direction opposite to that of the plate. 

With increasing α, the surface is immobilised until a maximal value of α = 42/3, when the 

interface is surface incompressible and is drawn at the same velocity as the plate 

everywhere.
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Figure 22. 
(a) Geometry of a node at the intersection of four Plateau borders. (b) Flow along a 

longitudinal section of a channel is plug-like when Bq ≪ 1. Viscous dissipation occurs 

primarily at the nodes (not shown) in this case. (c) Poiseuille flow for Bq ≫ 1, 

corresponding to large interfacial stresses and subsequent surface immobilization.
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Figure 23. 
A cylindrical disk translating within an insoluble surfactant monolayer atop a bulk fluid 

layer of finite depth H. Also shown is the resistance coefficient |F|/4πηR|U| as a function of 

both sublayer thickness and Boussinesq number. The gray dash-dot lines are the numerical 

calculations of Stone & Ajdari (1998) at specified Bq, and the solid lines are asymptotic 

values for small and large H/R. The bottom-most solid lines represent the Bq → 0 limit 

(table 4). The dashed asymptotes correspond to a clean interface, from (4.158) and (4.162), 

and highlights the fact that even an inviscid surfactant increases drag on a translating probe 

as compared to a surfactant-free surface.
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Figure 24. 
(a) A rod translating perpendicular to its long axis on a clean interface, shown in top and 

side views. The surface velocity field has a non-zero divergence ahead and behind the rod, 

and the bulk velocity field is three-dimensional. (b) Insoluble surfactants drive reverse 

Marangoni flows that render monolayers incompressible (see §3.3.2 and figure 11), setting 

up surface and bulk flows on length scales comparable to the rod length. Surface 

incompressibility thus imparts a larger drag than a clean interface even when the surfactant 

is surface-inviscid (Bq → 0), and impacts F⊥ more strongly than F∥.· (c) Translational 

resistance coefficient of long rods in incompressible monolayers (Levine et al. 2004) with 

asymptotic scalings in dashed lines following (4.168), (4.169), and (4.170).
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Figure 25. 
(a) Fatty acids consist of a (hydrophilic) carboxilic acid head group and a (hydrophobic) 

hydrocarbon tail. The longer the hydrocarbon tail, the lower its solubility in water and the 

stronger the van der Waals attractions with adjacent fatty acids. Saturated hydrocarbon tails 

pack well with each other, whereas unsaturated tails (e.g. oleic acid, with a double bond at 

the ninth carbon) are ‘kinked’ and frustrate packing. (b) Generalized isotherm of an 

insoluble monolayer of saturated fatty acids, adapted from Kaganer et al. (1999). 

Monolayers form a gaseous phase at extremely low concentration (inset), which condenses 

to form a disordered, liquid expanded (LE) phase when compressed. At higher surface 

concentrations, a phase transition occurs from the LE phase to one of various liquid 

condensed (LC) phases with different liquid crystalline order, and even further phase 

transitions at higher concentrations (here to an untilted, condensed phase). (c) Cartoon 

showing transition between a disordered, low-density phase (e.g. LE or gaseous) to phase 

coexistence with a higher-density phase (e.g. LE/LC or gas/LE). (d) Fluorescence 

micrograph showing gas/LE phase coexistence of the phospholipid DPPC (courtesy of Dr. 

Ian Williams). (e) Polarized micrograph of LE-LC phase coexistence between methyl 

eicosanoate(C20). Within the LC domain, the six different brightness levels correspond to six 

distinct orientations of the packed tails, which in turn reveal the hexagonal headgroup lattice 

(from Knobler & Desai (1992)).

Manikantan and Squires Page 122

J Fluid Mech. Author manuscript; available in PMC 2021 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 26. 
(a) Tilted DPPC tail groups within an LC domain form discrete patches, within which tails 

are oriented in the same direction. The tilt orientation jumps by 60° from patch to patch, to 

accomodate the frustration between the tendency of tilt orientation to precess and the 

tendency of the hegaxonal headgroup lattice to maintain its order. (b) Bright lines indicate 

boundaries between patches of aligned tilt, across which tailgroup orientation abruptly 

changes. These high-energy lines exert a line tension internal to the drop, effectively 

‘pulling’ in invaginations at the domain boundary. (a–b) reproduced from Dreier et al. 
(2012). (c) New tilt grain boundary lines form and grow in LC DPPC domain arms that had 

been stretched significantly. From Kim et al. (2018).
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Figure 27. 
(a-b) The phospholipid Dipalmitoylphostphatidylcholine (DPPC) in (a) LC/LE coexistence 

and (b) polycrystalline, fully LC phase, from Kim et al. (2018). Natural DPPC forms LC 

domains that wind in a counter-clockwise fashion, owing to the chiral attachment of the two 

hydrocarbon tails. (c) The chirality of domains within an LC DPPC monolayer depends on 

the ratio of right- to left-handed DPPC molecules (from Kim et al. (2018)). (d) Palmitic acid 

co-crystallizes with DPPC to form stiff inclusions, here dispersed by a disordered phase of 

the unsaturated lipid POPG (from Ding et al. (2002)).(e) Cholesterol is ‘line-active’ for 

DPPC, promoting the growth of thinner LC grains that wind more tightly (from Kim et al. 
(2013)). (f) DPPC/hexadecanol/cholesterol mixtures form eerily beautiful grains in LC/LE 

coexistence, consisting of a DPPC/HD co-crystallized core, surrounded by wispy, spiraling 

DPPC/cholesterol arms (from Sachan et al. (2017)). (f) An LC-DPPC monolayer that is 

steadily deformed by a rotating microfabricated ‘button’, reveals a surface yield stress: the 

monolayer flows within the high-stress region near the button, but is stationary outside a 

yield radius (from Kim et al. (2018).
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Figure 28. 
(a) Response of a monolayer with coexisting phases to uniform compression: when ω ≪ kp, 

domains grow much faster than the rate of compression, and the LE phase offers no elastic 

resistance. By contrast, when ω ≫ kp, the rate of compression exceeds the rate of molecules 

changing phases, and the LE phase offers a net resistance to compression. (b) Measurements 

of Arriaga et al. (2010) showing elastic and viscous moduli from oscillatory measurements 

in LE and in coexistence. The solid lines are fit to a Maxwell viscoelastic fluid with 

characteristic relaxation time τ = kp
−1 ≈ 140s, and the dashed lines are slopes from 

equilibrium (ω → 0) isotherms. (c) Effective elastic and viscous modulus following (5.16).
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Figure 29. 
(a) A surface pressure gradient across an interfacial channel sets up a surface (and bulk) 

flow, much pressure-driven flow in 3D. (b) Illustrations of surface velocity profiles, with α 
defined in (5.19): us(y) is elliptic when subphase-dominant (Bq ≪ 1) and parabolic when 

interface-dominant (Bq ≫ 1) with Newtonian surface rheology. However, condensed 

arachidic acid above Π ~ 20 mN/m surface-shear-thickens, resulting in triangular velocity 

profiles (5.19). The background color gradient represents Π(x), which changes linearly 

across the length of the channel. (c) Surface pressure distribution in the channel is nonlinear 

when ηs is a function of Π. When Π-thinning, surface pressure remains of the order of the 

driving pressure ΔΠ for the majority of the channel and thus pumps a larger surfactant flux, 

effectively increasing the permeability of the channel. By contrast, surface pressure drops 

rapidly at the channel entrance when Π-thickening, which maintains a relatively small 

gradient across the rest of the channel, thereby ‘choking’ the surface flow.
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Figure 30. 
Surface ‘Magnus’ Effect. (a) A circular particle forced to rotate while translating in a Π-

thickening surfactant follows a Magnus-like trajectory (b) Surfactant in front fo the 

translating disk has higher surface viscosity than the surfactant behind the disk, owing to the 

higher surface pressure. Consequently, the rotation of the particle causes it to ‘roll’ upwards, 

perpendicular to the direction of forcing (Manikantan & Squires 2017a).
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Table 2.

Example adsorption and desorption fluxes for the isotherms detailed in table 1. Because only the ratio of ja and 

jd is constrained by equilibrium thermodynamics, each pair (ja and jd) in this table may be multiplied by any 

function of C and Γ without changing its equilibrium isotherm. Different surfactants with identical isotherms 

may respond very differently under dynamic conditions.

Isotherm Adsorption flux, ja Desorption flux, jd

Henry kaC kdΓ

Freundlich kaKm−1Cm kdΓ

Langmuir kaC (Γ∞ − Γ) kdΓ

Volmer kaC (Γ∞ − Γ) kdΓexp Γ
Γ∞ − Γ

Frumkin kaC (Γ∞ − Γ) kdΓexp − βΓ
kBT

van der Waals kaC (Γ∞ − Γ) kdΓexp Γ
Γ∞ − Γ − βΓ

kBT
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Table 3.

Common definitions of the Marangoni number, and their physical meaning. Temperature-dependent 

Marangoni effects are not considered here, and we list only the effects of composition dependence.

Definition Description Representative examples

Ma =
E0
ηU

interfacial elasticity vs subphase viscous stress: measure of how much the subphase flow 
compresses the interface

Stebe et at. (1991)
Seiwert et al. (2014)

MaD =
E0L
ηDs

relaxation of concentration gradients due to Marangoni convection vs due to surface diffusion Durand & Langevin (2002)
Elfring et al. (2016)

MaK =
E0τs
ηL

relaxation of concentration gradients due to Marangoni convection vs due to adsorption/
desorption

Elfring et al. (2016)

MaS =
E0L
ηsU

interfacial elasticity vs surface viscous stress (characterized by ηs or κs) Verwijlen et al. (2012)

Maγ =
E0
γ

Marangoni vs capillary stress: relevant in applications with interfacial curvature like drop 
coalescence and fiber coating

Dai & Leal (2008)
Quéré (1999)
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Table 4.

Summary of asymptotic limits, when available, of the resistance coefficient |F|/4πηR|U| for the translation of a 

cylindrical disk.

deep subphase
(H ≫ R)

shallow subphase
(H ≪ R)

clean interface
4

3π
2
5

R
H

Incompressible, inviscid monolayer
Ma ≫ 1 and Bq = 0

2
π

1
2

R
H

Incompressible, viscous monolayer
Ma ≫ 1 and Bq → ∞

Bq
log(2Bq) − γE

Bq
log(2 BqH/R) − γE

Compressible, inviscid monolayer
Ma → 1 and Bq → 0

4
3π

2
5

R
H

Compressible, viscous monolayer
Ma → 1, Bq → ∞, and κs ≪ ηs

-
Bq/2

log( 2BqH/R) − γE

Compressible, viscous monolayer
Ma → 0, Bq → ∞, and κs ≫ ηs

-
Bq

log(2 BqH/R) − γE

J Fluid Mech. Author manuscript; available in PMC 2021 March 26.


	Abstract
	Graphical Abstract
	Introduction
	Interfaces at Equilibrium
	Surface tension and its origins
	‘Dirty’ interfaces: surfactants of different classes
	Insoluble surfactants: Langmuir monolayers
	Compressibility: Gibbs (E) and Marangoni (E0) moduli
	The chemical potential

	Soluble surfactants: Gibbs monolayers
	Gibbs Isotherm
	Compressibility: E and E0 for soluble surfactants
	Soluble isotherms via dynamic equilibrium


	Dynamic Properties
	Governing equations
	Surface advection
	Surface diffusion

	Adsorption/desorption
	Adsorption/desorption to an oscillating bubble
	Kinetically-limited mass transfer (Da ≪ 1)
	Diffusion-limited mass transfer (Da ≫ 1)
	Adsorption to a clean interface

	Marangoni flows
	Surface concentration gradients and hydrodynamic coupling
	Marangoni numbers and surface incompressibility

	Surface rheology
	The Boussinesq-Scriven model
	2D vs. 3D hydrodynamics and the Boussinesq number
	Intrinsic and apparent surface viscosity


	Surfactant dynamics in paradigmatic problems
	Motion of surfactant covered drops and bubbles
	Surface immmobilization due to surface viscosity
	Marangoni stress and adsorption/desorption
	Marangoni stress and surface diffusion
	Inferring retardation mechanisms from measurements

	Oscillatory compression of soluble monolayers
	Apparent oscillatory surface rheology
	Oscillating bubble tensiometry

	Damping of capillary waves
	Waves on a clean liquid surface
	Marangoni damping due to insoluble and surface inviscid surfactants
	Damping due to soluble and/or surface viscous surfactants

	Thin films: surfactant dynamics affect thickness of coating
	Plate coating: the Landau-Levich-Derjaguin problem
	Insoluble and surface-inviscid surfactant
	Soluble and/or surface viscous surfactant
	Thin film drainage

	Foams: surfactant properties impact macroscopic flows
	Physicochemical model
	Macroscopic model
	Foam drainage: predictions vs observations

	Particles and probes on surfactant-laden interfaces
	Translation and rotation of cylinders
	Elongated particles


	Additional complexities with real-world surfactants
	Phase behavior of surfactant monolayers
	Rheological implications of surface heterogeneities
	Line tension: liquid crystalline domains as 2D drops

	2D ‘suspensions’ of condensed domains: effective surface viscosities
	Apparent surface dilatational rheology during phase coexistence

	Non-constant surface viscosity
	Surface-shear-thickening and -thinning
	Π-dependent viscosity


	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Figure 11.
	Figure 12.
	Figure 13.
	Figure 14.
	Figure 15.
	Figure 16.
	Figure 17.
	Figure 18.
	Figure 19.
	Figure 20.
	Figure 21.
	Figure 22.
	Figure 23.
	Figure 24.
	Figure 25.
	Figure 26.
	Figure 27.
	Figure 28.
	Figure 29.
	Figure 30.
	Table 1.
	Table 2.
	Table 3.
	Table 4.

