
Perfunctionalized Dodecaborate Clusters as Stable Metal-Free 
Active Materials for Charge Storage

John L. Barton†,‡,∥, Alex I. Wixtrom⊥,∥, Jeffrey A. Kowalski†,‡,∥, Elaine A. Qian⊥,˫,§, Dahee 
Jung⊥,§, Fikile R. Brushett*,†,‡, Alexander M. Spokoyny*,⊥,§

†Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Class Ave, 
Bldg. 200, Argonne, Illinois 60439, USA

‡Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts 
Ave, Cambridge, Massachusetts 02139, USA

⊥Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles 
E. Young Drive East, Los Angeles, California 90095-1569, USA

˫Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los 
Angeles, California 90095 USA

§California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, 
Los Angeles, California 90095-1569, USA

Abstract

We report a class of perfunctionalized dodecaborate clusters that exhibit high stability towards 

high concentration electrochemical cycling. These boron clusters afford several degrees of 

freedom in material design to tailor properties including solubility and redox potential. The 

exceptional stability of these clusters was demonstrated using a symmetric flow cell setup for 

electrochemical cycling between two oxidation states for 45 days, with post-run analysis showing 

negligible decomposition of the active species (<0.1%). To further probe the limits of this system, 

a prototype redox flow battery with two different cluster materials was used to determine mutual 

compatibility. This work effectively illustrates the potential of bespoke boron clusters as robust 

material platform for electrochemical energy conversion and storage.
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INTRODUCTION

The ability to reversibly shuttle electrons over a range of timescales is a ubiquitous feature 

found in both natural and synthetic molecules, and is essential for energy conversion and 

storage applications.1–10 Energy storage systems often utilize redox active metal cations as 

stable salts or coordination complexes, though inherent limitations hinder the degree to 

which solubility and redox potential of these species can be modified.11 Metal-free species 

can also undergo well-defined redox processes, though decomposition due to innate 

reactivity of radical intermediates formed during single electron shuttling is a common 

pitfall.12,13 To mitigate this undesired reactivity, molecular systems have been designed to 

delocalize radical density throughout neighboring bonds and/or to sterically protect the site 

of the unpaired electron (Figure 1a), which can lead to dramatic improvements in the cycle 

stability of these compounds.11,12,14

One such system employing stable charge carriers is the redox flow battery (RFB). RFBs are 

electrochemical energy storage technologies where solubilized charge storage materials are 

stored in external tanks and circulated through an electrochemical reactor where energy is 

extracted or stored. The majority of RFB literature, including their original development, 

exists within the aqueous domain, depending on metallic redox centers to store charge.15–17 

More recently, RFB work has been extended into the nonaqueous domain, often with organic 

redox-active materials, primarily incentivized by the limited potential stability window of 

water and the cost of metal-based active species.18,19

Recent work has used process simulation software to demonstrate the low break-even price 

for the production of anthraquinone disulfonic acid, as considered to be a model organic 

material, largely due to the low-cost commercially-available feedstocks and limited number 

of process steps.20 Within this work, we demonstrate use of a new set of metal-free redox 

active materials for RFBs produced from commodity feedstocks with only 3 synthesis steps, 

implicitly suggesting the potential for low-cost production.21,22
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Perfunctionalized dodecaborate clusters (B12(OR)12, R = H, alkyl, benzyl) are a promising 

new class of redox materials, which have demonstrated reversible redox activity when 

modified with different substituents (Figure 1b).23–25 Many of these clusters are extremely 

robust molecules, displaying thermal stability and resistance to harsh chemical 

environments.26 Several prior reports have developed metal coordination complexes or 

polyoxometalates, both of which have high levels of electron delocalization by design to 

promote stability.27–32 While superficially, the polyoxometalates appear to be structurally 

similar to the clusters presented here; however, the removal of metallic elements further can 

increase the stability such that these materials may be handled in the open air.29–30 Over a 

dozen B12(OR)12 clusters have been synthesized and electrochemically characterized by 

cyclic voltammetry (CV), exhibiting redox transitions that are reversibly accessible via 
sequential one-electron oxidation or reduction.23,24

In addition, the solubility and size of functionalized boron clusters can be modified to 

incorporate specific properties desirable for particular applications.24,33–35 Importantly, 

B12(OR)12 species can be isolated in a monoradical form (1−) and have shown good stability 

due to the complete delocalization of the radical spin density across the boron cluster cage 

(Figure 1b). Extending beyond voltammetric studies and ex-situ evaluation of stability, here 

we demonstrate the viability of these perfunctionalized boron clusters in complex electrolyte 

environments found in modern and emerging electrochemical systems. Specifically, we 

show several of these B12(OR)12 compounds can be electrochemically charged and 

discharged multiple times over 1000 hours without any apparent chemical degradation. 

Leveraging these attractive electrochemical properties, we have furthermore assembled a 

proof-of-concept redox flow battery, where performance of this metal-free cluster system 

was further demonstrated.

EXPERIMENTAL SECTION

Cyclic Voltammetry and Randles-Sevcik Analysis

All preparation and cyclic voltammetry (CV) measurements were performed in an argon-

filled glovebox (MBraun Labmaster, O2 < 1 ppm, H2O < 5 ppm) at ca. 26 °C. The 

electrolyte used was 0.5 M TBAPF6 (Sigma-Aldrich, 98%) in MeCN (BASF, > 99.9%) 

(Figure S1). Solutions were prepared in a volumetric flask in order to account for the volume 

change from the high concentration of supporting salt (for full synthetic procedures and 

characterization, see SI). CV was performed in a 3-electrode cell with a 3 mm diameter 

glassy carbon disk working electrode (CH Instruments), a gold coil counter electrode (CH 

Instruments), and a fritted Ag/Ag+ reference electrode (fill solution: 0.05 M AgBF4 (Sigma-

Aldrich, 98%), 0.5 M TEAPF6, propylene carbonate (BASF, >99.9%)). Before every CV, the 

working electrode was polished on a MicroCloth pad with an aqueous slurry of 0.05 μm 

alumina powder (Buehler Ltd.), rinsed with deionized water (Millipore), and dried with lens 

paper (VWR). In order to reference to ferrocene (Sigma-Aldrich, 98%), before every CV 

measurement, an additional CV was taken in the electrolyte with 0.001 M ferrocene as the 

active material. All CV data was collected on a VSP-300 potentiostat (Bio-Logic), and a 

100% automated iR compensation was applied. The average resistance measured was about 

20 Ω, leading to a total voltage compensation of about 0.3 mV for the highest currents. CV 
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measurements were taken at scan rates of 10, 20, 30, 40, 50, 75, and 100 mV s−1 and were 

used to calculate the redox potential, peak separation, peak current ratio, and diffusion 

coefficient. The redox potential was calculated by taking the average of the potentials 

corresponding to the anodic and cathodic peak currents, while the peak separation was 

calculated by taking the difference between these two potentials. The peak current ratio was 

calculated by taking the ratio of the background corrected peak current for the anodic and 

cathodic peak.

In order to calculate the diffusion coefficient, the Randles-Sevcik relationship (1) was used 

for all of the scan rates:

ip = 0.4463nFAC nFD
RT v

0.5
(1)

where ip is the peak current (A), n is the number of electrons transferred (n = 1), F is 

Faraday’s constant (96485 C (mol e−)−1), A is the electrode area (0.0707 cm2), C is the bulk 

concentration (1 × 10−6 mol/cm3), R is the universal gas constant (8.314 J mol−1 K−1), T is 

the temperature (299.15 K), D is the diffusion coefficient (cm2 s−1) and ν is the scan rate (V 

s−1). Again the peak current was determined from the peak current from the voltammograms 

and subtracting an extrapolated background current.

Flow Cell Measurements.

Flow cell measurements employed a research-scale, 2.55 cm2 flow cell described in past 

work36,37. Flow fields were machined from impermeable graphite (Tokai G347B, MWI, 

Inc.) in-house and the engineering drawings are published in past work9. Sigracet® SGL 

29AA carbon paper electrodes (190 ± 30 μm) were purchased from the Fuel Cell Store and 

used as received. Both the symmetric and full cells were tested with a flowrate of 10 mL min
−1, a Daramic 175 porous separator, 2 layers of Gore® expanded polytetrafluoroethylene (ca. 

250 μm thick) gaskets, and 2 layers of carbon paper per side. The Daramic separator was 

selected as it provides good wettability and consistent performance as a starting point for 

demonstration of these materials, and the design of a high-performance RFB membrane is 

beyond the scope of this work. A Cole-Parmer Masterflex® pump drive with an Easy-Load® 

II pump head was used to control the flowrate. Perfluoroalkoxy reservoirs (10 mL) were 

purchased from Savillex, and the volumetric capacities presented within this work only 

accounted for the total volume of electrolyte within the system (20 mL). For the symmetric 

flow cell, each 10 mL reservoir contained 0.05 M 11− / 0.05 M 12− / 0.5 M TBAPF6 in 

MeCN initially. For the full cell, each 10 mL reservoir contained of 0.05 M 20 / 0.05 M 12− / 

0.5 M TBAPF6 in MeCN. Premixing was employed to mitigate confounding effects of rapid 

crossover due to the use of Daramic 175, a nonselective porous separator.

All flow cell experiments were controlled with a Bio-Logic VMP3 potentiostat. After setting 

up the initial cell and turning the pump on, the cell was allowed to sit for 30 min prior to 

electrochemical measurements. We then cell was then subjected to electrochemical 

impedance spectroscopy (EIS), followed by galvanostatic cycling with potential limitations 

(GCPL). EIS measurements were taken with frequencies ranging from 200 kHz to 10 mHz 

with 6 points per decade, 5 measures per frequency, and an absolute (sine) amplitude of 10 
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mV. The EIS is shown in Figures S3 and S4 for the symmetric and full cell, respectively. 

GCPL was performed at 5 mA cm−2, without any constant potential holds. Voltage 

limitations were set as −0.3 V – 0.3 V and 0.10 V – 0.58 V for the symmetric and full cells 

respectively. After the symmetric flow cell cycling of [1]2− & [1]1−, the solution containing 

the two materials and the electrolyte (TBAPF6) was recollected and the solvent was removed 

via rotary evaporation. The mixture was analyzed by 11B{1H}, 19F, and 1H NMR 

spectroscopy for evidence of any chemical degradation (easily identified by the presence of 

any borate decomposition products with characteristic resonances around δ 20.0 or 0.0 in the 
11B{1H} NMR).

RESULTS AND DISCUSSION

Voltammetry.

While voltammetric analysis of molecular compounds can be useful for initial analysis of 

redox processes, during these tests the materials are only charged for short durations, with 

only a small fraction of the active material charged at any given time. In order to better 

evaluate and understand the stability of the B12(OR)12 system to electrochemical cycling 

associated with bulk charge storage, we decided to test these molecules further under 

controlled conditions that more closely mimic energy storage applications. We started by 

identifying two model B12(OR)12 cluster systems with high (1) and low (2) redox potentials 

relative to each other (table 1). The high-potential cluster 1 features 12 benzyl substituents 

with perfluorinated aryl groups, which, due to their inherent inductive electron-withdrawing 

nature, increase the redox potential for the 2−/1− redox couple.24 For a cluster system 

exhibiting redox properties at lower potential, we designed 2, which contains 12 inductively 

electron-donating alkyl groups with terminating OMe moieties that improve solubility in 

polar solvents. Both species have a solubility ≥0.5 M in MeCN in all relevant states-of-

charge. First, CV on a glassy carbon electrode was conducted to provide in-depth 

information about the electrochemical and transport metrics for the two cluster systems 

(Figure 2). The first oxidation of 1 and the first reduction of 2 occur at 0.074 V vs. Fc/Fc+ 

and −0.256 V vs. Fc/Fc+, respectively. Both materials show excellent chemical reversibility 

on the CV timescale (~seconds-minutes) as evidenced by a peak current ratio close to one 

across all scan rates (1: 0.97 ± 0.01, 2: 1.00 ± 0.02). Additionally, both redox couples show 

electrochemical reversibility with a peak separation of 61 ± 1 mV (Nernstian is 60 mV at 

ambient glovebox temperature), which is invariant of scan rate (Figure S5).38

Lastly, the diffusion coefficients of the starting materials were calculated using Randles-

Sevcik analysis (Figure S2) with scan rates of 10 to 100 mV s−1, and were determined to be 

3.3 × 10−6 cm2 s−1. As expected based on the borate cluster sizes and the Stokes-Einstein 

relation (diffusivity is inversely proportional to molecular radius), these diffusion 

coefficients are about an order of magnitude lower than those of small organic molecules in 

similar electrolyte solutions, but are still sufficiently large to support a range of 

electrochemical applications.39,40 Importantly, clusters 1 and 2 appear to be non-interacting 

on the CV timescale as the voltammogram with both materials present represents a 

superposition of the two independent scans with no changes in original peak shape, height, 

or position, and no new peaks appearing as a function of cycling.
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Flow Cell Results.

We then assembled a symmetric flow cell with 1 (Figure 3). The symmetric flow cell allows 

for cycling of both the reduced and oxidized species in the cluster redox pairs to determine 

the active species stability without the convoluting effects of side products generated at the 

counter electrode or the mass transport enforced concentration limitations, which are both 

associated with conventional bulk electrolysis apparatus.41–43 Figure 3a shows the initial 

active species distribution within the reservoirs and redox reactions occurring during the 

charging step. During the discharge step, these reactions occur in reverse. Although it is 

generally desirable to test at higher active species concentrations (>0.1 M), to both reduce 

mass transport resistance and explore more practical electrolyte formulation, we sought to 

first demonstrate behavior at lower concentrations. Consequently, we have used a low 

current density of 5 mA cm−2, to mitigate the effect of mass transfer limitations on the 

accessed capacity. Figure 3b shows capacity and colombic efficiency as a function of cycle 

number and illustrates a low fade rate due to high material stability.

The cell retained high coulombic efficiency (> 96%) and 40% of the initial capacity after 

1089 h (45 days) of cycling, which exceeds the duration of many published nonaqueous 

RFB stability studies.44–47 We suspect that a portion of the cell fade at the later stages of this 

experiment, specifically the decrease in accessed capacity and the increase coulombic 

efficiency instability, are due to a combination of imperfect sealing and pressure driven 

crossover. Although compression fittings and expanded PTFE gaskets are used in the cell 

construction, we inevitably lose some redox active electrolyte via evaporative leaking. Loss 

of volatile components, specifically the solvent, gradually increases the solution viscosity 

and promotes further leaks (observed) via an increased pressure within the cell. Dashed gray 

vertical lines indicate experimental interruptions. The cycling was stopped briefly to 

rebalance the electrolyte reservoirs at 424 h as the reservoir levels were visibly mismatched 

(ca. 5 mL vs. 15 mL), which is partially enabled by our use of a non-selective separator 

(Daramic 175). A second (unintentional) interruption occurred at 632 h when the building 

lost power. Voltage profiles from select cycles, as indicated by arrowheads in Figure 3b, are 

shown in Figure 3c, illustrating the appreciable fraction of the theoretical capacity that is 

repeatedly accessible for select cycles over all uninterrupted segments of the experiment. 

Note that at least one cycle is shown from each uninterrupted segment of the cycling 

protocol. The third cycle shown, cycle 200, takes place after the electrolyte rebalancing at 

424 h, and the increase in capacity (30%) from cycle 140 is indicative of a crossover 

imbalance within our experimental setup. We attribute the limited approach to theoretical 

capacity (80% for cycle 1) to the mass-transfer limitations at extreme states of charge, which 

are exacerbated by the relatively low total concentration (0.1 M). For the entire experiment 

the coulombic efficiency remained high (> 96%), indicating high material stability (Figure 

3d).

Importantly, post-mortem B 1s XPS analysis of [1] after cycling (see Figure 3) revealed that 

there were no decomposition products (borates) (Figure 4).

Given the high sensitivity of XPS, the lack of any observable borates after cycling clearly 

demonstrates the stability of these clusters, further confirmed by NMR spectroscopy and 
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mass spectrometry (see SI). In the NMR spectra, only resonances matching both the 2− and 

1− oxidation states of [1] along with the presence of TBA-PF6 (Figure S6) were visible. No 

borates were observed in the 11B NMR spectrum (Figure S6), further corroborating that no 

chemical decomposition of the boron cage framework has occurred. Lastly, electrospray 

mass spectrometry on the post-mortem electrolyte confirmed the presence of intact [1] in 

multiple oxidation states further highlighting the robustness of this system (Figure S7).

We then sought to evaluate the use of 1 and 2 in a full redox flow battery (RFB).17 A flow 

cell containing 12−/1− (high potential) and 20/1− (low potential) was cycled at 5 mA cm−2 

(Figure 5 and SI). Both reservoirs initially contained 10 mL of 0.05 M 20 / 0.05 M 12− / 0.5 

M TBAPF6 in MeCN. Utilizing the two materials together leads to a cell voltage of 0.33 V. 

Indeed, this is lower than desirable for a RFB, but full cell cycling can highlight the stability 

of the highly tunable borate clusters.24

Specifically, this borate cluster pairing was selected based on preliminary assessments of 

stability, solubility, and simplicity of synthesis in spite of the low average discharge voltage, 

0.258 V. The cell configuration, which used pre-mixed electrolytes, similar to an Fe-Cr RFB, 

to mitigate crossover-driven capacity fade, is shown in Figure 4a17,48. Detailed experimental 

conditions and electrochemical impedance spectra are included in the SI (Figure S4). Figure 

4b shows the charge and discharge profiles for cycles 1, 50, 100, 150, and 200, spanning 248 

h of experiment time. Figure 4c shows the capacity as a function of cycle number, which 

remains relatively stable and has a mean value of 0.366 Ah L−1 (55% of theoretical) based 

on discharge. Energy, coulombic, and voltage efficiencies are shown in Figure 4d. The low 

average voltage efficiency, 66%, can be primarily attributed to the low cell voltage, as well 

as significant contributions from ohmic and mass-transfer overpotentials due to low active 

species concentration. Specifically, the voltage losses within the cell are not atypically large 

as compared to prior non-aqueous flow battery literature46,49,50; however, they constitute a 

larger fraction of the total cell voltage, thus significantly impacting the voltaic efficiency. 

The ohmic resistance, as determined through impedance analysis, was 3.6 Ω cm2, and 

contributes 23% of the voltage losses (i.e., 8% of the average charging voltage). The 

combination of stable capacity along with moderate average coulombic efficiency (87%) 

suggests that the cell experiences significant yet non-destructive parasitic charge-transfer 

pathways, presumably crossover coupled to self-discharge. These losses may be greatly 

diminished through ongoing membrane research for RFBs40,51,52. In particular, these 

clusters appear sufficiently large53 (ca. 2-3 nm) as compared to smaller redox-active organic 

molecules (ca. 0.6 nm), to enable the use of nanoporous size-selective separators for 

crossover mitigation. This, in turn, would obviate the need for functionalized membranes, 

reducing both component cost and research time52,54–56.

CONCLUSION

In summary, we have demonstrated the design versatility and bulk electrochemical stability 

and cyclability of several perfunctionalized dodecaborate clusters, B12(OR)12. This work 

expands upon the repertoire of cluster-based materials amenable to electrochemical cycling,
28,29,32,57,58 with flow cell cycling validating the exceptional stability of this material class 

as it is cycled between 2 oxidation states for 45 days showing no apparent chemical 
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degradation. Given the favorable and tunable properties of perfunctionalized boron 

clusters21, we envision further optimization of this system to enable more practical energy 

storage uses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Decomposition pathway of a prototypical redox-active organic radical (TEMPO) via a 

radical coupling. (b) Redox-active B12(OR)12 clusters do not undergo decomposition via 

radical coupling due to the 3D delocalization of the radical spin density.
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Figure 2. 
(a) Cyclic voltammograms of 12−/1− (top, red), 20/1− (middle, black), and a mixture of the 

two clusters (bottom, blue) at 1 mM in 0.5 M TBAPF6 in MeCN at a scan rate of 10 mV s−1, 

referenced to ferrocene/ferrocenium at 0 V. (b) Measured electrochemical parameters for 

12−/1− and 20/1− calculated at 10 mV s−1. (c) EPR spectrum and calculated SOMO energy 

state representation of 1−1.22
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Figure 3. 
Symmetric flow cell containing cluster 1. (a) Cell setup. (b) Charge and discharge capacity 

plotted (left) as a function of cycle number in along with coulombic efficiency (right). 

Arrowheads (colors match c) indicate cycles for which the voltage profile is shown in (c). (c) 

Charge and discharge voltage profiles are shown for select cycles. (d) Detailed view of 

coulombic efficiency as a function of cycle number. Gray dashed lines in (b) and (d) indicate 

interruptions of the experiment due to intentional electrolyte rebalancing (424 h) and a 

building power outage (632 h).
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Figure 4. 
(a) B 1s XPS region for elemental boron (control). (b) Post-mortem B 1s XPS analysis of [1] 

after 45 days of cycling indication no presence of borates. Additional controls can be found 

in the SI (Figure S7).

Barton et al. Page 15

ACS Appl Energy Mater. Author manuscript; available in PMC 2021 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Full RFB cell cycling results. (a) Flow cell setup for cycling at 5 mA cm−2 showing 

premixed redox-active electrolytes. (b) Voltage profiles for selected cycles. (c) Capacity and 

(d) efficiency as a function of cycle number.
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Cluster Potential (V vs Fc/Fc+) Peak Separation (mV) Peak Current Ratio Diffusion Coefficient (× 10−6cm2s−1)

1−2 0.074 ± 0.001 61 ± 1 0.97 ± 0.01 3.3 ± 0.1

20 − 0.256 ± 0.001 61 ± 1 1.00 ± 0.02 3.3 ± 0.1
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