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Summary.

While the HVTN 505 trial showed no overall efficacy of the tested vaccine to prevent HIV 

infection over placebo, markers measuring immune response to vaccination were strongly 

correlated with infection. This finding generated the hypothesis that some marker-defined 

vaccinated subgroups were partially protected whereas others had their risk increased. This 

hypothesis can be assessed using the principal stratification framework (Frangakis and Rubin, 

2002) for studying treatment effect modification by an intermediate response variable, using 

methods in the sub-field of principal surrogate (PS) analysis that studies multiple principal strata. 

Unfortunately, available methods for PS analysis require an augmented study design not available 

in HVTN 505, and make untestable structural risk assumptions, motivating a need for more robust 

PS methods. Fortunately, another sub-field of principal stratification, survivor average causal 

effect (SACE) analysis (Rubin, 2006) - which studies effects in a single principal stratum - 

provides many methods not requiring an augmented design and making fewer assumptions. We 

show how, for a binary intermediate response variable, methods developed for SACE analysis can 

be adapted to PS analysis, providing new and more robust PS methods. Application to HVTN 505 

supports that the vaccine partially protected individuals with vaccine-induced T-cells expressing 

certain combinations of functions.
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1. Introduction

A vaccine that prevents HIV-1 infection is critically needed for ending the global HIV-1 

pandemic. A recent efficacy trial of a candidate HIV-1 vaccine - HVTN 505 - randomized 2, 

496 HIV-1 negative volunteers in 1:1 allocation to the DNA/rAd5 vaccine regimen or 

placebo [1] administered at months 0, 1, 3, 6. The primary objective compared the rate of 

HIV-1 infection from 6.5 to 24 months between the randomized treatment arms, with 

estimated cumulative incidence 4.62% (3.15%) in the vaccine (placebo) group, and 

cumulative incidence ratio 1.46 (95% CI 0.82 to 2.63, Wald test p = 0.20). Through a 2-

phase sampling design, Janes et al. [2] studied HIV-1 Envelope-specific CD8+ T cell 

responses measured 2 weeks post last vaccination (Month 6.5) as a correlate of HIV-1 

infection between 6.5 and 24 months, and found in vaccine recipients a strong inverse 

correlation between CD8+ T cell polyfunctionality score (PFS) and HIV-1 infection (p < 

0.001). The surprising strength of the correlate [e.g., estimated cumulative risk 0.160 and 

0.034 for vaccinated subgroups with PFS below and above the median response, compared 

to 0.070 for placebo recipients (Figure 4 of [2]), suggests the possibility that a qualitative 

interaction occurred, where some marker-defined vaccinated subgroups received partial 

protection from vaccination whereas others had their risk increased.

Janes et al.’s observation of intermediate risk of the placebo group between that of the 

biomarker response-defined vaccinated subgroups does not imply causal vaccine vs. placebo 

effect modification across these subgroups, because post-randomization selection bias could 

occur (e.g., due to an unmeasured genetic factor predictive of both the PFS and HIV 

infection). A direct assessment of a causal vaccine effect (eliminating possible selection 

bias) would compare risk for each vaccinated subgroup defined by biomarker response value 

to that of the placebo recipient subgroup who would have had the same biomarker response 

value if assigned vaccination, which essentially repeats the primary analysis of vaccine 

efficacy (which is valid based on the randomization) across the marker-defined subgroups. 

This “principal surrogate (PS) analysis” [3] is a sub-field of the general framework of 

principal stratification established by Frangakis and Rubin [3].

However, available methods for PS analysis make strong structural risk assumptions that do 

not hold in HVTN 505, and require study design augmentations such as close-out placebo 

vaccination to measure counterfactual biomarker response [4] that were not utilized in 

HVTN 505. Given the high threshold of evidence needed to convince scientists of a 

qualitative interaction, application of these methods would be inadequate - rather PS analysis 

with methods that rely on weaker assumptions are needed. Fortunately, many nonparametric 

and semiparametric principal stratification methods are available that do not require a design 

augmentation, many of which were developed for applications in another sub-field of 

principal stratification - “survivor average causal effect (SACE) analysis” (e.g., [5, 6])- 

which we define as principal stratification methods focused on a single principal stratum 

(e.g., always survivors). We describe how such methods designed for SACE analysis can be 

adapted to PS analysis for the special case of a binary intermediate outcome. This adaptation 

contributes novel PS methods, by (1) applying to clinical trials without design 

augmentations; (2) relaxing the strong assumption of no individual-level clinical treatment 

effects before the biomarker is measured; (3) avoiding strong structural placebo conditional 
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risk assumptions; and (4) extending SACE methods to study designs that only measure the 

intermediate outcome in a subset of participants (e.g., two-phase/case-control studies), as in 

HVTN 505. The PFS marker studied by Janes et al. [2] is a summary measure of many 

different cellular expression patterns, which are binary (expressed vs. not expressed), 

motivating methods for a binary intermediate outcome.

2. Principal Surrogate (PS) Target Parameters and the HVTN 505 

Application

A common objective of randomized clinical trials is to assess biomarker response endpoints 

as principal surrogate endpoints for the clinical endpoint of interest [3]. With Z denoting 

binary treatment assignment and Sτ denoting a biomarker measured at a fixed time point τ 
post-randomization and Y denoting the binary clinical endpoint of interest measured after τ, 

the PS estimand of interest is the “principal effects” or “causal effect predictiveness” (CEP) 

surface [7]: CEP(s1, s0) = h(risk1(s1, s0), risk0(s1, s0)), where riskz(s1, s0) ≡ P(Y (z) = 1|Sτ(1) 

= s1, Sτ(0) = s0, Yτ(1) = Yτ(0) = 0) for z = 0, 1. Here Yτ(z) is the indicator that the clinical 

endpoint occurs by time τ, such that the population for inference is free of the endpoint 

under both treatment assignments when Sτ is measured. In HVTN 505, Sτ measures an 

immune response to vaccination and Y = 1 is subsequent HIV-1 infection, and it would be 

problematic to include individuals already infected with HIV-1, because their Sτ values 

would be affected by the natural immune response to HIV-1 infection, making the results 

uninterpretable. Therefore, CEP(s1, s0) contrasts the risk of infection between the vaccine 

and placebo arms among those who would be infection-free at time τ under either treatment 

assignment and have biomarker measures s1 and s0 under assignment to vaccine and 

placebo, respectively. The objective of PS analysis is inference about the CEP(s1, s0) 

parameters and contrasts in these parameters, which has been addressed using a variety of 

methodological approaches including estimated maximum likelihood [4, 7, 8], pseudo-score 

estimating equations [9], principal score methods [10–12], and Bayesian methods [13–15].

We consider PS methods assuming either “No Early Effect” (NEE), “No Early Harm” 

(NEH), or “No Early Benefit” (NEB) of treatment on Y by time τ, as defined below as A4, 

A4′, and A4″. For the PS methods assuming NEH or NEB, we focus on the special case 

that Z = 0 is a control condition such as placebo, and there is no variability of Sτ in subjects 

assigned to Z = 0, i.e., P(Sτ(0) = 0|Yτ(0) = 0) = 1. This “Constant Biomarker (CB)” case 

occurs in placebo-controlled preventive vaccine efficacy trials that only enroll subjects not 

previously infected with the pathogen under study and for which the intermediate response 

endpoint is a readout from a validated bioassay designed to only detect an immune response 

specific to the pathogen under study [7]; HVTN 505 is a typical example. For methods 

assuming NEE, we consider both the special Case CB and the general case where Sτ(0) 

varies and a monotonicity assumption holds (A5 below). These scenarios are chosen because 

they commonly occur in applications. Table 1 describes the interpretation of the CEP(s1, s0) 

parameters for HVTN 505. Because Case CB holds, CEP(1, 0) and CEP(0, 0) are of interest. 

For a given binary immune response biomarker Sτ, V E(1) = CEP(1, 0) is vaccine efficacy 

for the subgroup with positive response if assigned vaccine and negative response if assigned 

placebo, and V E(0) = CEP(0, 0) is vaccine efficacy for the subgroup with negative response 
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under both treatment assignments. Our scientific goal is to study whether vaccine efficacy 

differs between these two subgroups, i.e. μ ≡ V E(1) − V E(0) ≠ 0, and we also seek to 

assess evidence for a qualitative interaction, defined by V E(1) and V E(0) having opposite 

signs.

3. Assumptions and Identifiability of the PS Target Parameters CEP(s1, s0)

3.1. Additional Notation and Identifiability Assumptions.

Let W be a vector of baseline covariates measured in everyone, and R be the indicator of 

whether the binary endpoint Sτ is measured at τ. To fit the most common applications in 

clinical trials we assume Y is binary; in the case of a time-to-event outcome, Y = I(T ≤ t), 
where T is the time from randomization until the endpoint and t > τ is a fixed time point of 

interest. Note that Sτ is undefined if T ≤ τ, which we denote as Sτ = *. Define p(s1, s0) ≡ 
P(Sτ(1) = s1, Sτ(0) = s0|Yτ(1) = Yτ(0) = 0) for (s1, s0) ∈ {(0, 0), (1, 0), (1, 1)}.

Throughout we make a baseline set of assumptions made in essentially all previous 

frequentist inference SACE papers. We assume the 

Zi, W i, Ri, Y i
τ 1 , Y i

τ 0 , Si
τ 1 , Si

τ 0 , Y i 1 , Y i 0 , i = 1, … , n, are iid [with observed data 

Oi = Zi, W i, Ri, Si
τ, Y i

τ, Y i , with Si
τ only observed if Ri = 1] and assume A1 SUTVA (Stable 

Unit Treatment Value Assumption); A2 Ignorable Treatment Assignment: Conditional on W, 

Z is independent of (Yτ(1), Yτ(0), Sτ(1), Sτ(0), Y (1), Y (0)); and A3 No Censoring or 
Random Censoring: The binary endpoint Y is observed for all participants, or, if Y = I(T ≤ t) 
with T subject to right-censoring C, C(z) is random conditional on W (T(z) ⊥ C(z)|W for z = 

0, 1). As introduced above, we develop the methods under each of three assumptions 

regarding early final endpoint events before the intermediate endpoint Sτ is measured at τ:

 No Early Effect  NEE :P Y τ 1 = Y τ 0 = 1 A4

 No Early Harm NEH :P Y τ 1 ≤ Y τ 0 = 1 A4′

 No Early Benefit  NEB :P Y τ 1 ≥ Y τ 0 = 1 A4″

We also assume p(1, 0) > 0, which holds trivially for any PS application of interest. A4′ and 

A4″ are standard SACE monotonicity assumptions for the analysis of {risk1, risk0}, which 

weakens the strong NEE assumption made in almost all papers on PS methods.

For the non-Case CB scenario where the biomarker Sτ(0) varies we also reduce the number 

of non-identified terms via a biomarker monotonicity assumption:

 Biomarker Monotonicity: P Sτ 0 ≤ Sτ 1 ∣ Y τ 1 = Y τ 0 = 0 = 1. A5

A5 states that among participants who will not experience the clinical outcome Y= 1 by τ 
regardless of treatment assignment, none have a negative treatment effect on the biomarker.
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We develop the methods under four scenarios of assumption sets- NEE-VB: A1–A5 hold 

and Variable Biomarker (VB) Sτ(0); NEE-CB: A1–A4 hold and Constant Biomarker (CB); 
NEH-CB : A1–A3, A4′ hold and Constant Biomarker; NEB-CB : A1–A3, A4″ hold and 

Constant Biomarker.

3.2. Identifiability of CEP(s1, s0).

There are 16 basic principal strata corresponding to all possible combinations of values for 

(Sτ(1), Sτ(0), Yτ(1), Yτ(0)). Our assumptions, corresponding to the four scenarios stated 

above, imply that many of these basic principal strata are empty. Our interest lies in 

parameters defined for four principal strata: three defined by the basic principal strata Sτ(1) 

= s1, Sτ(0) = s0, Yτ(1) = Yτ(0) = 0 with (s1, s0) ∈ (0, 0), (1, 0), and (1, 1), and the fourth 

defined by Yτ(1) = Yτ(0) = 0. Identification of these parameters requires additional 

assumptions that can be expressed using sensitivity parameters. Once sensitivity parameters 

are fixed, the parameters of interest become identifiable. Derivations for identification are 

given in Web Appendix A. For scenarios NEE-VB, NEE-CB, NEH-CB, and NEB-CB, the 

numbers of required sensitivity parameters are 2, 1, 4, and 2.

4. SACE Methods and their Translation to PS Analysis

4.1. SACE Methods.

In this section we use generic notation (Z, S, Y) to define the general SACE parameter [16], 

and in Section 4.2 show how it maps to the notation for the PS problem. A common 

objective is to assess the effect of a randomized binary treatment Z on an outcome Y, where 

Y is only defined or observable for participants with a post-randomization intermediate 

response variable S equal to a certain level (S = 1, say). The SACE is the average causal 

effect of Z on Y in the subgroup with S = 1 under both treatment assignments:

SACE ≡ ℎ E Y 1 ∣ S 1 = S 0 = 1 , E Y 0 ∣ S 1 = S 0 = 1 , (1)

where h(x, y) is a contrast function meeting the requirements described in Table 1. Here S(z) 

and Y (z) are potential outcomes of S and Y if a subject is assigned to treatment Z = z.

The large SACE methods literature has focused on the additive-difference contrast h(x, y) = 

x − y and includes techniques for nonparametric bounds [17–21] and techniques for 

sensitivity analysis that estimate the SACE under a spectrum of selection bias models [22–

27]. Several of these methods make the SACE monotonicity assumption [P(S(0) ≤ S(1)) = 1] 

and several relax this assumption. We use a general contrast function h(x, y) because vaccine 

efficacy is typically measured by a multiplicative reduction in risk rather than an additive 

difference.

4.2. SACE and PS Methods as Two Strains of Principal Stratification.

For PS applications, the multiple SACE-defining intermediate outcomes S = 1 depend on 

both Yτ and Sτ (detailed in Table 2). Because Sτ is typically categorical or continuous, PS 

applications makes inference across a spectrum of principal stratum subgroups, whereas 

SACE applications make inference for a single principal stratum. Focusing on a single 

stratum has facilitated development of nonparametric and semiparametric SACE methods 
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that need only deal with one or a few terms that are not identified from the observed data, 

whereas an attempt to apply SACE methods for each principal stratum defined by a general 

categorical Sτ would face a much larger number of non-identified terms that grows with the 

number of categories. However, there is an important special case for which SACE methods 

can be practically adapted- when Sτ is binary- for which only a few principal strata are of 

interest. The motivating HVTN 505 application has binary markers of interest.

Under each of the four assumption sets defined above, we show how to apply SACE 

methods to the PS problem: inference about CEP(0, 0), CEP(1, 0), and CEP(1, 1). First, we 

write the overall conditional risks, riskz ≡ P(Y (z) = 1|Yτ(1) = Yτ(0) = 0) for z = 0, 1, as 

weighted averages of the marker-subgroup conditional risks:

riskz = p 0, 0 riskz 0, 0 + p 1, 0 riskz 1, 0 + p 1, 1 riskz 1, 1  for z = 0, 1. (2)

Equation (2) uses the fact that p(0, 1) = 0 under the assumptions we use.

The riskz and riskz(s1, s0) parameters measure risks in marker-defined subsets of the “always 

early uninfected” principal stratum defined by {Yτ(1) = Yτ(0) = 0}. For scenario NEH-CB 
we will also use the following parameters measuring risks in subsets of the “early protected” 

(EP) principal stratum defined by 

Y τ 1 = 0, Y τ 0 = 1 :riskz
EP s1, s0 ≡ P Y z = 1 ∣ Sτ 1 = s1, Sτ 0 = s0, Y τ 1 = 0, Y τ 0 = 1

for z, s1, s0 ∈ {0, 1}. And, for NEB-CB, the analogous parameters are needed for the “early 

harmed” principal stratum.

The observation that motivated this work is that a contrast in risk1 and risk0 is a SACE 

(defined by intermediate event S = 1 − Yτ = 1), a contrast in risk1(0, 0) and risk0(0, 0) is a 

SACE (defined by intermediate event S = [1 − Yτ][1 − Sτ] = 1), a contrast in risk1(1, 1) and 

risk0(1, 1) is a SACE (defined by intermediate event S = [1−Yτ]Sτ = 1), and, whereas a 

contrast in risk1(1, 0) and risk0(1, 0) is not a SACE, these two parameters are identified from 

(2) and the other parameters. Thus any two existing SACE methods can be employed to 

estimate the two sets of means/probabilities {risk1, risk0} and {risk1(0, 0), risk0(0, 0)}, and 

another for {risk1(1, 1), risk0(1, 1)} in scenario NEE-VB, and then equation (2) is applied to 

yield estimates of the remaining two probabilities {risk1(1, 0), risk0(1, 0)} via

riskz 1, 0 = riskz − p 0, 0 riskz 0, 0 − p 1, 1 riskz 1, 1 /p 1, 0 (3)

(where riskz(1, 1) = 0 in the Case CB scenarios NEE-CB, NEH-CB, and NEB-CB).

We interpret the SACE parameters in terms of our motivating application. The first is 

SACEAEU = h(risk1, risk0), with the AEU subgroup being “always early uninfected” 

individuals with S = 1 indicating being uninfected with HIV-1 at time τ. The second is 

SACEAEUB0 = h(risk1(0, 0), risk0(0, 0)), with AEUB0 being “always early uninfected and 

biomarker (B) value Sτ = 0” individuals. The third is SACEAEUB1 = h(risk1(1, 1), risk0(1, 

1)), for “always early uninfected and biomarker value Sτ = 1” individuals.

The CEP parameters are linked to the three SACE parameters and risks through CEP(0, 0) = 

SACEAEUB0, CEP(1, 1) = SACEAEUB1, and CEP(1, 0) = h(risk1(1, 0), risk0(1, 0)) with 
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riskz(s1, s0) as in (3). Thus our approach pieces together SACE estimates and estimates of 

the means p(s1, s0) to yield estimates of the CEP parameters, where the estimators focusing 

on subgroups defined by Sτ must account for Sτ only measured in a subset, e.g., through 

inverse probability weighting. For h(x, y) = x−y, h(risk1(1, 0), risk0(1, 0)) = [SACEAEU − 

p(0, 0) SACEAEUB0 − p(1, 1) SACEAEUB1]/p(1, 0).

4.3. Mapping Existing SACE Methods to Estimate the PS Parameters CEP(s1, s0).

Table 2 summarizes how SACE methods can be used to estimate the CEP(s1, s0) parameters 

for the four assumption-set scenarios. Under NEE-VB, SACEAEU is nonparametrically 

identified by A4. CEP(0, 0) = SACEAEUB0 can be estimated using any SACE method 

making the monotonicity assumption P(S(1) ≤ S(0)) = 1, with S = [1 − Yτ][1 − Sτ] = 1. 

Similarly, CEP(1, 1) = SACEAEUB1 can be estimated with a SACE method using the same 

monotonicity assumption but now with S = [1 − Yτ]Sτ = 1. The mixing parameters, p(s1, s0), 

are all nonparametrically identified, such that CEP(1, 0) = h(risk1(1, 0), risk0(1, 0)) can be 

estimated based on equation (2).

Estimation under NEE-CB is identical to that of scenario NEE-VB except that risk1(1, 1) 

and risk0(1, 1) vanish (because the principal stratum defined by [1 − Yτ(0)]Sτ(0) = [1 − 

Yτ(1)]Sτ(1) = 1 is empty). For scenario NEH-CB, SACEAEU can be estimated using an 

existing SACE method making the monotonicity assumption P(S(1) ≤ S(0)) = 1, with 

intermediate event S = 1 − Yτ = 1. Then, CEP(0, 0) = SACEAEUB0 can be estimated using 

an arbitrary SACE method that does not assume monotonicity.

5. Illustration of the Approach with IPW Extensions of Particular SACE 

Methods

For each assumption set scenario, we show how the PS estimation and inference works using 

an extension of Shepherd, Gilbert, and Dupont’s [24] SACE method, which in scenarios 

NEE-VB, NEE-CB simplifies to the Gilbert, Bosch, and Hudgens [22] (GBH) SACE 

method. The extension incorporates inverse probability weighting (IPW) to handle missing 

Sτ. We focus on semiparametric efficient estimators given the data (Z, R, Yτ, Sτ, Y) not 

including baseline covariates W, which amount to sample means with or without IPW as 

needed. Moreover, we focus on the case that Y is binary and observed for all participants; 

Web Appendix C summarizes how the methods translate to Y = I(T ≤ t) with T subject to 

right-censoring before t. We use general estimating function notation so that users preferring 

to use more efficient estimators leveraging information in W (e.g., [28]) may substitute 

alternative estimating functions into the equations.

5.1 General IPW Estimation.

The SACE estimators involve estimation of identified terms E[Y |S = 1, Z = z] for subgroups 

S = 1 [with S = 1−Yτ, (1−Yτ)Sτ, or (1−Yτ)(1−Sτ)] and of terms E[Sτ|Yτ = 0, Z = z], where 

Sτ is measured at time τ and may be missing. Define the probability of observing Sτ as 

π(O1) ≡ P(R = 1|O1), where O1 is data observed in everyone, i.e., (Z, W, Yτ, Y). We assume 

Sτ is missing at random, π(O1) = P(R = 1|O1, Sτ), and that π(O1) is bounded away from 

zero, π(O1) ≥ ε with probability 1 for some fixed ε > 0.
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Following standard IPW estimation, we specify a model π(O1, ψ) for π(O1) (e.g., logistic), 

and estimate the parameter ψ by maximum likelihood, yielding πi = π O1i, ψ . Efficiency 

and robustness may be improved by calibrating the estimated weights πi accounting for Wi 

(e.g., [29, 30]).

5.2 Dichotomous Outcome SACE Methods Under Scenario NEE-VB.

For scenario NEE-VB, the first step is to estimate the terms that are nonparametrically 

identified- {risk1, risk0}, p(0, 0), p(1, 0), and p(1, 1). Each riskz for z = 0, 1 can be estimated 

by any preferred method for estimating a mean, most simply by solving 

∑i = 1
n Ui

0z Oi; riskz = 0 with estimating function 

U0z Oi; riskz ≡ 1 − Y i
τ I Zi = z Y i − riskz .

Given p(0, 0) = P(Sτ = 0|Z = 1, Yτ = 0), if full data were available, then a simple approach 

would estimate p(0, 0) by solving ∑i = 1
n Ui

01 Oi; p 0, 0 = 0 with 

U01 Oi; p 0, 0 ≡ 1 − Y i
τ Zi 1 − Si

τ − p 0, 0 , with convention U01 Oi; p 0, 0 = 0 if Si
τ = *. 

The IPW version of this equation is ∑i = 1
n RiUi

01 Oi; p 0, 0 /πi = 0. The parameter p(1, 1) 

may be estimated similarly by solving ∑i = 1
n RiUi

00 Oi; p 1, 1 /πi = 0 with 

Ui
00 Oi; p 1, 1 ≡ 1 − Y i

τ 1 − Zi Si
τ − p 1, 1 , again with convention Ui

00 Oi; p 1, 1 = 0 if 

Si
τ = *. With p 0, 0  and p 1, 1 , we then set p 1, 0 = 1 − p 0, 0 − p 1, 1 .

Lastly, we estimate each pair {risk1(0, 0), risk0(0, 0)} and {risk1(1, 1), risk0(1, 1)} with a 

SACE method that assumes monotonicity. We summarize how the GBH method, extended 

to incorporate IPW, accomplishes this task.

GBH Semiparametric SACE Method with IPW (Notation as in GBH).—Consider 

the odds ratio selection bias model with user-specified fixed sensitivity parameter β0:

exp β0

= P S 1 = 1 ∣ S 0 = 1, Y 0 = 1 / 1 − P S 1 = 1 ∣ S 0 = 1, Y 0 = 1
P S 1 = 1 ∣ S 0 = 1, Y 0 = 0 / 1 − P S 1 = 1 ∣ S 0 = 1, Y 0 = 0 . B.0

Under A1–A3, B.0, monotonicity [P(S(1) ≤ S(0)) = 1], and positivity [P(S(1) = 0, S(0) = 1) 

> 0, P(S(1) = 1, S(0) = 1) > 0], the two parameters of interest, P11(z) ≡ P(Y (z) = 1|S(1) = 

S(0) = 1) for z = 0, 1, are nonparametrically identified.

By monotonicity P11(1) = P(Y (1) = 1|S(1) = 1), such that P11(1) is estimated by solving 

∑i = 1
n RiU1 Oi; P Y 1 = 1 ∣ S 1 = 1 /πi = 0 where U1(Oi; P(Y (1) = 1|S(1) = 1)) = ZiSi(Yi − 

P(Y (1) = 1|S(1) = 1)). Next, P11(0) is estimated by first estimating α0 as the solution to 

∑i = 1
n RiU0 Oi; α0, β0 /πi = 0 where

U0 Oi; α0, β0 = Zi Si − P S 0 = 1 ∑
y = 0

1
w0 y; α0, β0 P Y 0 = y ∣ S 0 = 1 , (4)
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where P Y 0 = 1 ∣ S 0 = 1  is obtained in the same way as P Y 1 = 1 ∣ S 1 = 1 . Then with 

α0 from (4), P11 0 = P S 0 = 1 /P S 1 = 1 w0 1; α0, β0 P Y 0 = 1 ∣ S 0 = 1 . We 

implement this “IPW GBH SACE Method” verbatim multiple times below, with the 

meaning of S = 1 changing for estimating needed terms in CEP(s1, s0).

Assumptions Needed for Valid Inference with the IPW GBH SACE Method.—
We state additional assumptions, beyond the identifiability assumptions, that are needed for 

valid inference via the IPW GBH SACE Method. The method requires P(S(1) = 1) < P(S(0) 

= 1) in order that P11 z  for each z = 0, 1 has an asymptotic normal distribution and thus to 

ensure that Wald confidence intervals for P11(z) based on asymptotic or nonparametric 

bootstrap variance estimates have correct coverage probabilities [23]. Moreover, if P(S(1) = 

1) < P(S(0) = 1) but the probabilities are close, then the Wald confidence intervals can have 

poor coverage. The general SACE assumption P(S(1) = 1) < P(S(0) = 1) translated for 

ensuring valid inference on SACEAEUB0 and SACEAEUB1 for NEE-VB (Table 2) is A6 
“Early Biomarker Effect”: P(Sτ(0) = 1|Yτ = 0) < P(Sτ(1) = 1|Yτ = 0). A6 is also the 

assumption needed for valid inference on SACEAEUB0 for NEE-CB. For NEH-CB, the 

general SACE assumption translated for valid inference on SACEAEU is A7 “Early Benefit”: 

P(Yτ(1) = 1) < P(Yτ(0) = 1), while for NEB-CB it is A7′ “Early Harm” P(Yτ(1) = 1) > 

P(Yτ(0) = 1). Lastly, for NEB-CB the general SACE assumption translated for inference on 

SACEAEUB0 is A8: P(Sτ(1) = 0|Yτ(1) = 0) < P(Yτ(0) = 0)/P(Yτ(1) = 0). A6 almost always 

holds in applications and one of A7 or (A7′, A8) plausibly holds for many real binary PS 

applications, as discussed in Section 7. Moreover, A7, A7′, A8 are testable such that the 

conditions needed to assure valid inference can be checked.

Implementing the IPW GBH SACE Method for CEP(s1, s0).—The semiparametric 

MLEs risk1 0, 0  and risk0 0, 0  are obtained as P11 1  and P11 0 , using S ≡ [1 − Yτ][1 − Sτ] 

with B.0 and a fixed β0. The semiparametric MLEs risk1 1, 1  and risk0 1, 1  are obtained in 

the same way with S ≡ [1−Yτ]Sτ, with monotonicity assumption in the reverse direction 

[i.e., P(S(1) ≥ S(0)) = 1]. This means that we use the IPW GBH SACE Method reversing the 

roles of Z = 1 and Z = 0, leading to a selection bias model defined by:

exp β1

= P S 0 = 1 ∣ S 1 = 1, Y 1 = 1 / 1 − P S 0 = 1 ∣ S 1 = 1, Y 1 = 1
P S 0 = 1 ∣ S 1 = 1, Y 1 = 0 / 1 − P S 0 = 1 ∣ S 1 = 1, Y 1 = 0 . B.1

The estimate P11 0  is obtained based on 

U0 Oi; P Y 0 = 1 ∣ S 0 = 1 = 1 − Zi Si Y i − P Y 0 = 1 ∣ S 0 = 1 /∑i = 1
n 1 − Zi Si and 

P11 1  is obtained by setting

P11 1 = P S 1 = 1 /P S 0 = 1 w1 1; α1, β1 P Y 1 = 1 ∣ S 1 = 1 (5)

after estimating α1 from U1(Oi;α1, β1) =
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1 − Zi Si − P S 1 = 1 ∑
y = 0

1
w1 y; α1, β1 P Y 1 = y ∣ S 1 = 1 . (6)

By standard estimating equation theory, the above estimators are consistent and 

asymptotically normal for given fixed β0 and β1. To obtain Wald confidence intervals for 

each CEP(s1, s0), consistent estimating-function based variance estimators may be used for 

the estimates P11 z  not involving α0 or α1; e.g., the estimated variance of P11 1  for the IPW 

GBH SACE Method is given by ∑i = 1
n Ri/πi U1 Oi; P Y 1 = 1 ∣ S 1 = 1 2

. Influence-

function based variance estimates are similarly obtained for the estimates P11 z  involving α0
or α1, by using a vector estimating function and the delta method. For example, the four 

components of the estimating function in (6) are for α1, P S 1 = 1 , 

P S 0 = 1 ,  P Y 1 = 1 ∣ S 1 = 1 T , with delta method applied with 

g w, x, y, z = x
y w1 1; w, β1 z. All variance estimation is performed with the R package geex 

[31].

To perform a sensitivity analysis, one approach specifies a plausible range [lk, uk] (or 

maximum possible) for each sensitivity parameter βk, k = 0, 1. An ignorance interval for 

CEP(s1, s0) may be estimated by the span of values between the minimum and maximum 

estimates, obtained by setting β0 and β1 to the boundary values. Using the method of Imbens 

and Manski [32] and Vansteelandt et al. [33], a Wald asymptotic (1-α)% estimated 

uncertainty interval (EUI) for CEP(s1, s0) may be calculated as in formulas (40) and (41) of 

Richardson et al. [34], using the variance estimates of the minimum and maximum CEP(s1, 

s0) estimates. In particular, let CEPl s1, s0  and CEPu s1, s0  be the estimates of CEP(s1, s0) 

fixing the sensitivity parameters at the values within a pre-specified plausible region Γ = [l0, 

u0] × [l1, u1] of the sensitivity parameter(s) that minimize or maximize CEP s1, s0 , 

respectively. With σl
2 and σu

2 consistent estimates of the asymptotic limiting variances of 

CEPl s1, s0  and CEPu s1, s0 , respectively, a (1-α)% EUI is given by 

CEPl s1, s0 − cασl/ n, CEPu s1, s0 + cασu/ n , where cα satisfies

Φ cα + n CEPu s1, s0 − CEPl s1, s0 /max σl, σu − Φ −cα = 1 − α,

where Φ(·) denotes the cdf of a standard normal variate. The same approach can be used to 

construct Wald confidence intervals and EUIs for the other scenarios and SACE approaches 

described below. Theoretical justification of these EUIs relies on the assumption that the 

values γl, γu ∈ Γ that correspond to the ignorance interval for CEP(s1, s0) are the same for 

all possible observed data laws (condition (39) from [34]), which holds for NEE-VB and 

NEE-CB and may need validation for NEH-CB and NEB-CB applications.
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5.3. Dichotomous Outcome SACE Methods Under Scenario NEE-CB.

For scenario NEE-CB, CEP(s1, 0) for s1 = 0, 1 can be estimated exactly as for NEE-VB, 

with one change that SACE(1, 1) vanishes because p(1, 1) = 0. In particular, first {risk1, 

risk0} and p(0, 0) are estimated as in scenario NEE-VB, and then p(1, 0) is estimated as 

p 1, 0 = 1 − p 0, 0 . Secondly, {risk1(0, 0), risk0(0, 0)} are estimated as in scenario NEE-

VB. Lastly, riskz(1, 0) for each z = 0, 1 is estimated via equation (3) plugging in estimates 

for each term. These steps amount to first estimating risk1(0, 0) by the solution to 

∑i = 1
n RiZi 1 − Y i

τ 1 − Si
τ Y i − risk1 0, 0 /πi = 0, with convention that the summand is zero 

if Si
τ = *. Then risk0(0, 0) and risk0(1, 0) are estimated by the solutions to the equations B.0 

and risk0 − risk0 0, 0 p 0, 0 − risk0 1, 0 p 1, 0 = 0; our code for the simulation study and 

example are implemented in this manner.

5.4. Dichotomous Outcome SACE Methods Under Scenario NEH-CB.

We implement an IPW extension of the Shepherd, Gilbert, and Dupont [24] SACE method 

that relaxes monotonicity by using the sensitivity parameter β0 in B.0 plus three additional 

sensitivity parameters:

exp β2 = risk1 0, 0 / 1 − risk1 0, 0
risk1 0, * / 1 − risk1 0, * B.2

exp β3 = risk1 1, 0 / 1 − risk1 1, 0
risk1 1, * / 1 − risk1 1, * B.3

exp β4 = p 1, 0 / 1 − p 1, 0
P Sτ 1 = 1 ∣ 0, 1 / 1 − P Sτ 1 = 1 ∣ 0, 1

, B.4

where risk1(s1, *) ≡ P(Y (1) = 1|Sτ(1) = s1, Sτ(0) = *, Yτ(1) = 0, Yτ(0) = 1) for S1 = 0, 1 and 

P(Sτ(1) = 1|0, 1) ≡ P(Sτ(1) = 1|Yτ(1) = 0, Yτ(0) = 1). The estimation steps are similar to 

those taken for scenario NEE-CB: First, estimate p(1, 0) and P(Sτ(1) = 1|Yτ(1) = 0, Yτ(0) = 

1) as the solutions to the two equations B.4 and

P Sτ 1 = 1 ∣ Y τ 1 = 0 − p 1, 0 P Y τ 0 = 0 ∣ Y τ 1 = 0
−P Sτ 1 = 1 ∣ Y τ 1 = 0, Y τ 0 = 1 1 − P Y τ 0 = 0 ∣ Y τ 1 = 0 = 0.

Then risk0(0, 0) and risk0(1, 0) are estimated as in scenario NEE-CB. Finally, risk1(s1, 0) 

and risk1(s1, *) are estimated as the solutions to 

P Y 1 = 1 ∣ Y τ 1 = 0, Sτ 1 = s1 − risk1 s1, 0 P Y τ 0 = 0, Sτ 0 = 0 ∣ Y τ(1) = 0, Sτ 1 = s1
− risk1 s1, * 1 − P Y τ 0 = 0, Sτ 0 = 0 ∣ Y τ 1 = 0, Sτ 1 = s1 = 0
and either B.2 for s1 = 0 or B.3 for s1 = 1.
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5.5. Dichotomous Outcome SACE Methods Under Scenario NEB-CB.

A SACE method for this scenario uses the sensitivity parameter β0 in B.0 and one additional 

sensitivity parameter defined as B.5:

exp β5

= risk0/ 1 − risk0
P Y 0 = 1 ∣ Y τ 1 = 1, Y τ 0 = 0 / 1 − P Y 0 = 1 ∣ Y τ 1 = 1, Y τ 0 = 0

. B.5

The parameters CEP(1, 0) and CEP(0, 0) can be estimated exactly as in NEE-CB, except 

that risk0 is not identifiable and thus its estimation leverages the additional assumption B.5. 

We estimate risk0 and P(Y (0) = 1|Yτ(1) = 1, Yτ(0) = 0) as the solutions to B.5 and P(Y (0) 

= 1|Yτ(0) = 0) = P(Yτ(1) = 0|Yτ(0) = 0)risk0 + P(Yτ(1) = 1|Yτ(0) = 0)P(Y (0) = 1|Yτ(1) = 1, 

Yτ(0) = 0). Then, estimation of risk1, p(0, 0), risk1(1, 0), risk1(0, 0), risk0(1, 0), and risk0(0, 

0) is identical to that described for NEE-CB.

5.6. Effect Modification Analysis: Inference on Contrasts in CEP(s1, s0)

For making inference on contrasts in the CEP(s1, s0), such as μ ≡ CEP(1, 0) − CEP(0, 0), our 

set-up constrains μ to values narrower than the maximum possible range −2 to 2. For 

example, for scenario NEE-CB, setting β0 = 0 implies risk0(1, 0) = risk0(0, 0), which leaves 

each of CEP(1, 0) and CEP(0, 0) free to vary over the maximum possible range as for any 

SACE method but constrains μ to −1 to 1. Thus making inference on contrasts of CEP(s1, s0) 

does not achieve just-nonparametric identifiability as does inference on the individual 

CEP(s1, s0) parameters. This should be borne in mind when inference is made on CEP 
contrasts as well as on the individual parameters.

6. Simulation Study

We first simulated data sets under the assumptions of NEE-CB. For each of n independent 

individuals, we generated potential outcomes and then observed outcomes. First, (Yτ(1), 

Yτ(0)) was set to (0, 0) or (1, 1) with probabilities 0.8 and 0.2, such that A4 (NEE) holds. If 

Yτ(1) = 1, then Y (0) and Y (1) were set to 1. If Yτ(1) = 0, then (Sτ(1), Sτ(0)) was set to (0, 

0) or (1, 0) with probabilities 0.4 and 0.6, such that Case CB holds.

To evaluate size and power of a test of H0 : CEP(1, 0) = CEP(0, 0) versus H1 : CEP(1, 0) ≠ 

CEP(0, 0), data were simulated under 13 different values for CEP(1, 0) − CEP(0, 0): −0.6, 

−0.5, … , 0.6. Specifically, if Yτ(1) = 0 and Sτ(1) = Sτ(0) = 0, then Y (1) was generated as 

Bernoulli with mean a (Bern(a)) and Y (0) as Bern(0.5). If Yτ(1) = 0 and Sτ(1) = 1, Sτ(0) = 

0, then Y (1) was Bern(b) and Y (0) was Bern(0.5). Thus CEP(1, 0) − CEP(0, 0) = b − a for 

contrast function h(x, y) = x − y. The values of a ranged from 0.7 to 0.1 by decrements of 

0.05 and b increased from 0.1 to 0.7 by increments of 0.05. Under this parameterization 

risk0(0, 0) = 0.5 = risk0(1, 0), implying β0 = 0.

To generate the observed data, Z was drawn from Bern(0.5), and the vector of observable 

random variables (Z, Yτ, Sτ, Y) = (Z, Yτ(Z), Sτ(Z), Y (Z)) was determined. Simulations 

were conducted with and without case-cohort sampling of Sτ. For the latter, membership in 
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the random subcohort was determined by R drawn from Bern(ν). For individuals with Yτ = 

0, Sτ was observed for subcohort members (i.e., R = 1) and cases (i.e., Y = 1).

Data sets were generated for all 156 combinations of: n ∈ {200, 400, 800, 1600};ν ∈ {0.1, 

0.25, 1}; and CEP(1, 0)−CEP(0, 0) ∈ {−0.6, −0.5, … , 0.6}, except the 13 scenarios with n = 

200 and ν = 0.1 were not studied because only 8 vaccine recipient uninfected controls are 

expected to have Sτ measured. All results are based on 2000 simulated data sets. Analyses 

used [l0, u0] ∈ {[0, 0], [−1, 1], [−2.5, 2.5]}. The true values for CEP(1, 0) and CEP(0, 0) 

were selected to include zero effect modification and gradients in effect modification 

magnitudes in both directions, with values (a, b) ∈ {(0.1, 0.7), (0.15, 0.65), (0.2, 0.6), (0.25, 

0.55), (0.55, 0.25), (0.6, 0.2), (0.65, 0.15), (0.7, 0.1)} expressing qualitative interactions. For 

each simulated data set, the data analysis was done using the methods for the scenario NEE-
CB assumption set. The null hypothesis H0 was rejected if and only if the 95% EUI for μ = 

CEP(1, 0) − CEP(0, 0) calculated as described in Section 5 excluded 0. Power was estimated 

by the proportion of simulated data sets where H0 was rejected (Figure 1).

Empirical type I error was close to the nominal level α = 0.05. Power increased with sample 

size and decreased as the interval [l0, u0] became wider and as the subcohort size decreased. 

Web Figure 1 (Web Appendix D) shows the average widths of the 95% EUIs for μ. The 

EUIs cover at approximately the nominal rate when l0 = u0, i.e., when μ is identifiable, and 

are conservative otherwise. The widths are relatively constant across values of μ and increase 

as the subcohort size decreases. Empirical coverage of the 95% EUIs are plotted in Web 

Figure 2. Web Figures 3 and 4 display bias of the μ estimates and ratios of the empirical 

standard errors (ESE) to the average of the sandwich variance estimated standard errors 

(ASE), showing unbiasedness of both the point and standard error estimators.

A second simulation study was conducted, with data simulated under scenario NEH-CB 
such that A4 in scenario NEE-CB failed. Web Appendix D describes details and results, 

with data analysis by the methods under assumption-set NEH-CB (Web Figures 5–9).

7. Application: HVTN 505 HIV Vaccine Efficacy Trial

We apply the new PS methods to HVTN 505. The PFS biomarker described in the 

introduction [2] is a quantitative aggregate score derived from constituent qualitative 

biomarkers that are of interest for binary intermediate outcome PS analysis. The data from a 

vaccine recipient’s Month 6.5 blood sample are measurements of expression of 6 different 

functional markers (Granzyme-B, IL4, CD40L, TNFalpha, IL2, IFNgamma) in CD8+ T 

cells after stimulation with HIV-1 peptides. The Bayesian method COMPASS [35] provided, 

for each vaccine recipient and each of the 26 = 64 possible cell subsets (i.e., combinations of 

functional markers), the probability the subset was expressed. A question of interest is 

whether the vaccine effect on HIV-1 infection varied by expression yes vs. no for any of the 

64 subsets. Identification of specific cell subsets associated with vaccine protection or harm 

would give clues on cellular mechanisms of vaccine effect.

In this application Yτ is the indicator of HIV-1 infection diagnosis between enrollment and 

the Month τ = 6.5 study visit, and Y is the indicator of this event by the Month 24 final 
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follow-up visit; moreover Sτ is a binary biomarker measured from a Month 6.5 visit blood 

sample. We defined a vaccine recipient as expressing a given T cell subset (Sτ = 1) if the 

COMPASS posterior probability exceeded 0.9, and as not expressing the subset (Sτ = 0) if 

the posterior probability was below 0.1. We restricted to cell subsets with at least 25% of 

vaccine recipients expressing and at least 25% not expressing the subset, to focus on subsets 

with ample data support. This yielded three cell subsets for analysis, defined by 

(GranzymeB, IL4, CD40L, TNFalpha, IL2, IFNgamma) expression pattern of (1) 

(−,−,−,−,+,+), (2) (+,−,−,−, +, +), and (3) (+,−, +, +, −, +), where + or − indicate that cells do 

or do not have the function. Among uninfected vaccine recipients (i.e., sampled controls 

with Y = 0) with Sτ data, 71 of 110 (64.5%), 70 of 124 (56.5%), and 43 of 125 (34.4%) have 

Sτ = 1, respectively. Among infected vaccine recipients (i.e., cases with Y = 1) with Sτ data, 

5 of 21 (23.8%), 3 of 25 (12.0%), and 1 of 25 (4.0%) have Sτ = 1. Given Case CB holds, for 

each biomarker our goal is inference on V E(0) = CEP(0, 0) and V E(1) = CEP(1, 0), using 

the vaccine efficacy contrast h(x, y) = 1−x/y (Table 1). For reasons given below, we 

implement the methods using the NEE-CB method and the NEB-CB method. We consider 

the meaning and plausibility for HVTN 505 of the critical assumptions in question needed 

for these two approaches - (A4, A6) and (A4″, A7′, A8), respectively, where A6, A7′, and 

A8 are needed for valid inference as described in Section 5.2. A4 (NEE) states that the 

vaccine has no individual-level effects on infection between enrollment and Month 6.5, 

which is defensible given that P Y τ 1 = 1 = 14/1251 = 0.011  and 

P Y τ 0 = 1 = 10/1245 = 0.0080 with Fisher’s exact test 2-sided p-value of p = 0.54 for a 

difference. Because 0.011 > 0.0080, we also consider the NEB-CB method that relaxes A4 

to A4″ (no individual-level beneficial vaccine effects through Month 6.5).

A6 states that the biomarker has a higher frequency of response for at-risk vaccine than 

placebo recipients, which essentially always holds. Under Case CB as in HVTN 505 (with 

P(Sτ(0) = 1|Yτ = 0) = 0), it obviously holds. A7′ states that there is a harmful vaccine effect 

(in expectations) through Month 6.5, which is consistent with the point estimates 0.011 vs. 

0.0080 but is not supported by the hypothesis testing with p = 0.54. In rare event studies 

such as HVTN 505, A8 states that the fraction of vaccine recipients with positive biomarker 

response Sτ = 1 is not near zero, which holds. In sum, the method for scenario NEE-CB 
may be the most reasonable because it does not require Early Harm A7′, and we focus on its 

results; we also apply the NEB-CB method for comparison. The NEE-CB and NEB-CB 
methods are implemented as described in Sections 5.3 and 5.5, respectively.

Figure 2 shows the results in terms of ignorance intervals and 95% EUIs under each of the 

three ranges of sensitivity parameters specified in the simulations. To interpret the sensitivity 

analysis, note that the single sensitivity parameter β0 for the NEE-CB method has 

interpretation as the log odds ratio that the biomarker response to vaccination Sτ(1) takes 

value 0 for a placebo recipient who is diagnosed with HIV-1 infection between month 6.5 

and 24 compared to a placebo recipient who is not diagnosed with HIV-1 infection through 

24 months. Setting β0 to 0, 0.5, and 1 specifies no, intermediate, and highest degree of 

selection bias, corresponding to the odds ratio eβ0 varying over [1, 1], [0.61, 1.65], and [0.37, 

2.72]. The NEB-CB method uses the additional sensitivity parameter β5 (defined in Section 

5.5), which is the log odds ratio of infection for a placebo recipient, comparing the always 
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early uninfected (AEU) subgroup (numerator) to the early harmed subgroup (denominator); 

thus it measures the degree to which vaccine-caused infection by Month 6.5 is prognostic for 

infection by Month 24 if assigned placebo. It was varied over the same range as β0.

On the results, first note that the NEE-CB and NEB-CB methods give very similar results 

(top panel), with EUIs for the latter method only very slightly wider (and thus the bottom 

panel only shows results from the NEE-CB method). Web Appendix E (especially Web 

Figure 10) studies why the methods under scenarios NEE-CB and NEB-CB are essentially 

equivalent for HVTN 505, with extra simulations suggesting that a key part of the 

explanation is that P(Yτ(1) = 1, Yτ(0) = 0) is small. Second, the results are similar for the 

three markers, with evidence for effect modification across the expressed vs. not expressed 

subgroups based on the 95% EUIs for μ = V E(1) − V E(0) lying above zero even when 

allowing for the largest amount of potential selection bias (β = 1, Figure 2 upper-right panel, 

with lower EUI limit 0.12, 0.19, 0.18 for marker S1
τ, S2

τ, S3
τ)

The bottom panel shows that V E(1) is estimated to be positive for each marker (ignorance 

intervals 0.70–0.85, 0.78–0.91, 0.85–0.96 and 95% EUIs 0.44–0.98, 0.54–1.0, 0.59–0.96, 

respectively), whereas V E(0) is estimated to be less than zero with wide estimated 

uncertainty intervals. Based on ignorance intervals these results support a qualitative 

interaction for each marker. However, because the upper 95% EUI limits for V E(0) extend 

well above 0, there is not compelling evidence for qualitative interactions.

Remarkably, the results support differential vaccine efficacy according to whether the 

vaccine induced CD8+ T cells with expression vs. not expression of specific cell subsets, 

suggesting that the vaccine may have conferred partial protection for individuals with certain 

identified expression signatures. This motivates follow-on basic science studies of cellular 

mechanisms of protection. The HIV vaccine field has “moved on” from the DNA/rAd5 type 

of HIV vaccine platform, no longer considering it. Thus these new results sound a note of 

caution to not prematurely abandon this platform, in suggesting that if a new version of the 

regimen could be invented that induces the specific cell subset responses in a much larger 

subgroup of vaccine recipients, then it could potentially confer high enough overall vaccine 

efficacy to confer worthwhile public health benefit.

8. Discussion

A sizable literature on nonparametric and semiparametric methods for inference on the 

survivor average causal effect (SACE) parameter has developed over the past 20 years. 

Motivated by the need for more robust principal surrogate (PS) analysis in HVTN 505, we 

described how these methods can be adapted to PS analysis for a binary intermediate 

variable. This provides new methods for PS analysis, with novel features summarized in the 

Introduction, all of which were needed for the HVTN 505 application, to appropriately 

account for the study design and available data and to relax questionable and untestable 

assumptions. The new methods have application to similar PS questions in other randomized 

clinical trials.
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More robust PS assessment of a qualitative interaction in HVTN 505 was important given 

the appropriate skepticism that the DNA/rAd5 vaccine could have both beneficial and 

detrimental effects. The data analysis supported that DNA/rAd5 vaccinated subgroups 

defined by induction of CD8+ T cells with specific functions had beneficial vaccine efficacy, 

motivating further research to re-engineer the vaccine regimen to increase induction of these 

cells.

PS analysis can be improved by accounting for baseline covariates associated with principal 

strata and/or the final outcome [16, 36]. The specific PS methods described in Section 5 can 

account for baseline covariates by implementing any preferred covariate-adjusted estimator 

of the means risk1, risk0, p(0, 0), p(1, 0), p(1, 1). An appealing alternative approach that 

fully accounts for baseline covariates - principal score methods [10–12] -provide PS analysis 

under a different assumption, principal ignorability, and provide an alternative sensitivity 

analysis. In general, given that the key steps in estimating the CEP(s1, s0) parameters is 

estimation of the three SACES listed in Table 2, any SACE method that accounts for 

baseline covariates can be integrated into a new method of PS analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Power to reject H0 : μ = CEP(1, 0) = CEP(0, 0) for the simulation study under Scenario 

NEE-CB. Solid black lines denote full cohort and dashed (dotted) lines denote case-cohort 

with 10% (25%) random subcohort.
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Figure 2: 
For HVTN 505, ignorance intervals (solid lines) and 95% EUIs (dashed lines) for V E(0) = 

CEP(0, 0) and V E(1) = CEP(1, 0) and μ = V E(1) − V E(0) with binary Month 6.5 

biomarker Sτ equal to 1 (0) if the vaccine recipient expresses (does not express) the CD8+ T-

cell subset defined by expression pattern S1
τ  (−,−,−,−, +, +), S2

τ  (+,−,−,−, +, +), or S3
τ  (+, 

−, +, +, −, +). The sensitivity analysis allows β0 and β1 to vary over [l0, u0] = [0, 0], [−0.5, 

0.5], or [−1, 1]; circles are point estimates assuming no selection bias. The top panel shows 

results for μ = V E(1) − V E(0) with the black and grey lines (left and right) results for the 

scenario NEE-CB and NEB-CB method, respectively. The bottom panel shows scenario 

NEE-CB results for V E(1) and V E(0).
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Table 1:

Notation and Parameters of Interest for the HVTN 505 HIV-1 Vaccine Efficacy Trial

Variable Description

Z Randomized treatment assignment to vaccine (z = 1) or placebo (z = 0)

Y Indicator of diagnosis of HIV-1 infection after τ = 6.5 months post enrollment through 24 months (outcome of interest)

Yτ Indicator of diagnosis of HIV-1 infection by τ = 6.5 months

Sτ Binary immune response biomarker measured at τ (eligible if Yτ = 0)

riskz(s1, s0) = P(Y (z) = 1|Sτ (1) = s1, Sτ (0) = s0, Yτ (1) = Yτ (0) = 0): Probability of infection diagnosis if assigned Z=z among the subgroup 
uninfected at τ under either treatment assignment and with biomarker measures s1 and s0 under assignment to vaccine and 
placebo, respectively. HVTN 505 studies binary biomarkers Sτ described in Section 7.

CEP(s1, s0) = h(risk1(s1, s0), risk0(s1, s0)) with h(x, y) a contrast function satisfying h(x, y) = 0 if and only if x = y and h(x, y) < 0 for x < y.

Case CB A study where Sτ is constant (“Constant Biomarker”) in Z = 0 participants.

VE(s1) = CEP(s1, 0) for s1 ϵ {0, 1} with h(x, y) = 1 − x/y. In HVTN 505, Case CB holds (P(Sτ = 0) = 1). VE(1) and VE(0) are vaccine 
efficacy for the subgroups with biomarker response if assigned vaccine Sτ (1) = 1 and Sτ (1) = 0, respectively.
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Table 2:

Use of SACE Methods [With Numbers of Sensitivity Parameters (S.P.s)] for Estimation of CEP(s1, s0) = 

h(risk1(s1, s0), risk0(s1, s0)) for (s1, s0) = (0, 0), (1, 0), (1, 1)

Assumption Sets (Identifiability Assumptions)

Target Parameter NEE-VB (A1-A5) NEE-CB (A1-A4) NEH-CB (A1-A3, 
A4′)

NEB-CB (A1-A3, 
A4″)

SACEAEU = h(risk1, risk0)
SACE with S ≡ 1 – Yτ

Nonpar. ident.
(0 S.P.s)

Nonpar.
ident.

(0 S.P.s)

Any SACE method 

w/mon. A4′a

(1 S.P.)

Any SACE method 

w/mon. A4″b

(1 S.P.)

SACEAEUB0 = h(risk1(0, 0), risk0(0, 0))
SACE with S ≡ [1 – Yτ][1 – Sτ]

Any SACE method w/mon. 

A5
c,d

(1 S.P.)

Any SACE method 

w/mon. A5
d

(1 S.P.)

Any SACE method 

w/o mon.
e

(3 S.P.s)

Any SACE method 

w/mon.
f

(1 S.P.)

SACEAEUB1 = h(risk1(1, 1), risk0(1, 1))
SACE with S ≡ [1 – Yτ]Sτ

Any SACE method w/mon. 

A5
g

(1 S.P.)

N/A N/A N/A

N/A N/A N/A

N/A N/A N/A

N/A N/A N/A

a
The monotonicity assumption for the SACE method is P(S(0) ≤ S(1)) = 1 with S ≡ 1 − Yτ.

b
The monotonicity assumption for the SACE method is P(S(0) ≥ S(1)) = 1 with S ≡ 1 − Yτ.

c
The monotonicity assumption is P(S(1) ≤ S(0)) = 1 with S ≡ [1 − Yτ][1 − Sτ].

d
By A4, the monotonicity assumption in footnote c simplifies to P(Sτ(0) ≤ Sτ(1)|Yτ = 0) = 1, which holds by A5 in scenario NEE-VB and by 

Case CB in scenario NEE-CB.

e
Under A4′ and Case CB in scenario NEH-CB, the monotonicity assumption expressed in footnote c amounts to no Z = 1 participants with a 

negative biomarker response at τ would be protected by τ. This assumption is often difficult to justify and hence we use methods without 
monotonicity.

f
The monotonicity assumption expressed in footnote c holds in scenario NEB-CB by A4″.

g
The monotonicity assumption is P(S(0) ≤ S(1)) = 1 with S ≡ [1 − Yτ]Sτ. By A4, the monotonicity assumption expressed in footnote e simplifies 

to P(Sτ(0) ≤ Sτ(1)|Yτ = 0) = 1, which holds by A5 in scenario NEE-VB.
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