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A B S T R A C T   

This research proposes a new type of Grey Wolf optimizer named Gradient-based Grey Wolf Optimizer (GGWO). 
Using gradient information, we accelerated the convergence of the algorithm that enables us to solve well-known 
complex benchmark functions optimally for the first time in this field. We also used the Gaussian walk and Lévy 
flight to improve the exploration and exploitation capabilities of the GGWO to avoid trapping in local optima. We 
apply the suggested method to several benchmark functions to show its efficiency. The outcomes reveal that our 
algorithm performs superior to most existing algorithms in the literature in most benchmarks. Moreover, we 
apply our algorithm for predicting the COVID-19 pandemic in the US. Since the prediction of the epidemic is a 
complicated task due to its stochastic nature, presenting efficient methods to solve the problem is vital. Since the 
healthcare system has a limited capacity, it is essential to predict the pandemic’s future trend to avoid overload. 
Our results predict that the US will have almost 16 million cases by the end of November. The upcoming peak in 
the number of infected, ICU admitted cases would be mid-to-end November. In the end, we proposed several 
managerial insights that will help the policymakers have a clearer vision about the growth of COVID-19 and 
avoid equipment shortages in healthcare systems.   

1. Introduction 

Scientists employ optimization in almost every research field. Opti
mization is a significant challenge in science and engineering, mainly 
due to the complexity of problems on the one hand and the shortcomings 
of classical approaches, on the other hand. Random Search Algorithms 
(RSA) are one of the most efficient means of solving complex real-world 
problems (Zabinsky, 2010; Solis and Wets, 1981; Hong and Nelson, 
2007). These algorithms sacrifice optimality to find a high-quality near- 
optimal solution in a short time. The main feature of these methods is 
randomness embedded in their framework during the iterations of the 
algorithm. RSAs are more flexible and easier to apply compared to 
traditional methods in terms of implementation complexity. Meta
heuristics are one group of the main RSAs that have been widely used to 

resolve complex optimization problems. Some of the most recent met
aheuristic algorithms are Grey Wolf Optimizer (GWO), Salp Swarm Al
gorithm (SSA), and Coronavirus Herd Immunity Optimizer (CHIO). 

Healthcare science is one of the main fields in which optimization 
makes a remarkable improvement. In December 2019, a new virus 
named SARS-Cov-2 emerged in China that causes severe respiratory 
disease (COVID-19). The virus spread rapidly to more than 213 coun
tries resulting in 22,185,755 cases and 780,369 deaths. Improvement in 
modeling the COVID-19 outbreak will significantly help the authorities 
in decision making. Besides, these insights enable us to optimally 
distribute resources and side-step equipment shortages in hospitals and 
save humans’ lives. Prediction of the COVID-19 pandemic is challenging 
due to its stochastic nature and complexity. 

(Zhang, Ma, & Wang, 2020) proposed a piecewise Poisson 
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formulation to study the recent cases of the COVID-19 pandemic. Using 
the suggested model, the researchers projected the peak of the 
epidemic. (Chimmula & Zhang, 2020) presented a deep learning-based 
method using Long-Short Term Memory (LSTM) to forecast the progress 
of the COVID-19 outbreak. The authors also aimed at estimating the 
possible ending point of the epidemic. The offered methodologies have 
several limitations that make their outcomes inapplicable. LSTM needs 
a large amount of memory, making the computational tests a chal
lenging task. Besides, scientists should provide enormous data to train 
the LSTM. Moreover, the suggested method cannot forecast either the 
number of cases with life-threatening symptoms or the number of 
asymptomatic cases. Furthermore, LSTM cannot estimate essential 
epidemiological statistics, including the reproduction rate. (Arora, 
Kumar, & Panigrahi, 2020)utilized a deep learning-based method using 
LSTM to forecast India’s forthcoming COVID-19 cases. Their offered 
method has the same limitations as the method suggested by Chimmula 
and Zhang (2020), which makes their forecasts valid for a short period. 
Many researchers utilized LSTM and machine learning techniques to 
forecast the future pandemic scenarios in several countries; however, 
most of them have the same limitations ((Abebe, 2020; Alamo, Reina, & 
Millán, 2020; da Silva, Ribeiro, Mariani, & dos Santos Coelho, 2020; 
Garcia et al., 2020; Lalmuanawma, Hussain, & Chhakchhuak, 2020; 
Panwar, Gupta, Siddiqui, Morales-Menendez, & Singhvvv, 2020; Peng 
& Nagata, 20220); ; ; ; ; ; ). 

One of the most recent models to define the pandemic is the 
SIDARTHE model. The model was first presented in a paper by Gior
dano et al. (2020). The authors claimed that the formulation is able to 
project the future trend of the outbreak over a more extended period of 
time. Besides, the model provides the policymakers and healthcare 
professionals with vital epidemiological information such as repro
duction rate. Although the model is very efficient in predicting future 
trends, the scientists highlighted that solving the model optimally is 
complicated due to its unique characteristics. 

As mentioned earlier, solving complex optimization problems using 
metaheuristics is easier compared to classical methods. Grey Wolf 
Optimizer (GWO) is one of the most recent and efficient metaheuristic 
algorithms in the literature. GWO is inspired by the hunting behavior of 
Grey wolves in nature. The GWO performs acceptably in exploration by 
adapting the search radius of the wolves in the first iterations. It 
maintains a good diversity among the wolves to avoid local optima. 
However, we could improve the exploration ability of the GWO to 
enhance its ability to search the solution space more intelligently (Long 
et al., 2018). The lack of efficient exploration ability in GWO is apparent 
from its results in multimodal benchmark functions (Mirjalili et al., 
2014). Besides, to enhance the algorithm to efficiently exploit the so
lution space, we should add some new operators to the algorithm. The 
GWO performs average in the exploration of the solution space, 
considering its results in composite benchmarks in which other algo
rithms dominate GWO in most benchmarks (Mirjalili et al. 2014). 
Random movements such as Gaussian and Lévy walks in the exploration 
phase will remarkably increase the exploration ability of the algorithm. 

In the exploitation phase, the GWO uses random movements on a 
tiny scale that do not necessarily guarantee an improvement in the best 
solution. Using gradient information that always guarantees improve
ment in the best solution will significantly improve the performance of 
GWO. GWO is applied successfully to many optimization problems in 
different fields such as text document clustering (Rashaideh et al. 
2018), feature selection (Abdel-Basset et al. 2020), predicting the 
strength of concretes (Golafshani et al. 2020), biodiesel production 
(Samuel et al. 2020), multi-objective flexible job-shop scheduling 
problem (Zhu and Zhou 2020), and three-dimensional path planning for 
UAVs (Dewangan et al. 2019). For more detailed information about 
applications of GWO, please see Faris et al. (2018). 

In this research, we present a new algorithm called Gradient-based 
Grey Wolf Optimizer (GGWO) that enables scientists to solve many 
real-world optimization problems. In our algorithm, we utilize the Ta

bl
e 

1 
Cl

as
si

fic
at

io
n 

of
 m

et
ah

eu
ri

st
ic

 a
lg

or
ith

m
s.

  

Ev
ol

ut
io

na
ry

 a
lg

or
it

hm
s 

Ph
ys

ic
s-

ba
se

d 
al

go
ri

th
m

s 
Sw

ar
m

 B
as

ed
 a

lg
or

it
hm

s 
O

th
er

 P
op

ul
at

io
n-

ba
se

d 
al

go
ri

th
m

s 

G
en

et
ic

 P
ro

gr
am

m
in

g 
(G

P)
  

(K
oz

a 
an

d 
Ko

za
, 1

99
2)

 
Si

m
ul

at
ed

 a
nn

ea
lin

g 
(V

an
 L

aa
rh

ov
en

 a
nd

 
A

ar
ts

, 1
98

7)
 

Pa
rt

ic
le

 S
w

ar
m

 O
pt

im
iz

at
io

n 
(P

SO
)  

(C
le

rc
 &

 K
en

ne
dy

, 2
00

2;
 K

en
ne

dy
 &

 E
be

rh
ar

t, 
19

95
) 

St
oc

ha
st

ic
 F

ra
ct

al
 S

ea
rc

h 
(S

FS
) 

(S
al

im
i 2

01
5)

 

Es
tim

at
io

n 
of

 d
is

tr
ib

ut
io

n 
al

go
ri

th
m

 (
ED

A
)  

(W
an

g 
et

 a
l. 

20
13

) 
G

al
ax

y-
ba

se
d 

Se
ar

ch
 A

lg
or

ith
m

 (G
BS

A
)  

(K
av

eh
 e

t a
l.,

 2
02

0)
 

A
rt

ifi
ci

al
 B

ee
 C

ol
on

y 
(A

BC
)  

(K
ar

ab
og

a 
an

d 
Ba

st
ur

k 
20

07
) 

Si
ne

 C
os

in
e 

A
lg

or
ith

m
 (S

CA
) 

(M
ir

ja
lil

i, 
20

16
a)

 

Bi
og

eo
gr

ap
hy

 B
as

ed
 O

pt
im

iz
er

 (
BB

O
)  

(E
rg

ez
er

 e
t a

l.,
 2

00
8)

 
Si

m
ul

at
ed

 A
nn

ea
lin

g 
(S

A
)  

(C
er

by
, 1

98
5;

 K
ir

kp
at

ri
ck

, G
el

at
t, 

&
 V

ec
ch

i, 
19

83
) 

A
nt

 L
io

n 
O

pt
im

iz
at

io
n 

A
lg

or
ith

m
 (A

LO
)  

(M
ir

ja
lil

i, 
20

15
b)

 
Co

ro
na

vi
ru

s 
O

pt
im

iz
at

io
n 

A
lg

or
ith

m
 (

CO
A

) 
(M

ar
tín

ez
-Á
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advantages of the gradient that presents valuable information about the 
solution space. In many optimization problems, gradient information is 
available or could be estimated. Using gradient information, we explore 
the solution space more intelligently by considering the gradient di
rection in our search process, leading us to the optimal or a good near- 
optimal solution. Almost all metaheuristic algorithms ignore the 
gradient information, which increases the probability of getting trapped 
in local optima. This motivated us to add the gradient in one of the most 
efficient algorithms to improve the exploration and exploitation abilities 
of the method. Considering gradient information, we accelerate the al
gorithm that enables us to solve well-known complex benchmark func
tions optimally for the first time in the field. 

Besides, we use deep mathematical concepts such as Gaussian walk 
and Lévy flights to improve the search efficiency of our method. The 
proposed contributions enable the suggested algorithm to avoid local 
optima. Our computational results on several benchmarks demonstrate 
the superiority of our algorithm to other algorithms in the literature. 
Moreover, we apply several statistical tests to determine significant 
differences in the performance of the algorithm compared to state-of- 
the-art methodologies. Moreover, we apply the devised algorithm to 
forecast the spread of the pandemic in the United States, with most cases 
of COVID-19 (https://www.worldometers.info/coronavirus). Our re
sults predicted the maximum number of infected and hospitalized cases 
in the United States that will happen in mid-to-end November 2020. 
Besides, we perform further analysis to project future scenarios. We also 
measured the effect of the implemented restrictions by the government. 

We have organized the remainder of this paper as follows: Section 2 
provides a detailed literature review. Section 3 proposes a new meth
odology to solve optimization problems based on gradient information 
and random walks. In Section 4, we carry out computational experi
ments on challenging benchmarks using our algorithm. Section 5 pre
sents an application of our methodology for forecasting the spread of the 
COVID-19 outbreak. In Section 6, we analyzed the uncertainty in the 
future spread of the pandemic. Section 7 concludes the paper, including 
an outlook on future research avenues. 

2. Survey on the relevant literature 

The underlying idea of most of the metaheuristic algorithms is to 
mimic a swarm behavior of nature. Mirjalili et al. (2016) divided met
aheuristics into three categories: Swarm Algorithms (SAs), Evolutionary 
Algorithms (EAs), and Physics-based Algorithms (PAs). EAs, PAs, and 
SAs mimic the evolution process, law of physics on particles, and swarm 
behavior, respectively (Khalilpourazari and Pasandideh 2019). Some of 
the most recent algorithms in this area are categorized in Table 1. 

Based on the classification of Mirjalili et al. (2016), our algorithm is 
in the category of the swarm-based algorithms; however, this is not the 
only classification in the literature. For instance, based on blum and roli 
(2003), metaheuristics could be classified based on different perspec
tives such as nature-inspired vs. non-nature inspired, population-based 
vs. single point search, dynamic vs. static objective function, one vs. 
various neighborhood structures, and memory usage vs. memory-less 
methods. Based on the latter classification, our algorithm is in the 
class of population-based nature-inspired algorithms with the static 
objective function. The readers are referred to Blum and Roli (2003) for 
more details regarding the latter classifications. 

Grey Wolf Optimizer (GWO) is one of the most efficient algorithms in 
solving complex optimization problems. The GWO performs acceptably 
in exploration by modifying the distance between grey wolves in the first 

iterations. It maintains a proper distance and diversity between the 
wolves to avoid local optima. However, the exploration ability of the 
GWO could be significantly improved (Long et al., 2018). Using random 
movements like Gaussian and Lévy walks during the exploration phase 
will remarkably increase the exploration ability of the algorithm. 
However, GWO suffers from a lack of an efficient exploitation ability 
(Bansal and Singh, 2020, Long et al., 2018). In the exploitation phase, 
the GWO uses random movements on a tiny scale that do not necessarily 
guarantee an improvement in the best solution. However, gradient in
formation, which always guarantees improvement in the best solution, 
will significantly improve the performance of GWO. In this research, we 
enhanced the GWO by adding new operators to search the solution space 
using the gradient information for the first time. We called the algorithm 
Gradient-based Grey Wolf Optimizer (GGWO). The gradient provides 
valuable information about the solution space and enables the GGWO to 
achieve highly accurate results. Gradient information and new operators 
meaningfully enhanced the performance of the GGWO in exploiting the 
neighborhood of the best solution. 

Moreover, we apply a Gaussian walk and Lévy flight at the end of 
each iteration to enhance exploration. These features enable GGWO to 
avoid local optima while maintaining proper exploitation throughout 
the optimization process. We demonstrate the superiority of our meth
odology on some benchmarks using robust statistical tests. Furthermore, 
as an application, we use our proposed algorithm to forecast the spread 
of the COVID-19 pandemic in the US. Our results show that our algo
rithm could predict the future trends of the pandemic. 

3. Designing an accelerated Grey Wolf Optimizer 

We will first illustrate the fundamentals of Grey Wolf Optimizer 
(GWO), then we will accelerate the GWO using gradient information and 
Gaussian and Lévy flights. 

3.1. Grey Wolf Optimizer 

GWO, recently proposed by Mirjalili et al. (2014), is inspired by grey 
wolves’ hunting strategies in nature. Generally speaking, grey wolves 
are hierarchically categorized into four classes: Alpha, Beta, Delta, and 
Omega (Abdel-Basset et al. 2020). The Alpha is the dominant wolf in the 
pack. He/she makes all the decisions in the swarm. Other swarm 
members must comply with his/her decision. Besides, the only wolves 
that breed in the swarm are Alphas. Beta wolves’ assist Alpha and 
communicate between Alpha wolves and other wolves. Beta wolf is the 
best nominee for being Alpha if one of the Alpha wolves dies or is too old 
to manage the swarm. The Beta fulfills the orders of the Alpha but also 
controls other wolves of the swarm. Omega wolves represent the lowest- 
ranked grey wolves (Dhargupta et al. 2020). Omega wolves always 
follow other high-ranking wolves. Wolves that are not included in the 
Alpha, Beta, or Omega class are named Delta wolves. The Deltas manage 
the Omega wolves while assisting Alpha and Beta. 

Like many other swarm intelligence-based algorithms, GWO starts 
optimization by initializing a population. Then, after determining the 
dominant members, the wolves update their location in the solution 
space around the target. We apply Eqs.(1) to (2) to simulate the encir
cling process: 

D→=

⃒
⃒
⃒C
→X→p(t) − X→(t)

⃒
⃒
⃒, (1)  
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X(t + 1) = X→p(t) − A→D→. (2) 

In Eqs. (1)-(2), t shows the current iteration and A→ and C→ are co
efficients. Besides X→p(t) and X→(t) represent position vectors of prey and 

a grey wolf, respectively. Coefficients A→ and C→ are calculated as follows: 

A→= 2 a→ r→1 − a→, (3)  

C→= 2 r→2, (4) 

where a→ decreases linearly throughout iterations in the range of 2 to 
0 and r→1 and r→2 are random numbers in [0,1]. Based on the values of a→

parameter, which linearly decreases throughout iterations from 2 to 0, 
GWO performs exploration or exploitation. In cases which the value of 
A→ is greater than 1 or less than − 1, the GWO performs exploration by 
diverging the wolves from the best solution. In addition, if − 1 ≤ A→≤ 1,
the GWO performs exploitation by ensuring that the wolves move to
ward the best solution. We note that C→ is a random parameter that 
ensures random movements of the wolves around the best solution ob
tained so far using Eq. (5). To mathematically state the hunting process 
and show how Omegas follow other dominant wolves, we use Eqs. (5)– 
(7): 

D→α =

⃒
⃒
⃒C
→

1 X→α − X→
⃒
⃒
⃒,

D→β =

⃒
⃒
⃒C
→

2 X→β − X→
⃒
⃒
⃒,

D→δ =

⃒
⃒
⃒C
→

3 X→δ − X→
⃒
⃒
⃒,

(5)  

X1 = X→α − A→1 D→α,

X2 = X→β − A→2 D→β,

X3 = X→δ − A→3 D→δ,
(6)  

X(t + 1) =
X→1 + X→2 + X→3

3
. (7) 

The GWO performs the above actions repeatedly to find a near- 
optimal solution for the problem until a stopping criterion is met. 

3.2. Accelerated Gradient-based Grey Wolf Optimizer 

To perform fine in terms of exploration, an algorithm should main
tain an appropriate balance between exploration and exploitation. GWO 
searches the solution space by updating the position of the dominated 
wolves regarding the position of Alpha, Beta, and Delta. By reducing the 
parameter a→ over iterations, GWO aims at exploration in the first iter
ations and then focuses on exploiting in the last iterations. Besides, 
adjusting this parameter helps the GWO avoid trapping in local optima. 

This paper adds two novel features to GWO to enhance its perfor
mance and propose a novel algorithm called Gradient-Based Grey Wolf 
Optimizer (GGWO). First, we propose a new procedure to use gradient 
information to improve the algorithm’s exploitation and exploration 
abilities. In many optimization problems, the gradient will provide 
valuable information about the shape of the solution space by deter
mining the steepest slope at each point in the solution space. We move 
particles to the nearest local optima using gradient information while 
maintaining a proper exploration ability. Such updating operators 
enable GWO to search the solution space more efficiently and enhance 

the exploration ability of the algorithm to side-step local optima. We 
propose the following new updating formulations for Omega wolves. We 
note that eq.(8) is based on the given illustrations in (Pahnehkolaei 
et al., 2017). 

Xi
W(t + 1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eqns.(5) − (7)γ
∂f
∂Xi

Min

≤
∂f

∂Xi
W
(t) < γ

∂f
∂Xi

Max

for i = 1, ...,m and w = 1, ..., n,

Xi
W(t) − rand(0, 1)λi(t)

(
∂f

∂Xi
W
(t)
)

, otherwise,

fori = 1, ...,m and w = 1, ..., n,

(8) 

where i is the index of decision variables in the optimization prob

lem, and n is the number of grey wolves. The terms ∂f
∂Xi

Max 
and ∂f

∂Xi

Min 
show 

the largest positive and the smallest negative slopes for each dimension 
at each iteration of the algorithm. Whereas γ is a continuous parameter 
determined in (0,1]. In the above formulation, we update the λi using 
equation (9) as follows (Pahnehkolaei et al., 2017): 

λi(t) = 0.1
Ubi − Lbi

max
(⃒
⃒
⃒
⃒

∂f
∂Xk

i
Min
⃒
⃒
⃒
⃒,

⃒
⃒
⃒
⃒

∂f
∂Xk

i
Min
⃒
⃒
⃒
⃒

). (9) 

Based on the given illustrations in Pahnehkolaei et al. (2017), it is 
apparent that: 
⃒
⃒
⃒
⃒λ

i(t)
(

∂f
∂Xi

w
(t)
) ⃒
⃒
⃒
⃒⩾10

(
Ubi − Lbi) (10) 

In some optimization problems, the gradient of the problem may be 
unknown due to the non-differentiability of the objective function or 
discrete characteristics of the decision variables. In order to handle those 
problems, we present the following equation (Pahnehkolaei et al., 
2017): 

∂f
∂X

=
f (t) − f (t − 1)
X(t) − X(t − 1)

. (11) 

The second contribution that we have added to GWO is the use of 
Gaussian walk and Lévy flight. These two are random walks to increase 
randomness in the GGWO and boost its exploration ability. Lévy flight 
and Gaussian walks create self-similar clusters (trajectories) but differ 
significantly in structure. The cluster created by the lévy flight contains 
several islands (sets of short steps) connected by long excursions 
(Chakrabarti et al., 2006). However, the Gaussian walk creates a denser 
and smaller cluster (within the same number of iterations) that consists 
of many small steps (Mousavirad and Ebrahimpour-Komleh, 2017; 
Yang, 2014). Random selection of these two methods enhances the 
exploration capability of the GGWO by helping the algorithm avoid local 
optima. Therefore, GGWO switches randomly between Lévy flight and 
Gaussian walks to use the advantage of both (Salimi 2015). In the pro
posed GGWO, we use the following formulations to update the position 
of Omega wolves in the solution space at the end of each iteration: 

Xi
W,new = Xi

W + KGaussian(|ϑi|, σ ) −
(
ξ × ϑi − ξ’ × Xi

W

)
,

for i = 1, ...,m and w = 1, ..., n,
(12)  

Xi
W,new = Xi

W + Xi
W Levy(η),

for i = 1, ...,m and w = 1, ..., n,
(13) 

where ϑi and |σ| present the best solution and standard deviation of 
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the Gaussian distribution, respectively. GGWO changes the Gaussian 
parameter as σ = |K × (xi − BP)| and reduces the length of steps over 
iterations by setting K =

log(l)
l . where l is the iteration number. The 

expression Xi
W,new is the new position of the wolf and Xi

W is its current 
position. Besides, ξ’ and ξ are random numbers in (0,1]. The Lévy flight 
is computed by Eq. (14): 

Lévy(x) =
0.01 × σ × r1

|r2|
1
β

, (14) 

where r1 and r2 are random numbers in (0,1]. The term β is a constant 
equal to 1.5. In Eqn. (13), we compute σ by: 

σ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Γ(1 + β)sin
(

πβ
2

)

Γ
(

1+β
2

)

β2

(
β− 1

2

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
β

. (15) 

Based on the given illustrations, the main framework of the GGWO is 
the same as GWO; however, with some significant changes. For instance, 
first, instead of the classical GWO operators, the GGWO uses a combi
nation of the original operators and gradient-based operators to update 
the position of the wolves. Besides, we need to add a new feature to the 
GGWO (a function) to calculate the gradient of the objective function at 
each point of the solution space. Moreover, we use Gaussian walk and 
Lévy flight to increase randomness at the end of each iteration, which 
significantly improved the exploration and exploitation by using both 
long and short steps to move the particles in the solution space. The 
pseudo-code of the GGWO is presented as follows:   

1: Input the parameters of GGWO  
2: for i = 1:npop # create the initial population  
3: Create a random solution  
4: Calculate the fitness  
5: end for  
6: Sort the solutions based on the fitness values  
7: Set the best three solutions as Alpha, Beta, and Delta, respectively.  
8: Set the remaining wolves as Omegas  
9: it = 1  

10: while stopping criterion is not met # main loop of the algorithm  
11: for i = 1: npop  
12: Calculate and update A and C  

13: Calculate the value of 
∂f

∂Xi
W
(t)

14: update the position of wolves using Eq. (8)  
15: end for  
16: Calculate the fitness values of all wolves  
17: Update the Alpha, Beta, and Delta  
18: for i = 1: number of Omegas  
19: update the position of Omega wolves using Eqs. (12) to (13)  
20: end for  
21: Decrease a→

22: it = it + 1;  
23: end while   

We also present the flowchart of the GGWO in Fig. 1. 

Table 2 
Main parameters of the algorithms.  

Algorithm parameter value Algorithm parameter value 

GWCA  
(Pahnehkolaei et al. 2017) 

parameterγ  0.9 PSO (Clerc, M and Kennedy 2002) parameterc1  2 
dmax 0.001 parameterc2  2 
Nsr 4 Inertial weight Linearly decreases from  

0.6 to 0.3 
ABC (Karaboga 2005) number of onlookers 0.5*pop GSA (Rashedi et al. 2009) Rnorm 2 

number of employed bees 0.5*pop Rpower 1 
number of scouts 1 Alpha and G0 20 and 100 

GGWO parameterγ  0.9 MFO (Mirjalili, 2015b) parametera  Linearly decreases from − 1 
parametera  Linearly decreases  

from 2 to 0 
parameterb  1 

GWO (Mirjalili et al. 2014) parametera  Linearly decreases  
from 2 to 0 

SCA (Mirjalili et al. 2016) parametera  Linearly decreases from 2 to 0 

PSOGSA  
(Mirjalili and Hashim 2010) 

parameterc1  0.5 SSA (Mirjalili et al. 2017) parameterc1  Not an input, determined  
during optimization parameterc2  1.5 

Remaining parameters As of GSA and PSO  

Fig. 1. Flowchart of the offered GGWO.  
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4. Results and discussion 

In order to evaluate the efficiency of the offered GGWO, we compare 
it with well-known algorithms in the literature, including Grey Wolf 
Optimizer (GWO), Gradient-based Water Cycle Algorithm (GWCA), 
Artificial Bee Colony (ABC), Gravitational Search Algorithm (GSA), 
hybrid Particle Swarm Optimization Gravitational Search Algorithm 
(PSOGSA), Particle Swarm Optimization (PSO), Salp Swarm Algorithm 
(SSA), Sine-Cosine Algorithm (SCA), and Moth-Flame Optimization 
(MFO). Table 2 provides the values of the parameters of the algorithms. 
We implement the experiments considering two different dimensions, 
30 and 50, to enhance the benchmark functions’ complexity. In all the 
tests, we consider a maximum NFEs of 30,000 as the stopping condition. 
We also set the control parameter γ to 0.9 in all tests. We repeat the 
solution process by each algorithm 50 times to enhance the accuracy of 
the results. Besides, we report the average, standard deviation, best, and 

worst values of the objective functions for each test problem and each 
algorithm. Table 3 presents the used benchmarks. These benchmarks are 
known as complex benchmarks in the literature (Lozano et al., 2011; 
Liao et al., 2015). 

In the first four benchmark functions (F1, F2, F3, and F4) in 
dimension 30, the outcomes in Table 4 show that our proposed method, 
GGWO performs significantly better than all the other algorithms in 
D30. The results in Table 5 show the superiority of GGWO over other 
algorithms in these benchmarks in D50 as well. Our proposed algorithm 
provides considerably better solutions in F1-F4 than any other algorithm 
due to its advanced operators to maximize exploration and exploitation 
abilities. Fig. 2 shows that the GGWO avoids trapping in local optima 
and rapidly reaches the optimal solution for the problems. Besides, 
GGWO offers significantly lower average, best, worst, and StDev of 
objective function value for these benchmarks compared to other 
algorithms. 

Table 3 
Benchmark functions.  

Function Formulation Range D 

Ackley 
f1(x) = − 20exp

(

− 0.2
̅̅̅̅
1
N

√
∑N

i=1x2
i

)

− exp

(
1
N
∑N

i=1
cos(2πxi)

)

+ 20 + e  
[− 32,32]N  30,50 

Rastrigin f2(x) =
∑N

i=1 [x2
i − 10cos(2πxi) + 10  [− 5.12,5.12]N  30,50 

Sphere f3(x) =
∑N

i=1x2
i  [− 100,100]N  30,50 

Griewank f4(x) =
1

4000
∑N

i=1
x2

i −
∏N

i=1cos(
xÄ◦

̅̅̅̅̅̅
Ä◦

√ ) + 1  [− 600,600]N  30,50 

High ConditionedElliptic 
f5(x) =

∑N
i=1
(
106)

i − 1
D − 1x2

i  

[− 10,10]N  30,50 

Rosenbrock f6(x) =
∑N− 1

i=1 [100(xi+1 − xi)
2
+ (xi − 1)2

] [− 30, 30]N  30,50 

Shifted Ackley 
f7(x) = − 20exp

(

− 0.2
̅̅̅̅
1
N

√
∑N

i=1z2
i

)

− exp

(
1
N
∑N

i=1
cos(2πzi)

)

+ 20 + e  
[− 32, 32]N  30,50 

Shifted Rastrigin f8(x) =
∑N

i=1 [z2
i − 10cos(2πzi)+ 10] [− 5.12,5.12]N  30,50 

Shifted Sphere f9(x) =
∑N

i=1z2
i  [− 100,100]N  30,50 

Shifted Griewank f10(x) =
1

4000
∑N

i=1
z2

i −
∏N

i=1cos(
zi
̅̅
i

√ ) + 1  [− 600,600]N  30,50 

Shifted HighConditionedElliptic 
f11(x) =

∑N
i=1
(
106)

i − 1
D − 1z2

i  

[− 10,10]N  30,50 

ShiftedRosenbrock f12(x) =
∑N− 1

i=1 [100(zi+1 − zi)
2
(zi − 1)2

] [− 30, 30]N  30,50  

Table 4 
Results of the simulations in 30 dimensions.  

MFO 14.15397 8.396961 8.71E-08 2.00E + 01 149.93231 3.21E + 01 98.57154 2.27E + 02 2.666667 6.914918 2.98E-08 20 21.09083 

SCA 14.29482 8.284824 3.08E-08 2.02E + 01 3.6824603 8.55E + 00 1.01E-11 2.83E + 01 1.59E-05 2.70E-05 6.81E-08 0.000108 0.08646 
SSA 1.520216 0.923497 1.76E-05 3.222505 58.238599 1.64E + 01 2.79E + 01 8.95E + 01 1.79E-05 1.72E-06 1.39E-05 2.11E-05 0.008941 
PSO 6.07E-07 2.64E-06 2.79E-11 1.41E-05 39.599863 6.66E + 00 27.85883 5.37E + 01 5.87E-08 2.50E-07 2.02E-11 1.38E-06 0.011078 
PSOGSA 11.6611 8.345575 2.11E-10 19.38025 131.5994 41.05358 61.68735 209.9356 2.666667 6.914918 2.75E-10 20 33.15244 
GSA 6.23E-09 1.25E-09 4.85E-09 1.14E-08 24.24192 7.713473 13.9294 44.7730 8.67E-09 1.79E-09 5.80E-09 1.31E-08 0.082105 
ABC 7.78298 1.02873 4.727577 9.587644 70.24234 10.32227 41.16908 92.06869 1.51191 6.15E-01 0.593387 2.68743 1.461505 
GWCA 1.07E-15 5.84E-15 0 3.20E-14 0 0 0 0 2.36E-29 1.29E-28 1.23E-45 7.04E-28 0 
GWO 8.64E-15 2.75E-15 7.11E-15 1.42E-14 0.253528 9.75E-01 0 4.34E + 00 2.28E-62 3.68E-62 2.71E-64 1.59E-61 0.002502 
GGWO 0 0 0.00E + 00 0.00E + 00 0 0 0 0 0.00E + 00 0.00E + 00 0 0 0  

Average Std Dev Best Worst Average Std Dev Best Worst Average Std Dev Best Worst Average  
F1 F2 F3 F4 F5 F6         

45.48769 4.47E-14 180.2163 542387.86 542451.75 70214.2 2706358.3 2,680,335 14592674.1 1.189283 7,994,325 

0.2018043 3.02E-12 0.850527 8.57E-06 4.68E-05 6.83E-18 0.000291 28.36875 1.409943 27.11928 33.39472 
0.0094284 1.52E-08 0.039202 23856.1263 11888.77 2781.57 48046.444 333.7611 604.09280 23.15309 2309.699 
0.010589 0 0.049282 1.44E-11 7.60E-11 1.26E-18 4.17E-10 50.051 27.905481 15.03268 85.36001 
50.22736 0 180.4868 41346.57 124323.0 3.21E-06 529831.7 3151.067 16416.77 14.20298 90023.83 
0.190495 0 1.025695 241.9223 159.920 40.904 719.373 36.1634 40.7528 24.0738 233.399 
0.268137 1.076298 2.169038 7706.80 5264.083 804.9848 20380.170 5105.301 2839.1764 974.2829 12450.14 
0 0 0 9.45E-66 5.18E-65 1.56E-154 2.84E-64 1.62E-24 7.46E-24 0 4.08E-23 
0.0084466 0 0.044127 7.46E-121 1.67E-120 8.71E-125 7.99E-120 26.43985 0.62575 25.09341 27.93068 
0 0 0 1.83E-44 7.04E-44 2.09E-48 3.81E-43 34.85498 27.24732 23.46658 147.9126 
Std Dev Best Worst Average Std Dev Best Worst Average Std Dev Best Worst            
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Figs. 3a and 3b and A1 and A2 in the Appendix show the boxplots of 
the results in which GGWO presents significantly lower and narrower 
charts. The offered GGWO performs very well in F5, F6, and F7 
benchmarks in dimension 30 considering average, best, worst, and 
StDev of results compared to other methods based on Table 4. In addi
tion, in dimension 50, GGWO achieves the third optimum (lowest) re
sults, as shown in Table 5. Moreover, in F5 from Fig. 2, GGWO’s 
convergence curve shows its exploration and exploitation capabilities 
and efficiency in avoiding local optima. 

The results in Table 4 show that our designed algorithm performs 
meaningfully better than all the other methods in F8 and F9 for 
dimension 30. This is because GGWO has a significantly lower average 
compared to the other algorithms. Besides, based on the best, worst, and 
standard deviation of the objective function, we could conclude that the 
GGWO is the best solution approach for this benchmark. In addition, 
Table 5 shows that for F8 and F9 in dimension 50, GGWO has signifi
cantly lower results considering average, best, worst, and standard de
viation of the objective function. Therefore, GGWO is a reliable and 
robust algorithm since it has consistent performance and could find a 
promising solution in all repetitions. Besides, in F8 and F9, GGWO 
makes a perfect trade-off amid both exploration and exploitation based 
on the data provided in Fig. 2. Although the other algorithms got trap
ped in local optima, GGWO could achieve global optima quicker without 
trapping in local optima. 

Considering F10 and F12 in dimension 30, the GGWO performs the 
best. Besides, for dimension 50, GGWO performs well in terms of 
average, best, worst, and standard deviation of the objective function. In 
F11 for dimension 30, GGWO performs outstanding comparing to all the 
other methods. It has significantly lower average, SD, best, and worst 
values than the other algorithms based on results in Table 4. Besides, in 
F11 for dimension 50, GGWO’s performance is much promising than 
other algorithms in terms of average, best, worst, and SD from Table 5. 
Furthermore, based on Fig. 2, in F11, GGWO ensures the right balance 
amid exploration and exploitation. In contrast to the other algorithms 
that get trapped in local optima, GGWO reaches the global optima. 

To draw a reliable conclusion and demonstrate the superiority of the 
offered algorithm, statistical tests are conducted in this section. For this 
purpose, we apply Tukey’s multiple comparison tests to discover sig
nificant differences in the performance of the algorithms. Figs. 3a, 3b, 
and A1, and A2 in the Appendix show the results of Tukey’s multiple 
comparison tests schematically. Based on Figs. 3a and 3b for dimension 

30 and 50, the results of comparing the boxplot of the GGWO to other 
algorithms for the first four benchmarks (F1, F2, F3, and F4) show that 
the boxplot of the GGWO is significantly lower and thinner than all the 
other algorithm. In F5, F6, F7, F8, F10, and F12, the boxplots of the 
GGWO are lower than most of the algorithms, especially in F9 and F11, 
the box plot of the GGWO is a line at zero. This is because GGWO ob
tained the global optima of the benchmarks in all repetitions. These 
results show that the proposed algorithm not only performs remarkably 
but also performs significantly robust and reliable. 

Table 6a, 6b, and 6c present the outcomes of Tukey’s multiple 
comparison tests for objective function values of the benchmarks in 
dimension 30 and 50. Based on the results, in F1 and F2 for dimension 30 
and 50, all the tests show p-values less than 0.05, except for the second 
row. This indicates that there are significant differences between the 
performances of the compared algorithms. Therefore, our proposed al
gorithm performs significantly better than all other algorithms (GWO, 
ABC, GSA, PSOGSA, PSO, SSA, SCA, and MFO) in terms of objective 
function value at 95% confidence level except for GWCA. However, 
based on the average, best, worst, and SD values, we observe that the 
GGWO performs much better than GWCA in F1 and F2 (Table 4). Our 
proposed method accomplishes outstanding results in F3 and F5 for 
dimensions 30 and 50 compared to other solution methods. 

In F4 for dimension 30, GGWO performs statistically better than the 
other algorithms. Likewise, in the same benchmark for dimension 50, 
GGWO achieves better results than other methods. Based on the average, 
best, worst, and SD values in this benchmark, we determine that the 
GGWO performs much better than GWO and GWCA in F4 (in Table 4). In 
F6 and F7 for dimension 30, GGWO performs significantly better than all 
the other algorithms. For dimension 50, GGWO performs better than all 
the other algorithms except SSA. However, based on the average, best, 
worst, and SD values, the GGWO outperforms SSA in solving F7 (in 
Table 4). In F8 for dimension 30 and 50, GGWO outperforms most of the 
other algorithms. Besides, considering the average, SD, best, and worst 
cases, GGWO beats GWCA (in Table 4). In F9, F10, F11 and F12, in di
mensions 30 and 50, GGWO outperforms other state-of-the-art 
algorithms. 

In this section, we perform more in-depth statistical tests, such as 
Friedman’s test, to make a consistent conclusion. Friedman’s test dis
covers extensive differences among algorithms at a 95% confidence 
level. It is one of the most famous and widely used statistical tests to 
compare algorithms in the literature. Tables 7 and 8 show the Friedman 

MFO 8.24452 7.647263 5.38E-08 19.36775 147.56100 31.37337 55.71759 1.93E+02 2.02E+00 6.17E+00 1.72E-08 20.77365 26.3487 

SCA 3.82560 0.263284 3.181999186 4.236515 80.68202 21.67571 46.14895 131.4449 2.181049 0.195076 1.813314 2.71688 2.048136 
SSA 2.20E+00 9.17E-01 2.07E-05 4.298275 62.814945 19.05743 2.89E+01 105.4653 1.72E-05 2.10E-06 1.23E-05 2.14E-05 0.013608 
PSO 1.37E-08 3.46E-08 3.60E-11 1.88E-07 41.323920 10.27609 2.19E+01 59.69746 1.23E-08 4.69E-08 2.48E-11 2.58E-07 0.006484 
PSOGSA 1.27E+01 7.72E+00 2.09E-10 19.4627 130.1343 3.17E+01 7.36E+01 197.9958 1.36E+00 5.177062 2.82E-10 20.712 32.66406 
GSA 6.38E-09 1.01E-09 4.52E-09 9.15E-09 27.22869 5.514884 1.69E+01 41.78826 8.39E-09 1.28E-09 5.83E-09 1.14E-08 0.078723 
ABC 6.87411 1.10026 4.57E+00 9.122293 70.35375 9.115818 42.18886 81.53446 1.337828 0.438737 0.441513 2.456872 1.549616 
GWCA 0.031295 0.170983 1.56E-07 0.936517 6.007273 7.630498 0 25.86894 1.72E-15 2.63E-15 5.55E-17 1.40E-14 0.064927 
GWO 1.77128 0.409414 1.089748892 2.734984 14.50399 6.74869 4.87896 30.3255 0.735554 0.266815 0.299032 1.44783 1.142719 
GGWO 1.942059 0.435974 4.16E-06 2.495867 2.653285 3.308464 0 12.9344 0 0 0 0 0.015744  

Average Std Dev Best Worst Average Std Dev Best Worst Average Std Dev Best Worst Average  
F7 F8 F9 F10 F11 F12         

46.67469 8.99E-15 171.03153 526409.36 788901.1 7121.1631 3,677,252 24584.675 40160.65 6.028516 97478.38 

0.200311 1.714016 2.5636 11300.144 4919.088 4364.6324 25798.35 1579.4940 729.624 619.937 4580.251 
0.016441 1.92E-08 0.078470 27888.185 15809.66 5121.0405 62981.94 118.949 260.1012 24.5781 1404.456 
0.008487 0 0.03196 4.67E-11 1.93E-10 1.10E-19 1.02E-09 44.56550 30.6383 7.104455 103.615 
43.75126 0 99.19931 70235.0059 198201.4 1.07E-06 920733.9 2251076.86 1,229,469 17.17134 6,734,709 
0.103276 0 0.50500 243.352 164.8371 27.1468 658.5043 35.59113 46.26933 20.27133 264.3985 
0.33096 1.089729 2.32780 6974.676 5005.006 523.0540 23425.73 4974.3077 3151.212 1626.709 13565.01 
0.183418 9.21E-11 1.01610 7.67E-27 3.38E-26 0 1.86E-25 43.10708 25.15395 27.43943 110.0079 
0.176141 0.748066 1.52756 1545.0258 1139.612 170.0078 5516.087 253.92733 242.061 36.21686 1292.285 
0.014757 1.56E-11 0.04916 0 0 0 0 32.40043 17.36383 17.90934 84.31829 
Std Dev Best Worst Average Std Dev Best Worst Average Std Dev Best Worst             
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tests’ scores for each algorithm considering algorithms’ performance in 
all dimensions. In Friedman’s test, the lower the score, the more effec
tive the method is. In Tables 9 and 10, we assigned a rank for each al
gorithm in each benchmark function based on the scores obtained in 
Tables 7 and 8. Results of tables 9 and 10 disclosed that for both di
mensions 30 and 50, the proposed algorithm ranked first in most of the 
benchmark functions, including F1, F2, F3, F4, F8, F9, and F11. 
Considering F5, F6, and F10, GGWO ranked third. In F7, GGWO per
forms better than five algorithms for both dimensions 30 and 50. Be
sides, GGWO ranked fourth and third in dimensions 30 and 50, 
respectively. 

The results in Table 9 also show that the average ranking of the 
GGWO is 2.083333 and 2 regarding all the benchmark functions in di
mensions 30 and 50, respectively. The outcomes rank the GGWO first 
among all other algorithms. Considering the best case, the GGWO is 
better than all the other algorithms. In addition, the worst case of GGWO 
is significantly lower than all the other algorithms. In other words, it 
obtained the best rank among all solution methods in terms of the best 
worst-case rank, which shows the robustness of the offered methodol
ogy. The results indicate that the GGWO can achieve very competitive 
outcomes compared to the other novel metaheuristic methods and 
perform better for most benchmark functions. 

5. A case study of the COVID-19 pandemic in the United states 

We use one of the most recently developed models to forecast the 
covid-19 pandemic (Giordano et al., 2020). The model reflects eight 
states, including susceptible, infected, diagnosed, ailing, recognized, 
threatened, healed, extinct cases. This formulation takes into account 
several health states for patients. The recommended formulation con
sists of several differential equations to demonstrate the outbreak. 
Table 11 defines the notations used in the model. 

Therefore, we could propose the following model: 

Ṡ(t) = − S(t)(αI(t) + βD(t) + γA(t) + δR(t) ), (16)  

İ(t) = S(t)(αI(t) + βD(t) + γA(t) + δR(t) ) − (ε + ζ + λ)I(t), (17)  

Ḋ(t) = εI(t) − (η + ρ)D(t), (18)  

Ȧ(t) = ζI(t) − (θ + μ + κ)A(t), (19)  

Ṙ(t) = ηD(t) + θA(t) − (ν + ξ)R(t), (20)  

Ṫ(t) = μA(t) + νR(t) − (σ + τ)T(t), (21)  

Ḣ(t) = λI(t) + ρD(t) + κA(t) + ξR(t) + σT(t), (22)  

Ė(t) = τT(t) (23) 

The United States is part of the COVID-19 pandemic created by acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2). The country 
announced its first community transmission case of COVID-19 in 
January 2020. Up to date, the US has reported more than 4,918,420 
COVID-19 cases and 160,290 death cases, making it the country with the 
most COVID-19 cases. To optimize the limited resources of the health
care systems, it is crucial to forecast the pandemic’s future trends. This 
approach will enable managers to estimate the peak of the outbreak and 
plan for the worst-case scenario. Since COVID-19 is a novel virus, the 
epidemiological parameters are unknown (Ahamad et al. 2020). Thus, 
we need to present novel methodologies to model the outbreak. 

In the following, we resolve the sum of the mean square error model 
using the GGWO and attain the optimum result for the model. Fig. 4 
displays the convergence of GGWO and the average objective value of 
the grey wolves over the iterations. 

We note that we did not reflect the mean square error of the death 
cases since the data might be profoundly affected by patients’ age, 

Table 5 
Computational results in dimension 50.  

MFO 18.86403 3.129202 2.846973 19.9633 273.0153 54.26109 152.2283 359.3914 11.54425 12.86791 0.000632 28.28427 57.22312 

SCA 1.56E + 01 8.767169 4.50E-04 20.4345 2.57E + 01 3.52E + 01 0.00026 132.586 0.08209 0.13338 5.81E-05 0.548486 0.247561 
SSA 2.41E + 00 0.67627 3.24E-05 3.57424 8.50E + 01 2.76E + 01 33.8286 140.2889 2.99E-05 1.22E-06 2.79E-05 3.28E-05 0.009848 
PSO 9.81E-02 0.373198 1.18E-06 1.47E + 00 9.26E + 01 2.03E + 01 62.68241 1.53E + 02 2.56E-05 3.56E-05 3.35E-07 0.000149 0.004186 
PSOGSA 1.58E + 11 5.483801 4.11E-10 19.6161 2.29E + 02 3.38E + 01 156.2079 293.5112 2 6.102572 5.70E-10 20 60.13315 
GSA 3.80E-09 3.88E-10 2.97E-09 4.78E-09 30.0477 6.719748 18.90422 41.78827 7.04E-09 5.68E-10 5.95E-09 8.11E-09 1.44335 
ABC 10.99270 1.291766 7.86104 12.71119 168.097 20.5388 116.4862 204.640 5.25385 1.01402 3.93371 7.454158 5.93384 
GWCA 4.74E-16 1.23E-15 0 3.55E-15 0 0.00E + 00 0 0.00E + 00 4.21E-30 1.28E-29 2.71E-44 4.38E-29 0 
GWO 1.43E-14 2.18E-15 1.07E-14 2.13E-14 1.260281 4.796155 0 18.9042 1.06E-54 2.10E-54 5.16E-56 8.67E-54 0.001723 
GGWO 1.18E-16 6.49E-16 0 3.55E-15 0 0 0 0 0 0 0 0 0  

Average Std Dev Best Worst Average Std Dev Best Worst Average Std Dev Best Worst Average  
F1 F2 F3 F4 F5 F6         

64.8810 1.87E-06 270.9139 2,570,794 1,892,066 115043.3 6,491,725 800,426 2,439,969 80.7810 8,003,304 

0.32939 7.83E-05 0.952744 0.38588 0.980396 8.27E-06 3.5341 4952.241 6071.786 49.06581 23217.09 
0.00998 5.92E-08 0.036919 42706.08 20507.34 17742.4 98336.71 76.9411 109.9943 44.79358 643.8471 
0.008477 4.30E-13 0.03934 2.98E-07 8.91E-07 2.05E-09 4.91E-06 94.89612 55.11365 27.04189 249.9203 
64.11064 0 180.336 299933.2 1,141,383 0.134512 4,498,815 2,667,924 1,461,248 37.49836 800,359 
0.727960 0.350652 3.30963 244.6193 151.415 78.73644 761.5141 44.75936 0.528158 44.04607 46.45274 
2.449968 1.531393 11.31384 90773.92 38735.38 30262.28 163447.5 43158.95 24904.52 7121.636 82301.65 
0 0 0 2.90E-58 1.06E-57 8.07E-91 4.17E-57 8.95E-24 2.60E-23 0 1.28E-22 
0.005711 0 0.022141 3.88E-105 1.37E-104 2.39E-109 5.42E-104 46.75566 0.702115 46.11286 48.56676 
0 0 0 2.34E-36 1.09E-35 3.50E-40 5.99E-35 62.18671 51.01123 44.42791 279.2602 
Std Dev Best Worst Average Std Dev Best Worst Average Std Dev Best Worst            
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health state, and gender. The data used in this research is available at 
https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases. 
In Fig. 4, we can observe a perfect trade-off between exploration and 
exploitation in the performance of the GGWO. Table 12 presents the 
results of the case study in the US. Fig. 5 describes the accuracy of the 
predicted model versus real-data. We observe that the offered procedure 
forecast future trends precisely. It is also noteworthy that the sum of 
square errors for suggested parameters is 1.44E-06. 

Fig. 6 shows the predicted number of different types of individuals 
that will develop life-threatening symptoms. Based on the outcomes of 
our study, we predict that the US will experience the peak of the 
pandemic in terms of infected cases during mid-November 2020. Our 
model forecasts that the number of infected cases in the US could reach 
16 million by that time. Fig. 6 depicts an accurate prediction on the 
number of infected cases that develop life-threatening symptoms in the 
future so that the policymakers and healthcare professionals, and 
managers could plan for ICU and ventilator allocation. 

During the first stage of the outbreak in the US, the transmission rates 
were low from January 22 to March 13. Based on our results, the 
reproduction rate was R0 = 1.9249, for this stage. On February 26, 
2020, the first community case of the US was reported by The Centers for 
Disease Control and Prevention (CDC). On March 2, 13, and 16, the US 
government applied some travel restrictions from 26 European countries 
and the UK and Ireland, respectively, to contain the spread of the virus. 
On March 11, 2020, the World Health Organization (WHO) stated the 
outbreak to be a pandemic. In our study, we consider March 13–22 as 
the second stage due to the fact that a rapid increase in the number of 
cases was reported in the country. The reproduction rate was approxi
mately R0 = 7.2482 for this stage. As becomes evident, the reproduction 
number significantly increased in this stage due to community trans
mission. 

On March 19, the testing capacity remarkably increased to detect 
more infected cases. Since, in this critical time interval, the testing ca
pacity increased, so the detection rate changed from the previous stages. 
Therefore, we considered March 22–26 as the third stage in our study. 

During this stage, the reproduction number was R0 = 7.4134, which 
shows exponential growth in this time interval. During the fourth stage, 
March 26 to May 22, the transmission rates were considerably reduced 
due to dynamic lockdown and social distancing measures. That is why 
we observe a meaningful reduction in the reproduction rate for this stage 
R0 = 0.8999. In the fifth stage, May 22 to May 25, we observe an in
crease in the transmission rates of the virus since other states start to 
experience exponential growth in the number of COVID-19 cases. Dur
ing this stage, the reproduction rate reported R0 = 1.2581. In the last 
stage, after May 25, we observe an increase in the ε parameter due to a 
significant increase in the number of everyday tests resulting in R0 =

1.4374. In the case of continuing the current measures and restrictions, 
we predicted the future trends of the pandemic in the US over the next 
362 days. Fig. 6 presents more details about the model and predictions. 

Based on the outcomes, we determined that keeping the current re
strictions such as social distancing and partial lockdowns in place will 
significantly help to slow down the spread of the virus. It worth 
mentioning that any deviation in the future parameters could signifi
cantly affect the predicted trends. Therefore, it is crucial to study the 
effect of changes in the main parameters of the pandemic on future 
outcomes. 

6. Sensitivity analyses and managerial insights 

The provided forecast of future pandemic growth in the earlier sec
tion considers strict social distancing, behavioral recommendations, and 
preventing gatherings. However, some businesses are permitted to 
reopen while continuing social distancing. On the other hand, the 
pandemic has been started to evolve in more states in the country. 
Hence, it is vital to discover the effects of reopenings and pandemic 
growth that create variations in the transmission rates on the upcoming 
situations. Therefore, we augmented the values of the parameters α, β, γ,
δ, andε, and explored the outcomes. Such deviations could meaningfully 
influence the number of cases. We portray the results in Figs. 7-9. Our 
results show that the parameter α plays a prominent role in the number 

MFO 17.96136 3.045411 2.57947 19.41094 280.7398 54.5312 207.1563 423.467 9.82966 12.70863 0.00037 35.5646 48.3729 

SCA 4.521862 0.546814 4.047869 6.377384 193.6459 33.18219 136.1962 258.4204 3.36659 0.362941 2.84272 4.44995 3.468887 
SSA 2.538247 0.538350 1.374312 3.333027 82.51514 23.03776 33.82857 136.309 3.04E-05 1.96E-06 2.68E-05 3.44E-05 0.004104 
PSO 2.21E-05 3.27E-05 7.98E-07 0.000131 99.33005 17.65016 68.6521 136.309 2.58E-05 5.52E-05 1.40E-06 0.000287 0.00394 
PSOGSA 15.9417 3.092674 2.85818 19.29966 231.3938 41.25106 159.193 313.4414 7.22E-10 4.51E-11 6.45E-10 8.38E-10 51.6887 
GSA 3.89E-09 4.05E-10 3.28E-09 4.58E-09 28.45582 4.671152 18.90422 38.80337 7.16E-09 1.11E-09 5.59E-09 1.11E-08 1.901848 
ABC 10.8829 1.227730 8.23459 12.73090 167.5958 16.70806 129.7736 191.6545 5.11762 1.12580 3.12082 7.55719 5.907881 
GWCA 0.39543 0.704873 1.49E-07 2.140674 8.68934 14.20356 0 36.81349 1.58E-15 1.32E-15 2.04E-16 5.95E-15 0.05428 
GWO 2.245981 0.245903 1.69206 2.621921 39.81563 13.17458 12.74205 69.08735 1.1938 0.33094 0.60971 2.080546 1.41276 
GGWO 2.44568 0.192152 2.07810 2.769214 3.681349 4.181849 0 12.9344 0 0 0 0 0.03344  

Average Std Dev Best Worst Average Std Dev Best Worst Average Std Dev Best Worst Average  
F7 F8 F9 F10 F11 F12         

61.78711 1.32E-05 186.1236 2,069,598 1356684.6 398587.8 7,605,752 7,821,421 32,471,414 2.032239 1.67E+08 

0.446900 2.68606 4.625300 50080.83 18612.17 16444.15 86449.89 31723.78 95236.72 3659.787 531,852 
0.006345 4.17E-08 0.022126 46914.21 22315.88 19700.93 92357.54 131.4435 166.5185 41.48509 640.1873 
0.005661 5.76E-14 0.017226 1.92E-06 6.67E-06 7.99E-10 3.61E-05 91.01528 38.9426 39.82111 172.8936 
57.03139 1.11E-16 185.8100 9289.844 50629.72 0.064453 277356.2 54.55684 24.25274 38.37738 131.1459 
0.89989 0.078681 4.461654 327.9037 208.638 61.2343 798.1094 45.61572 5.515901 44.35261 74.80706 
2.50211 1.57466 10.73243 104725.1 58102.98 14737.57 228,529 57467.26 48491.88 8973.947 227428.3 
0.117440 8.49E-07 0.578953 3.75E-25 1.60E-24 1.08E-32 8.78E-24 65.17494 28.98188 47.47152 193.4626 
0.18717 1.140895 1.843354 6132.125 3531.791 1200.19 12604.24 669.3124 227.4713 346.0705 1187.163 
0.09759 5.75E-11 0.52315 0 0 0 0 54.44438 30.41612 44.70562 214.3801 
Std Dev Best Worst Average Std Dev Best Worst Average Std Dev Best Worst             
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Fig. 2. Convergence plot of the algorithms in dimension 30.  
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Fig. 3a. Dimension 30 boxplots.  
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Fig. 3b. Dimension 30 boxplots.  
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Table 6a 
Results of Tukey’s multiple comparison test for dimensions 30 and 50.  

Dimension 30 Dimension 50 
Benchmark Comparison P-value Significant difference Benchmark Comparison P-value Significant difference 

F1 GGWO-GWO 2.56E-13 Yes F1 GGWO-GWO 1.81E-13 Yes 
GGWO-GWCA 0.33371 No GGWO-GWCA 0.1694 No 
GGWO-ABC 1.21E-12 Yes GGWO-ABC 1.71E-12 Yes 
GGWO-GSA 1.21E-12 Yes GGWO-GSA 1.71E-12 Yes 
GGWO-PSOGSA 1.21E-12 Yes GGWO-PSOGSA 1.71E-12 Yes 
GGWO-PSO 1.21E-12 Yes GGWO-PSO 1.71E-12 Yes 
GGWO-SSA 1.21E-12 Yes GGWO-SSA 1.71E-12 Yes 
GGWO-SCA 1.21E-12 Yes GGWO-SCA 1.71E-12 Yes 
GGWO-MFO 1.21E-12 Yes GGWO-MFO 1.71E-12 Yes 

F2 GGWO-GWO 0.16074 Yes F2 GGWO-GWO 0.1608 Yes 
GGWO-GWCA Nan No GGWO-GWCA Nan No 
GGWO-ABC 1.20E-12 Yes GGWO-ABC 1.21E-12 Yes 
GGWO-GSA 1.18E-12 Yes GGWO-GSA 1.21E-12 Yes 
GGWO-PSOGSA 1.20E-12 Yes GGWO-PSOGSA 1.21E-12 Yes 
GGWO-PSO 1.20E-12 Yes GGWO-PSO 1.21E-12 Yes 
GGWO-SSA 1.20E-12 Yes GGWO-SSA 1.21E-12 Yes 
GGWO-SCA 1.20E-12 Yes GGWO-SCA 1.21E-12 Yes 
GGWO-MFO 1.20E-12 Yes GGWO-MFO 1.21E-12 Yes 

F3 GGWO-GWO 1.21E-12 Yes F3 GGWO-GWO 1.20E-12 Yes 
GGWO-GWCA 1.21E-12 Yes GGWO-GWCA 1.20E-12 Yes 
GGWO-ABC 1.21E-12 Yes GGWO-ABC 1.20E-12 Yes 
GGWO-GSA 1.21E-12 Yes GGWO-GSA 1.20E-12 Yes 
GGWO-PSOGSA 1.20E-12 Yes GGWO-PSOGSA 1.20E-12 Yes 
GGWO-PSO 1.21E-12 Yes GGWO-PSO 1.20E-12 Yes 
GGWO-SSA 1.21E-12 Yes GGWO-SSA 1.20E-12 Yes 
GGWO-SCA 1.21E-12 Yes GGWO-SCA 1.20E-12 Yes 
GGWO-MFO 1.20E-12 Yes GGWO-MFO 1.20E-12 Yes 

F4 GGWO-GWO 0.041926 Yes F4 GGWO-GWO 0.081493 No 
GGWO-GWCA Nan No GGWO-GWCA Nan No 
GGWO-ABC 1.21E-12 Yes GGWO-ABC 1.20E-12 Yes 
GGWO-GSA 3.45E-07 Yes GGWO-GSA 1.20E-12 Yes 
GGWO-PSOGSA 5.76E-11 Yes GGWO-PSOGSA 5.72E-11 Yes 
GGWO-PSO 1.70E-08 Yes GGWO-PSO 1.20E-12 Yes 
GGWO-SSA 1.21E-12 Yes GGWO-SSA 1.20E-12 Yes 
GGWO-SCA 1.21E-12 Yes GGWO-SCA 1.20E-12 Yes 
GGWO-MFO 1.21E-12 Yes GGWO-MFO 1.20E-12 Yes  

Table 6b 
Results of Tukey’s multiple comparison test for dimensions 30 and 50.  

Dimension 30 Dimension 50 
Benchmark Comparison P-value Significant difference Benchmark Comparison P-value Significant difference 

F5 GGWO-GWO 3.02E-11 Yes F5 GGWO-GWO 2.98E-11 Yes 
GGWO-GWCA 3.02E-11 Yes GGWO-GWCA 2.98E-11 Yes 
GGWO-ABC 3.02E-11 Yes GGWO-ABC 2.98E-11 Yes 
GGWO-GSA 3.02E-11 Yes GGWO-GSA 2.98E-11 Yes 
GGWO-PSOGSA 3.02E-11 Yes GGWO-PSOGSA 2.98E-11 Yes 
GGWO-PSO 3.02E-11 Yes GGWO-PSO 2.98E-11 Yes 
GGWO-SSA 3.02E-11 Yes GGWO-SSA 2.98E-11 Yes 
GGWO-SCA 3.02E-11 Yes GGWO-SCA 2.98E-11 Yes 
GGWO-MFO 3.02E-11 Yes GGWO-MFO 2.98E-11 Yes 

F6 GGWO-GWO 1.75E-05 Yes F6 GGWO-GWO 0.000167 Yes 
GGWO-GWCA 2.11E-11 Yes GGWO-GWCA 1.94E-11 Yes 
GGWO-ABC 3.02E-11 Yes GGWO-ABC 2.98E-11 Yes 
GGWO-GSA 0.40354 No GGWO-GSA 0.063459 No 
GGWO-PSOGSA 0.83026 No GGWO-PSOGSA 0.5394 No 
GGWO-PSO 0.22823 No GGWO-PSO 0.051812 No 
GGWO-SSA 3.83E-06 Yes GGWO-SSA 8.62E-05 Yes 
GGWO-SCA 9.51E-06 Yes GGWO-SCA 4.57E-10 Yes 
GGWO-MFO 0.007959 Yes GGWO-MFO 9.65E-10 Yes 

F7 GGWO-GWO 0.012111 Yes F7 GGWO-GWO 0.003828 Yes 
GGWO-GWCA 1.04E-10 Yes GGWO-GWCA 3.60E-11 Yes 
GGWO-ABC 2.86E-11 Yes GGWO-ABC 2.95E-11 Yes 
GGWO-GSA 2.86E-11 Yes GGWO-GSA 2.95E-11 Yes 
GGWO-PSOGSA 0.000222 Yes GGWO-PSOGSA 2.95E-11 Yes 
GGWO-PSO 2.86E-11 Yes GGWO-PSO 2.95E-11 Yes 
GGWO-SSA 0.013165 Yes GGWO-SSA 0.3552 No 
GGWO-SCA 2.86E-11 Yes GGWO-SCA 2.95E-11 Yes 
GGWO-MFO 0.006316 Yes GGWO-MFO 7.21E-11 Yes 

F8 GGWO-GWO 6.44E-10 Yes F8 GGWO-GWO 3.09E-11 Yes 

(continued on next page) 
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Table 6c 
Results of Tukey’s multiple comparison test for dimensions 30 and 50.  

Dimension 30 Dimension 50 
Benchmark Comparison P-value Significant difference Benchmark Comparison P-value Significant difference 

F9 GGWO-GWO 1.21E-12 Yes F9 GGWO-GWO 1.21E-12 Yes 
GGWO-GWCA 1.21E-12 Yes GGWO-GWCA 1.21E-12 Yes 
GGWO-ABC 1.21E-12 Yes GGWO-ABC 1.21E-12 Yes 
GGWO-GSA 1.21E-12 Yes GGWO-GSA 1.21E-12 Yes 
GGWO-PSOGSA 1.21E-12 Yes GGWO-PSOGSA 1.21E-12 Yes 
GGWO-PSO 1.21E-12 Yes GGWO-PSO 1.21E-12 Yes 
GGWO-SSA 1.21E-12 Yes GGWO-SSA 1.21E-12 Yes 
GGWO-SCA 1.21E-12 Yes GGWO-SCA 1.21E-12 Yes 
GGWO-MFO 1.21E-12 Yes GGWO-MFO 1.21E-12 Yes 

F10 GGWO-GWO 3.02E-11 Yes F10 GGWO-GWO 0.000587 Yes 
GGWO-GWCA 0.20095 No GGWO-GWCA 3.02E-11 Yes 
GGWO-ABC 3.02E-11 Yes GGWO-ABC 4.50E-11 Yes 
GGWO-GSA 0.004215 Yes GGWO-GSA 0.002052 Yes 
GGWO-PSOGSA 0.023234 Yes GGWO-PSOGSA 0.001114 Yes 
GGWO-PSO 0.000182 Yes GGWO-PSO 0.099258 No 
GGWO-SSA 0.44642 No GGWO-SSA 3.02E-11 Yes 
GGWO-SCA 3.02E-11 Yes GGWO-SCA 1.87E-05 Yes 
GGWO-MFO 0.039167 Yes GGWO-MFO 0.000587 Yes 

F11 GGWO-GWO 1.21E-12 Yes F11 GGWO-GWO 1.21E-12 Yes 
GGWO-GWCA 4.57E-12 Yes GGWO-GWCA 1.21E-12 Yes 
GGWO-ABC 1.21E-12 Yes GGWO-ABC 1.21E-12 Yes 
GGWO-GSA 1.21E-12 Yes GGWO-GSA 1.21E-12 Yes 
GGWO-PSOGSA 1.21E-12 Yes GGWO-PSOGSA 1.21E-12 Yes 
GGWO-PSO 1.21E-12 Yes GGWO-PSO 1.21E-12 Yes 
GGWO-SSA 1.21E-12 Yes GGWO-SSA 1.21E-12 Yes 
GGWO-SCA 1.21E-12 Yes GGWO-SCA 1.21E-12 Yes 
GGWO-MFO 1.21E-12 Yes GGWO-MFO 1.21E-12 Yes 

F12 GGWO-GWO 4.08E-11 Yes F12 GGWO-GWO 3.02E-11 Yes 
GGWO-GWCA 8.88E-06 Yes GGWO-GWCA 3.32E-06 Yes 
GGWO-ABC 3.02E-11 Yes GGWO-ABC 3.02E-11 Yes 
GGWO-GSA 1.87E-05 Yes GGWO-GSA 1.17E-09 Yes 
GGWO-PSOGSA 0.030317 Yes GGWO-PSOGSA 0.000225 Yes 
GGWO-PSO 0.29047 No GGWO-PSO 0.004033 Yes 
GGWO-SSA 0.05012 No GGWO-SSA 0.43764 No 
GGWO-SCA 3.02E-11 Yes GGWO-SCA 3.02E-11 Yes 
GGWO-MFO 2.39E-08 Yes GGWO-MFO 1.85E-08 Yes  

Table 6b (continued ) 

Dimension 30 Dimension 50 
Benchmark Comparison P-value Significant difference Benchmark Comparison P-value Significant difference 

GGWO-GWCA 0.17834 No GGWO-GWCA 0.2345 No 
GGWO-ABC 2.31E-11 Yes GGWO-ABC 2.80E-11 Yes 
GGWO-GSA 2.31E-11 Yes GGWO-GSA 2.78E-11 Yes 
GGWO-PSOGSA 2.31E-11 Yes GGWO-PSOGSA 2.80E-11 Yes 
GGWO-PSO 2.31E-11 Yes GGWO-PSO 2.80E-11 Yes 
GGWO-SSA 2.31E-11 Yes GGWO-SSA 2.80E-11 Yes 
GGWO-SCA 2.31E-11 Yes GGWO-SCA 2.80E-11 Yes 
GGWO-MFO 2.31E-11 Yes GGWO-MFO 2.80E-11 Yes  

Table 7 
Friedman’s test for dimension 30.  

Algorithm  
GGWO GWO GWCA ABC GSA PSOGSA PSO SSA SCA MFO 

F1  10.3333  25.1667 11  73.8  44.0333 69.5333 42.2667  62.4  84.7667  81.7 
F2  15.1667  16.5667 15.1667  76.4  42.4 87.2 60.6333  58.9  39.9  92.6667 
F3  5.5  15.5 25.5  92.8333  50.7667 46 45.9  80.3333  74.5  68.1667 
F4  18.5  24.5333 18.5  90.1667  54.9833 69.4667 50.15  57.6  54.2667  66.8333 
F5  25.5  5.93333 15.0667  74.8333  63.0333 61.3667 36.5667  83.1  44.6333  94.9667 
F6  37.76  47.3 5.5  92.6  35.5667 46.8333 49.7333  67.3667  59.1667  63.1667 
F7  50.33  46.4667 29.1  83.8667  13.1333 73.9333 11.5667  55.6667  72.8333  68.1 
F8  9.166  24.7333 13.9667  66.0333  35.7333 87.5667 46.5  60.4667  69.9667  90.8667 
F9  5.5  75.1333 15.5  82.9667  43.4333 31.9667 34.7  63.8333  93.4  58.5667 
F10  32.5333  70.2333 37.9  79.1667  43.0833 54.5833 17.3333  30.2333  88.0667  51.8667 
F11  5.66667  52.9667 15.3333  65.8  42.5667 49.1667 25.5  81.8667  72.7667  93.3667 
F12  32.3  65.6 45.4333  90.7333  20.1333 29.3667 27  42.3  80.1  72.0333  
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Table 8 
Friedman’s test for dimension 50.  

Algorithm  
GGWO GWO GWCA ABC GSA PSOGSA PSO SSA SCA MFO 

F1 10 25.5 11  69.5  35.8333  76.4 46.0333  58.2667  86.2333 86.2333 
F2 15.1667 16.7 15.1667  73.5333  46.0667  88.0667 56  67.0667  35.7667 91.4667 
F3 5.5 15.5 25.5  89.8333  44.5  41.0333 56.8667  62.1667  78.7333 85.3667 
F4 15.5 19.6833 15.5  84.5  74.7667  66.2167 42.3333  52.3333  58.4333 75.7333 
F5 25.5 5.5 15.5  83.5333  64.7  57.4 35.5  76.2667  46.3333 94.7667 
F6 36 44.6667 5.5  93.1667  27.1  40.3667 50.7333  50.5667  78.5 78.4 
F7 47.0333 41.4667 19.3333  76.2667  5.5  86.2667 22.0333  47.9333  66.1667 93 
F8 11.35 33 12.5833  68.8667  25.6333  84.7 52.8333  47.7  75.8 92.5333 
F9 5.5 71.5 15.5  90.7667  35.5  25.5 47.2  53.8  82.2333 77.5 
F10 23.9333 59.1 38.9667  84.2  64.4333  59.3667 15.3667  23.2  76.8333 59.6 
F11 5.5 55.1667 15.5  81.1667  44.4667  37.8667 25.5  71.4333  72.9 95.5 
F12 32.3667 69.6333 42.6333  90.7  14.4667  18.0667 42.8  39.3667  82.9333 72.0333  

Table 9 
Ranking of the algorithms based on Friedman’s test for dimension 30.  

Algorithm  
GGWO GWO GWCA ABC GSA PSOGSA PSO SSA SCA MFO 

F1 1 3 2 8 5 7 4 6 10 9 
F2 1 3 2 8 5 9 6 7 4 10 
F3 1 2 3 10 6 5 4 9 8 7 
F4 1 3 2 10 6 9 4 7 5 8 
F5 3 1 2 8 7 6 4 9 5 10 
F6 3 5 1 10 2 4 6 9 7 8 
F7 5 4 3 10 2 9 1 6 8 7 
F8 1 3 2 7 4 9 5 6 8 10 
F9 1 8 2 9 5 3 4 7 10 6 
F10 3 8 4 9 5 7 1 2 10 6 
F11 1 6 2 7 4 5 3 9 8 10 
F12 4 7 6 10 1 3 2 5 9 8 
Average 2.083333 4.416667 2.583333 8.833333 4.333333 6.333333 3.666667 6.833333 7.666667 8.25 
Best 1 1 1 7 1 3 1 2 4 6 
Worst 5 8 6 10 7 9 6 9 10 10  

Table 10 
Ranking of the algorithms based on Friedman’s test for dimension 50.  

Algorithm  
GGWO GWO GWCA ABC GSA PSOGSA PSO SSA SCA MFO 

F1 1 3 2 7 4 8 5 6 9 10 
F2 1 3 2 8 5 9 7 6 4 10 
F3 1 2 3 10 5 4 6 7 8 9 
F4 1 3 2 10 8 7 4 5 6 9 
F5 3 1 2 9 7 6 4 8 5 10 
F6 3 5 1 10 2 4 7 6 9 8 
F7 5 4 2 8 1 9 3 6 7 10 
F8 1 4 2 7 3 9 6 5 8 10 
F9 1 7 2 10 4 3 5 6 9 8 
F10 3 5 4 10 8 6 1 2 9 7 
F11 1 6 2 9 5 4 3 7 8 10 
F12 3 7 5 10 1 2 6 4 9 8 
Average 2 4.166667 2.416667 9 4.416667 5.916667 4.75 5.6666 7.583333 9.083333 
Best 1 1 1 7 1 2 1 2 4 7 
Worst 5 7 5 10 8 9 7 8 9 10  

Table 11 
Notations of the model.  

Sets 
State t  

Parameters 
Transmission rate from an infected case to a susceptible individual. α  
Transmission rate from a diagnosed to a susceptible individual. β  

Transmission rate from an ailing to a susceptible individual. δ  

Transmission rate from a recognized person to a susceptible individual. γ  

The detection rate of an individual with no symptoms. ε  
The probability that an infected individual knows that he/she is infected. ζ  

The probability that an infected individual does not know that he/she is infected. η  

(continued on next page) 
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of infected cases. Increasing parameter α surge the number of infected 
people considerably. 

Increasing α also rises the number of infected people who develop 
life-threatening symptoms significantly. Therefore, it becomes disclosed 
that strict measures such as social distancing are the only factors that can 
decrease this parameter. Increasing α more than four percent will result 
in a new higher peak in the number of patients who need ICU admission. 
Our results show that the US will experience its peak in the number of 
infected people from November 1, 2020, to January 10, 2021. Any in
crease in this parameter of more than 4 percent will create another peak 
in the number of infected cases who need ICU admission. Therefore, 
social distancing, wearing masks, and avoiding gatherings are the most 
critical factors that will help the country pass the peaks. Increasing other 
parameters such as β and δ have the same effect; however, their influ
ence on the number of infected cases is lower than those of parameter α. 

Moreover, increasing the value ofε considerably decreases the 
portion of infected, recovered, cumulative diagnosed, and death cases. 
Hence, to contain the virus and stop the pandemic, we can increase 
testing capacity by at least 40 percent to avoid experiencing another 
surge of infection who need ICU admission. We discovered that 

Fig. 4. Convergence plot of the GGWO.  

Table 12 
Computational results of the case study for the US.  

Stages Output of model 
after May 25 May 22 to May 25 Mar 26, to May 22 Mar 22, to March 26 Mar 13 to March 22 Jan 22, to March 13  

0.126069  0.126069  0.088807  0.442191  0.442191  0.13946 α   
7.22E-05  7.22E-05  0.004443  0.004443  0.004443  0.002902 β   

0.033251  0.033251  0.02874  0.285809  0.285809  0.036517 δ   

7.22E-05  7.22E-05  0.004443  0.004443  0.004443  0.002902 γ   

0.02025  0.017224  0.017224  0.017224  0.019209  0.019209 ε   
0.000193  0.022792  0.022792  0.054364  0.054364  0.054364 ζ   

0.000193  0.022792  0.022792  0.054364  0.054364  0.054364 η   
0.070311  0.070311  0.070311  0.070311  0.070311  0.070311 θ   

0.067394  0.067394  0.067394  0.013641  0.013641  0.013641 λ   

0.012395  0.012395  0.008573  0.009172  0.009172  0.009172 κ   

0.012395  0.012395  0.008573  0.009172  0.009172  0.009172 ξ   

0.012395  0.012395  0.008573  0.013641  0.013641  0.013641 ρ   
0.0003  0.008573  0.008573  0.009172  0.009172  0.009172 σ   
0.005631  0.005631  0.005631  0.005856  0.005856  0.005856 μ   
0.029214  0.029214  0.029214  0.031166  0.031166  0.031166 υ   
0.004884  0.004884  0.004884  0.004884  0.004884  0.004884 τ   

Table 11 (continued ) 

Sets 
State t  

The detection rate of an individual with symptoms. θ  

The recovery rate. λ, κ, ξ,ρ,σ  
The probability of developing life-threatening symptoms. μ  
The probability of developing life-threatening symptoms for a detected case. υ  
Death rate. τ  
Variables 
The portion of susceptible individuals S(t)
The portion of infected individuals (infected and undetected cases without symptoms). I(t)
The fraction of diagnosed individuals(infected and detected cases without symptoms). D(t)
The portion of ailing individuals(infected and undetected cases with symptoms). A(t)
The portion of recognized individuals(infected and detected cases with symptoms). R(t)
The portion of threatened individuals(infected detected cases that developed life-threatening symptoms). T(t)
The fraction of recovered individuals. H(t)
The fraction of death cases. E(t)
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Fig. 5. Prediction vs. real-data from the US.  

Fig. 6. Prediction of future pandemic trends.  
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Fig. 7. Prediction of the infected cases in the US.  

Fig. 8. Prediction of the cumulative diagnosed cases in the US.  
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increasing parameter ε by 100 percent would reduce the total infected 
case in the upcoming peak by 50 percent. Our study discovered that 
asymptomatic cases play the most substantial role in spreading the virus. 

7. Conclusion and outlook 

The original GWO algorithm cannot maintain a proper balance be
tween exploration and exploitation. In this research, we address this 
issue by presenting a new version of this algorithm, called GGWO, that 
enables us to solve optimization problems accurately. Our algorithm 
used the advantages of the gradient that provides valuable information 
about the solution space. Using gradient information, we accelerated the 
algorithm that enables us to solve many well-known complex bench
mark functions optimally for the first time in the field. Besides, we used 
deep mathematical concepts such as Gaussian walk and Lévy flight to 
improve the search efficiency of our methodology. These contributions 
enabled the proposed algorithm to avoid trapping in local optima. Our 
computational results on several benchmarks demonstrated the superi
ority of our algorithm to other algorithms in the literature. Moreover, we 
applied several robust statistical tests to determine significant differ
ences in the performance of the algorithm compared to state-of-the-art 
methodologies. Our outcomes revealed that our algorithm is able to 
solve most benchmarks optimally without trapping in local optima for 
the first time. Moreover, in instances with dimension 50, Friedman’s test 
showed that our algorithm’s average rank is 2, which is the best average 
rank among the analyzed algorithms. In 7 out of 12 benchmarks, the 
proposed algorithm was ranked first. 

Moreover, we applied our algorithm for predicting the COVID-19 
pandemic in the US. Our results projected the highest number of infec
ted individuals in the United States in mid-November 2020. The results 
also determined the peak of the number of hospitalized cases. Besides, 
we performed several analyses to depict upcoming scenarios of the 
pandemic to help the authorities. The results showed that the trans
mission rate from an infected person to a susceptible case is the most 
critical factor in future trends. A surge in this constant would mean
ingfully raise the total number of cases. Besides, rising the transmission 
rate from a diagnosed or recognized person to a susceptible case causes a 
surge in the total number of cases. Moreover, any increase in the value of 
ε decreases the total number of cases. Thus, to contain the virus, gov
ernments should reduce the infection transmission rate by applying 
more restrictions on social activities and simultaneously increasing daily 
tests. Our study revealed that asymptomatic cases have the most sig
nificant role in spreading the virus. 

As one of the potential research avenues, it would be interesting to 
take stochasticity and uncertainty into account (Kropat et al., 2011; 
Özmen et al., 2011; Weber et al., 2011). In addition, considering the 
effect of information sharing and spread in pandemic growth would be 
interesting (Belen et al. 2011). Besides, considering other factors such as 
age, sex, race, and health condition would significantly increase the 
accuracy of the model. From an algorithmic perspective, presenting a 
multi-objective version of the proposed algorithm could solve many- 
objective optimization problems. Moreover, the authorities could use 
the proposed methodology to optimize resource allocation during the 
outbreak. Furthermore, healthcare managers could plan for testing kit 

Fig. 9. Prediction of the recovered cases in the US.  
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Fig. A1. Dimension 50 boxplots.  
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allocation to test centers using the offered prediction methodology. 
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