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A B S T R A C T   

In response to the pandemic caused by SARS-CoV-2, we constructed a hybrid support vector machine (SVM) 
classification model using a set of publicly posted SARS-CoV-2 pseudotyped particle (PP) entry assay repurposing 
screen data to identify novel potent compounds as a starting point for drug development to treat COVID-19 
patients. Two different molecular descriptor systems, atom typing descriptors and 3D fingerprints (FPs), were 
employed to construct the SVM classification models. Both models achieved reasonable performance, with the 
area under the curve of receiver operating characteristic (AUC-ROC) of 0.84 and 0.82, respectively. The 
consensus prediction outperformed the two individual models with significantly improved AUC-ROC of 0.91, 
where the compounds with inconsistent classifications were excluded. The consensus model was then used to 
screen the 173,898 compounds in the NCATS annotated and diverse chemical libraries. Of the 255 compounds 
selected for experimental confirmation, 116 compounds exhibited inhibitory activities in the SARS-CoV-2 PP 
entry assay with IC50 values ranged between 0.17 µM and 62.2 µM, representing an enrichment factor of 3.2. 
These 116 active compounds with diverse and novel structures could potentially serve as starting points for 
chemistry optimization for COVID-19 drug discovery.   

1. Introduction: 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a 
novel coronavirus from the same family as SARS-CoV and Middle East 
respiratory syndrome (MERS) coronavirus.1 The disease caused by 
infection of SARS-CoV-2, coronavirus disease 2019 (COVID-19) remains 
a significant issue for global health, economics and society. It presents 
typical flu-like symptoms with a dry cough, sore throat, high fever, and 
breathing problems, which can become lethal in high-risk individuals.2 

Up to January 6, 2021, COVID-19 has caused the death of 1,876,100 
individuals worldwide and infected nearly 86 million people over 222 
countries, areas or territories.3 Although numerous potential therapies, 
including antiviral therapy, supportive intervention, immunomodula-
tory agents, and convalescent plasma transfusion, have been tentatively 
applied in clinical settings, there is still lack of a specific treatment for 
COVID-19.4 Currently intensive effort is ongoing worldwide to establish 
effective treatments for COVID-19 in addition to vaccine development. 

Coronavirus entry into host cells is an important determinant of viral 
infectivity and pathogenesis.5,6 It is also a major target for host immune 

surveillance and human intervention strategies.7,8 One of the strategies 
for SARS-CoV-2 drug development is to develop a rapid and sensitive 
reporter assay for testing agents that block viral entry such as small 
molecule inhibitors and neutralizing antibodies. The SARS-CoV-2 
pseudotyped particles (PP) are non-replicating, as they contain re-
porter RNA instead of a viral genome, and can be used in biosafety level 
2 (BSL-2) facilities for high-throughput screening. There have been 
several reports on generating SARS-CoV and SARS-CoV-2 viral pseudo-
types with glycoprotein-defective MLV, HIV, and VSV particles.9–11 

More recently, Johnson et al reported on the optimized pseudotyping 
conditions for the SARS-CoV-2 spike glycoprotein,12 and Chen et al 
discussed the identification of SARS-CoV-2 entry inhibitors through 
drug repurposing screens of SARS-S and MERS-S PP.13 

In this study, we have developed support vector machine (SVM) 
classification models based on a SARS-CoV-2 PP drug repurposing 
screen dataset to identify potent lead compounds and novel chemical 
matters as the starting point for drug development to treat COVID-19 
patients. To evaluate the performance of SVM classification models, 
we conducted a parallel analysis using atom typing descriptors, 3D 
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fingerprints, and consensus prediction based on two sets of descriptors. 
The consensus prediction outperformed the other two models with 
significantly improved area under the curve of receiver operating 
characteristic (AUC-ROC) of 0.91, where the compounds with incon-
sistent classifications were excluded. The consensus model was further 
used to screen the 173,898 compounds in three additional NCATS li-
braries, Sytravon, Genesis, and NPACT, none of which have been 
screened experimentally in the SARS-CoV-2 PP assay. Of the top 255 
compounds cherry-picked and assayed, 116 compounds showed inhib-
itory activities in the PP entry assay with IC50 values ranged between 
0.17 µM and 62.2 µM, representing an enrichment factor of 3.2. The 116 
PP active compounds are structurally diverse. They are also structurally 
dissimilar to the active compounds in the training set, which offers a 
favorable starting point to jumpstart medicinal chemistry optimization 
for COVID-19 drug discovery. 

2. Material and methods 

2.1. Molecular descriptors 

Molecular fingerprints (FPs) have been widely used in drug discovery 
and virtual screening in the last few decades.14 Molecular FPs are easy- 
to-use, and capable of handling vast number of molecules efficiently. 
There are many kinds of FPs including substructure- or functional group- 
based FPs, topological or path-based FPs, circular FPs, and pharmaco-
phore FPs.14 Most FPs are calculated from SMILES or 2D structures, 
while some FPs require 3D structural information, and thus are more 
demanding on computational power and software resources. Atom-pair 
2D FPs, computed from 2D structures, were reported to outperform 3D 
molecular descriptors in virtual screening, partly due to the observation 
that these 2D-based FPs may encode 3D features.15 However, inter-
atomic distance through bonds in 2D space is not equivalent to the 
distance through 3D space, which is especially true for globular mole-
cules. On the other hand, molecular shape based FPs,16 such as ROCS, 
are powerful in 3D similarity analysis, yet they are not designed for 
QSAR construction. In this study, we developed 3D atom-pair FPs to 
incorporate 3D structural information into QSAR development. 3D 
atom-pair FPs are to count atom pairs at increasing spatial distances in 
3D structures. Atoms in a molecule are assigned into 7 categories, i.e. 
aromatic carbon, aliphatic carbon, positively charged atom, negatively 
charged atom, hydrogen bond donor, hydrogen bond acceptor, and 
polar atom. There are 28 different atom-pairs in total. For each atom- 
pair, the occurrence was computed at 13 distance ranges sampled be-
tween 1.5 Å and 7.5 Å, increasing at an interval of 0.5 Å. The count of 
each atom type in a molecule is appended to the FP, thus each 3D atom- 
pair FP is the vector of 7 + 28 * 13 = 371 numerical numbers. 

Atom types are assigned according to the properties of an atom and 
its chemical environment. An atom type casting tree was designed to 
assign atom types, based on the fact of whether the atom is aromatic, 
whether the atom is in a ring, whether the atom is next to different 
functional groups, etc. This original tree, largely based on a medicinal 
chemist’s intuition, was subject to a recursive optimization cycles in 
terms of where to further split the tree, where to stop splitting, and 
where to combine the branches, in order to make the best prediction of 
logP values in the Starlist dataset containing about 11,000 structurally 
diverse compounds.17 The optimized tree output 218 atom types, 
featuring 88 different carbon types, 7 hydrogen types, 55 nitrogen types, 
31 oxygen types, 8 halide types, 23 sulfur types, and 6 phosphorus types 
(Suppl. Table 1). Forty-six correction factors are appended to catch a 
number of whole molecule features, such as the molecular globularity, 
molecular rigidity, lipophilicity, and etc (Suppl. Table 2).17 In total, a 
series of 264 numerical values comprise the final set of the atom type 
molecular descriptors. 

2.2. Datasets 

The SARS-CoV-2 PP entry assay was performed in 1536-well plate 
format. This dataset, along with the cytotoxicity counter screen dataset, 
are publicly available on the NCATS OpenData Portal (https://opendata. 
ncats.nih.gov/covid19/).18 The primary assay screened two NCATS 
compound libraries, MIPE (Mechanism Interrogation Plate), containing 
2,480 compounds, and NPC (the NCATS Pharmaceutical Collection) 
with 2,678 compounds.19 The active compounds were selected by two 
criteria, compounds showing activity in PP assay with curve class of 
− 1.1, − 1.2, − 1.3, − 2.1, − 2.2, and maximum response over 60%, while 
showing no activity in the cytotoxicity assay. There were 415 com-
pounds assigned as active. There were 2,527 compounds exhibiting no 
activity in the PP assay, which were assigned inactive. The rest com-
pounds were inconclusive, which were not included in model con-
struction. The hit rate was 14.1%. The compounds in the dataset were 
processed using Pipeline Pilot to strip salts, redundant and heavy metal 
containing compounds. The preprocessed data sets were randomly split 
into training (80%) and test (20%) sets. 

2.3. SVM 

As one of the few machine learning algorithms to address the 
generalization problem, support vector machine (SVM) is an elegant 
algorithm that has been successfully applied to many pattern recogni-
tion problems.20 The SVM classification algorithm υ-SVC, proposed by 
Schölkopf et al. and implemented by Chang and Lin in LIB-SVM, was 
employed in this study to construct predictive models for PP activity. 
The parameterization was performed on a grid-based search to minimize 
the mean standard error (MSE) of 5-fold cross-validation (CV) on the 
training data for υ, and γ, the non-linearity parameter in the kernel 
function of a Gaussian Radial Basis Function (RBF). Since the dataset in 
this study was severely imbalanced with majority of compounds being 
PP inactive, Jack-knife under-sampling strategy were applied to reba-
lance the heavily skewed training data. In Jack-knifing under-sampling, 
the majority class, the inactive compounds, was randomly divided into 
six equal-sized subgroups, and each subgroup was combined with the 
entire minority class to generate six downsized training sets. The aver-
aged probabilities of the six models produced the final prediction. The 
AUC-ROC curve was applied to evaluate the performance of the binary 
classifiers. 

2.4. SARS-CoV-2 PP assay 

Expi293F cells with stable expression of human ACE2 (HEK293- 
ACE2) cells were cultured in DMEM, 10% FBS, 1x L-glutamine, 1x Pen/ 
Strep, 1 μg/ml puromycin in a 1536-well format. Exogenous expression 
of ACE2 receptor is known to be necessary for SARS-CoV-2 pseudotyped 
virus/particle entry in HEK293 cells.11,12 Cells were seeded at 1500 
cells/well in 2 µL medium, and incubated at 37 ◦C, 5% CO2 overnight 
(~16 h). Compounds were titrated in DMSO, and 23 nL/well was 
dispensed via an automated pintool workstation (Wako Automation). 
Plates were incubated for 1 h at 37 ◦C, 5% CO2, and 2 µL/well of SARS- 
CoV-2 PP were dispensed. Plates were spinoculated by centrifugation at 
1500 rpm (453 xg) for 45 min, and incubated for 48 h at 37 ◦C, 5% CO2. 
After the incubation, the supernatant was removed with gentle centri-
fugation using a Blue Washer (BlueCat Bio). Then, 4 µL/well of Bright- 
Glo (Promega) was dispensed, incubated for 5 min at room tempera-
ture, and luminescence signal was measured using a ViewLux plate 
reader (PerkinElmer). All data was normalized with wells containing 
SARS-CoV-2 PP as 100%, and bald PP as 0% entry. 

2.5. ATP content cytotoxicity counter screen 

HEK293-ACE2 cells were seeded at 1500 cells/well in 2 µL/well 
medium in 1536-well plates, and incubated at 37 ◦C, 5% CO2 overnight 
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(~16 h). Compounds were titrated in DMSO, 23 nL/well was dispensed 
via an automated pintool workstation (Wako Automation). Plates were 
incubated for 1 h at 37 ◦C, 5% CO2, before 2 µL/well of medium was 
added. Plates were incubated for 48 h at 37 ◦C, 5% CO2. Then, 4 µL/well 
of ATPLite (PerkinElmer) was dispensed, incubated for 15 min at room 
temperature, and luminescence signal was measured using a ViewLux 
plate reader (PerkinElmer). Data was normalized with wells containing 
cells as 100%, and wells containing no cells (media only control) as 0% 
viability. 

3. Results and discussion: 

3.1. Improved performance with consensus models 

The SVC models built on the basis of atom type molecular descriptors 
and 3D atom-pair FPs both performed well on predictions of PP activity 
for the compounds in the test set, with AUC-ROC of 0.84 and 0.82, 
respectively. However, a performance boost was observed in the 
consensus model, where the AUC-ROC value was significantly improved 

to 0.91 (Figure 1). 
Atom-type-based FPs are rich in information of chemical features of 

each atom in a molecule, but poor in spatial relations among the atoms. 
Whereas 3D atom-pair FPs, on the contrary, are rich in interatomic 
spatial information, but weak in defining atomic features. Consensus 
models built on the two very different molecular descriptors achieved 
complimentary advantages by combining the strengths of both 
descriptor systems, resulting in a boost in predictivity. Only those VS 
hits that were confirmed by both SVC models were predicted as final hits 
in the consensus model (Figure 2). 

3.2. Consensus model leading to successful VS 

The consensus model was then applied in screening the compounds 
in three additional NCATS libraries, Sytravon, Genesis, and NPACT (the 
NCATS Pharmacologically Active Chemical Toolbox), none of which 
have been screened experimentally. These three compound libraries 
consisted of marketed drugs and molecules of pharmaceutical interest. 
According to the distribution of logP and molecular weight (MW) of the 
molecules in the three libraries, compounds in Genesis are more 
fragment-like, with smaller MW and higher hydrophilicity (Figure 3). 
The top 255 compounds from the consensus model were plated and 
assayed in SARS-CoV-2 PP entry assay and cytotoxicity assay. 

There were 116 compounds exhibiting measurable activities in the 
PP entry assay, representing an enrichment factor of 3.2. The IC50 values 
ranged between 0.17 µM and 62.2 µM. More interestingly, most of the 
hits of PP entry assay were either inactive or weakly active in cytotox-
icity assay (Figure 4 and S1). Although cytotoxicity was not explicitly 
incorporated in the model construction, exclusion of the cytotoxic 
compounds from the hit list for training implied for the cytotoxicity 
requirements, and in turn reflected in the models and the observed assay 
results. 

The 116 PP active compounds are structurally diverse, as shown in 
Figure 4. They are also structurally dissimilar to the active compounds in 
the training set. The average Tanimoto similarities of the 46 most active 
compounds with their closest analogues in the training set was 0.29, as 
measured by FCFP4, one of the popular circular FPs. 

4. Conclusions 

Based on the primary SARS-CoV-2 PP entry assay and cytotoxicity 
assay results, two SVC models were built to predict antiviral potency 
from chemical structures, by using two different molecular descriptor 
systems, atom type descriptors and 3D fingerprints (FPs). Both models 
achieved reasonable predictivity, with AUC-ROC of 0.84 and 0.82, 
respectively. Complementary advantage was revealed in the consensus 
model, where the compounds with inconsistent classifications were 
excluded. The performance boost of the consensus model, as indicated 
by its high AUC of 0.91, was presumably due to the diversity of the two 
molecular descriptor systems. The consensus model was recruited to 
screen the 173,898 compounds in three NCATS libraries, Sytravon, 
Genesis, and NPACT, which have not been screened experimentally. Of 
the 255 compounds plated and assayed, 116 compounds exhibited 
measurable activities in the PP entry assay with IC50 values ranging 
between 0.17 µM and 62.2 µM, representing an enrichment factor of 3.2. 
The 116 hit compounds are not only structurally diverse to each other, 
but also structurally dissimilar to the active compounds in the training 
set. The most potent compounds in the PP entry assay showed no/or 
weak cytotoxicity in the counter assay. The PP entry assay was con-
ducted in HEK293-ACE2 cells, which is known to have a largely 
cathepsin protease driven, and endocytosis dependent, entry mechanism 
for SARS-CoV-2 entry.21 The PP entry assay is a phenotypic assay and 
confirmed inhibitors could act at various entry steps, including, but not 
limited to, cell surface receptor binding, PP endocytosis, protease 
cleavage, and membrane fusion. While more follow up work is needed, 
the novel active compounds could provide a great starting point for 

Fig. 1. The receiver operating characteristic (ROC) curves of the atom-type- 
based (ATP) model (AUC = 0.84), 3D atom-pair FP-based model (AUC =
0.82) and the consensus model (AUC = 0.91). 

Fig. 2. The flowchart of data processing and model construction. The 
consensus model was achieved by excluding the disagreed hits of both 
SVC models. 
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Fig. 3. Library composition and physicochemical property distribution. (a) Pie chart of library composition in the number and percentage of compounds and 
histogram of (b) calculated logP and (c) molecular weight for the three compound libraries, Genesis in gray, Sytravon in orange, and NPACT in blue. 
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COVID-19 drug discovery. 
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