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a b s t r a c t   

The emergency use authorization (EUA) by the US-FDA for two mRNA-based vaccines BNT162b2 
(Pfizer-BioNTech) and mRNA-1273 (Moderna) has brought hope of addressing the COVID-19 pandemic which 
has killed more than two million people globally. Nanotechnology has played a significant role in the success of 
these vaccines. Nanoparticles (NPs) aid in improving stability by protecting the encapsulated mRNA from 
ribonucleases and facilitate delivery of intact mRNA to the target site. The overwhelming success of these two 
mRNA based vaccines with ~95% efficacy in phase III clinical trials can be attributed to their unique nanocarrier, 
the "lipid nanoparticles" (LNPs). LNPs are unique compared with bilayered liposomes and provide improved 
stability of the cargo, possess rigid morphology, and aid in better cellular penetration. This EUA is a major 
milestone and showcases the immense potential of nanotechnology for vaccine delivery and for fighting against 
future pandemics. Currently, these two vaccines are aiding in the alleviation of the COVID-19 health crisis and 
demonstrate the potential utility of nanomedicine for tackling health problems at the global level. 

© 2021 Elsevier Ltd. All rights reserved.    

Introduction 

It is the first time in history that two mRNA-based vaccines de-
veloped using lipid nanoparticles (LNPs) have been given emergency 

use authorization (EUA) by the US FDA for clinical therapeutics 
against the COVID-19 [1]. This undermines the skepticism on the 
potential of nanotechnology based approaches. Nanoparticles (NPs) 
offer many unique advantages compared to other conventional drug 
carriers including tailored drug release profile, enhanced surface 
area, protection of the cargo from degradation and modulation of 
drug pharmacokinetics [2–9]. Nanotechnology has fast tracked the 
development of mRNA-based COVID-19 vaccines invented by Mod-
erna and Pfizer/BioNTech [10–12]. On 16th November 2020, Moderna 
officially shared the preliminary data of the phase III clinical trial of 
its COVID-19 candidate vaccine mRNA-1273 followed by Pfizer- 
BioNTech on 18th November, 2020 with the clinical trial outcome of 
its COVID-19 candidate vaccine BNT162b2. Efficacy is an important 
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parameter for vaccines and is defined as the percentage reduction in 
disease incidence among the vaccinated group during the clinical 
trial compared with an unvaccinated control group under similar 
conditions [13]. The primary data revealed BNT162b2 and mRNA- 
1273 have an efficacy of 95% and 94.5% against SARS-CoV-2, re-
spectively [14,15]. The Moderna vaccine is based on a stabilized 
mRNA of the viral spike protein, [16,17] and the BNT162b2 is based 
on a nucleoside modified RNA (modRNA) of the SARS-CoV-2 virus.  
Table 1 lists the chemical composition of both the vaccines and Fig. 1 
depicts the key delivery carrier. 

Over the past one year, some more vaccines have been developed 
and are now being used clinically on regular a basis. The major new 
vaccines include inactivated/live attenuated virus, recombinant 
protein, recombinant viral vector, DNA vaccine, and messenger RNA 
(mRNA)-based vaccines [7,18]. COVID-19 vaccines based on con-
ventional technologies include vaccines developed by Oxford/As-
traZeneca (UK), Johnson and Johnson (USA), Gamaleya Research 
Institute (Russia), Bharat Biotech (India), SinoVac (China), Sinopharm 
(China) and others [19–25]. These conventional vaccines based on 
inactivated/live viruses offer advantages like robust immune re-
sponse, ease of storage and shipping [26], while the disadvantages 
include difficulty in manufacturing at sufficient titers, cost per dose 
and the need for multiple doses to achieve immunity [27]. However, 
mRNA-based vaccines were granted prioritized clinical approval as 
the technology ensures the stability of the mRNA, together with 
enhanced delivery efficiency to ferry the mRNA inside the host cell. 
mRNA vaccines are both non-infectious, and thus safer, and do not 
require penetration into the nucleus, which is difficult to achieve  
[28]. Further, these vaccines can be produced rapidly, which is a 
major advantage in the existing pandemic, where billions of doses 
are needed in a short time to vaccinate the world population  
[29–32]. mRNA uptake by a cell is a very challenging task, firstly, due 
to presence of RNA degrading enzymes, which debase every RNA 
molecule they encounter [33,34], and secondly, being negatively 
charged, mRNA cannot easily cross the negatively charged cell 
membrane. Hence, to address this challenge, researchers have de-
signed LNP based carrier molecules to preserve mRNA integrity and 
foster its uptake inside the cell [35]. LNPs are complex systems, 
which aid effective delivery of siRNA or mRNA into the host cells. 
Being a US-FDA approved carrier, LNPs are now extensively used for 
delivering antigen-encoding mRNA, encapsulating viral antigens 
against influenza, rabies, human immunodeficiency virus (HIV), 
cytomegalovirus (CMV) and others [36,37]. 

The focus on delivery: key advantages of lipid nanoparticles 

In the late 1960s, liposomes were anticipated as a novel drug 
delivery system (NDDS) and since then have been improved for 
disease targeting [38]. LNPs present a novel colloidal drug delivery 
system, and differ from liposomes in that they form micellar struc-
tures within the core that can be modified based on formulation and 
synthesis parameters [39]. The structure of LNPs consists of a solid 
core made up of lipid, which is composed of triglycerides or any 
other glyceride mixture. A typical LNP has four parts: (i) an ionizable 
lipid portion that allows self-assembly, enhances the rate of mRNA 
encapsulation, and aids endosomal escape, (ii) a stabilizing agent for 
stability and membrane fusion (cholesterol or a sphingolipid), (iii) a 
phospholipid that stabilizes the bilayer, encapsulating the lipid 
structure [40], and (iv) polyethylene glycol (PEG), a lipid-based sta-
bilizing agent that reduces nonspecific binding to proteins, increases 
half-life, and boosts circulation time by aiding escape from first pass 
metabolism or reticulo-endothelial system (RES). Their rigid mor-
phology and kinetic stability are key advantages, making LNPs, a 
carrier of choice over liposomes. Their potential to transport a di-
verse group of therapeutic cargos from therapeutic drugs to nucleic 
acids (mRNA, siRNA, DNA) making them an appealing drug delivery 
system [41–43]. Once mRNA enters inside the cytoplasm from the 
endosome, it translates into the encoded immunogenic protein 
against specific antigens [44,45]. This recent discovery and integra-
tion of nanotechnology have shown various advantages in safer 
delivery of next generation RNA vaccines. 

In addition to their simple synthesis method, small size and 
serum stability, the efficacy of LNPs in the delivery of nucleic acids 
into cells makes them superior to other carriers. Since biological 
membranes and nucleic acids are negatively charged, it is difficult to 
deliver mRNA across this barrier. LNPs offer an ideal platform for 
delivering nucleic acid therapies as the ionizable lipids are near- 
neutrally charged at physiological pH. However, in acidic endosomal 
compartments (pH-4.5), they become ionized, promoting endosomal 
escape for effective intracellular delivery [46,47]. Hence, LNPs 
achieve high encapsulation rate for nucleic acids with improved 
transfection efficiency. Furthermore, LNPs have relatively low cyto-
toxicity and immunogenicity compared to liposomes, thus favoring 
delivery of nucleic acid based therapeutics [48–50]. 

Lipids used in formulating these nanoparticles are biocompatible 
and are well endured by fatty acids, triglycerides, waxes and ster-
oids. In addition, selecting a good combination of emulsifiers could 

Table 1 
Salient features of Pfizer-BioNTech and Moderna mRNA vaccines.     

Key features Pfizer-BioNTech (BNT162b2) Moderna (mRNA-1273)  

Active ingredients: Messenger 
ribonucleic acid (mRNA)  

▪ Nucleoside modified messenger RNA (modRNA) 
encoding the viral spike glycoprotein (S) of SARS- 
CoV-2.  

▪ Synthetic mRNA encoding the pre-fusion stabilized spike 
glycoprotein (S) of SARS-CoV-2 virus. 

Fats: Encases & protects the 
fragile mRNA  

▪ Cholesterol  
▪ 2-[(polyethylene glycol)-2000]-N,N- 

ditetradecylacetamide  
▪ ((4-hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2- 

hexyldecanoate)  
▪ 1,2-distearoyl-sn- glycero-3-phosphocholine  

▪ Cholesterol  
▪ Sphingomyelin-102(SM-102)  
▪ Polyethylene glycol [PEG]2000 dimyristoyl glycerol [DMG]  
▪ 1,2-distearoyl-sn-glycero-3-phosphocholine [DSPC] 

Saline solution: Buffer to maintain 
the pH level close to our body  

▪ Dibasic sodium phosphate dihydrate  
▪ Monobasic potassium  
▪ Potassium chloride  
▪ Phosphate  
▪ Sodium chloride  
▪ Sucrose  

▪ Acetic acid  
▪ Sodium acetate  
▪ Sucrose  
▪ Tromethamine  
▪ Tromethaminehydrochloride 

Storage temperature  ▪ (−80 to −60 °C storage)  ▪ (−25 to −15 °C storage) 
Stability  ▪ Stable for 6 months at −80 °C  

▪ Stable for 5 days at 2–8 °C  
▪ Stable for 6 months at −20 °C  
▪ Stable for 30 days at 2–8 °C 

Dosing  ▪ 0.3 mL (containing 30 μg vaccine), 2 doses (first 
priming shot followed by a second booster shot), 21 
days apart  

▪ 0.5 mL (containing 100 μg vaccine), 2 doses (first priming shot 
followed by a second booster shot), 28 days apart 

Efficacy in phase- III clinical trial  ▪ 95%  ▪ 94.5% 
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make the formulation more stable with higher efficiency [52]. In 
terms of industrial scale up, LNPs offer multiple advantages com-
pared with other carrier systems, such as large scale production 
using microfluidics or T-junction mixing, stability, and low cost of 
raw materials [52–54]. The most significant parameters in LNPs 
characterization are particle size, their size distribution, degree of 
polymorphism, zeta potential, crystallinity, drug loading, drug re-
lease and entrapment efficiency [55]. Drug release from LNPs mostly 
relies on the type of matrix used and the position of drug in the 
matrix formulation. The ingredients of lipid matrix, manufacturing 
parameters and surfactant concentrations, such as rate of stirring, 
temperature etc. can modulate the drug release profile [56]. In a 
nutshell, the most fundamental rationale of using LNPs, as an 

alternative to polymeric nanoparticles, is the simplicity of large- 
scale manufacturing and their low toxicity [57,58]. 

The path forward 

To harness the full potential of mRNA therapeutics in future, the 
following challenges need particular attention: (i) the intrinsic im-
munogenicity of mRNA; (ii) the propensity to enzymatic and 
thermal degradation; and (iii) the inability to cross negatively 
charged cell membranes. Nucleoside modification, sequence en-
gineering by codon optimization and uridine depletion are some of 
the methods used to reduce inherent immunogenicity, protect from 
enzymatic degradation and facilitate cellular uptake of the mRNA 

Fig. 1. A) The general structure of lipid nanoparticle (LNP) showing the major components and the unique mRNA cargo of, B) Pfizer-BioNTech, and C) Moderna vaccines. 
Figure A) Reprinted (adapted) with permission from [53] and is Copyright (2021) of American Chemical Society. Figure B) and C) were created with BioRender.com. 
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platform [59–63]. The mean half-life of mRNA vaccines decreases 
with increasing temperature, which is a challenge for their long term 
storage. However, chemical modification by applying an outer 
coating of nonionic or an ionic surfactant enhances the thermal 
stability of mRNA. These chemical alterations change the dimensions 
of a nanoparticle and aid in the effective carrying of mRNA with 
higher thermal stability. Some of the reported allergic reactions to 
LNP nanovaccines can be minimized by using PEG complexed with 
lipids, which have improved biocompatibility. Hence, in future 
mRNA-based nanovaccines should possess an improved safety pro-
file, higher stability (for storage at higher temperature), and en-
hanced cellular penetration. The next generation RNA vaccines will 
be more personalized and the tools of genetic engineering will play a 
crucial role in exploiting the full potential of the mRNA platform. 

Concluding remarks 

The EUA of the Pfizer-BioNTech and Moderna vaccines has un-
doubtedly brought great hope for the years ahead. However, it re-
mains challenging to decide how to prioritize the allocation of 
vaccines to the population. While the EUA of these mRNA vaccines 
brings hope for developed countries, these vaccines remain largely 
out of reach of developing and underdeveloped nations on economic 
grounds and need for special storage conditions. At high or at room 
temperature, mRNA has poor stability, and thus these mRNA-based 
vaccines need to be stored at such a low temperature. The Pfizer- 
BioNTech vaccine needs to be stored at −80 °C to −60 °C and the 
Moderna vaccine at −25 °C to −15 °C to avoid degradation of mRNA 
encased inside the LNPs. Further, as it is common to all vaccines, 
mRNA vaccines are not devoid of side effects, including pain at the 
site of administration, fever, chills, fatigue, headache, muscle pain, 
and joint pain. In addition, some patients have experienced allergic 
responses, which has been linked to the presence of PEG in the 
formulation [64]. The adverse effects, duration of protection and 
storage at very low temperature are critical issues that require 
careful consideration for the upcoming COVID-19 nanovaccines [54]. 

The Oxford-AstraZeneca vaccine has also been approved and is in 
widespread use in the UK and elsewhere. It is the frontline vaccine 
candidate for the mass inoculation of global population along with 
the other conventional vaccines being developed around the globe. 
Nonetheless, the two mRNA vaccines represent a great success for 
biotechnology and molecular therapeutics. It motivates materials 
scientists who have developed and optimized nanoformulations for 
drug and vaccine delivery over the past two decades and encourages 
their acceptance in nanomedicines. Until the COVID-19 crisis, on-
cology had been the major area where nanotechnology based drug 
carriers had been widely explored. These two mRNA-based vaccine 
formulations will serve as a stepping stone for future applications of 
nanomedicine. These nanocarrier based vaccines highlight the im-
portance of the nanoscale and the ability of nanoscale delivery 
systems to protect payloads from degradation, provide tailored 
biodistribution and cellular delivery. 
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