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B S T R A C T

his paper is based on the observation that, during Covid-19 epidemic, the choice of which individuals should be tested has an important impact on the effectiveness
f selective confinement measures. This decision problem is closely related to the problem of optimal sensor selection, which is a very active research subject
n control engineering. The goal of this paper is to propose a policy to smartly select the individuals to be tested. The main idea is to model the epidemics
s a stochastic dynamic system and to select the individual to be tested accordingly to some optimality criteria, e.g. to minimize the probability of undetected
symptomatic cases. Every day, the probability of infection of the different individuals is updated making use of the stochastic model of the phenomenon and
f the information collected in the previous days. Simulations for a closed community of 10’000 individuals show that the proposed technique, coupled with a
elective confinement policy, can reduce the spread of the disease while limiting the number of individuals confined if compared to the simple contact tracing
f positive and to an off-line test selection strategy based on the number of contacts.
. Introduction

During the Covid-19 epidemic, one of the limiting factors that
ffected the capability to handle the spread of the disease was the
imited number of available tests. This lack of information has created
ajor issues in several countries and promoted the idea that testing is

ssential in the control of an epidemic (Salath et al., 2020).
Recent research works support the importance of testing to effec-

ively control an epidemic, see Brotherhood, Kircher, Santos, and Tertilt
2020), Eichenbaum, Rebelo, and Trabandt (2020) and Wang (2020).
n this regard, the selection of the individuals to be tested has become a
ajor concern in many countries. However, to the best of the authors’

nowledge, research on how to define these testing policies is still at a
ery early stage (Nowzari, Preciado, & Pappas, 2016).

This observation is testified by the de facto policies applied by deci-
ion makers during the Covid-19 epidemic. Among the various policies
e can mention the use of contact tracing of individuals exposed to
ositive cases (Cereda et al., 2020), contact tracing combined with
dditional random testing (Shim, Tariq, Choi, Lee, & Chowell, 2020),
he use of exhaustive control of new arrivals in isolated communi-
ies (Wang, Ng, & Brook, 2020), and the testing of people with high
umber of human interaction such as health care personnel (Padula,
020). It is worth to note that most of these strategies rely on the ap-
earance of symptomatic cases and required the use of hard lockdown
olicies to be effective.

✩ This work has been supported by the Fonds de la Recherche Scientifique-FNRS under the Grant number 40003443 (‘‘Smart Testing’’) and by the European
ommission under the Grant Agreement number 774571 (project PANTHEON, ‘‘Precision farming of hazelnut orchards’’).
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E-mail addresses: matthias.pezzutto@phd.unipd.it (M. Pezzutto), nbonoros@ulb.ac.be (N. Bono Rosselló), schenato@dei.unipd.it (L. Schenato),

garone@ulb.ac.be (E. Garone).

Interestingly enough, the selection of individuals to test has impor-
tant similarities with the problem of sensor selection for state estima-
tion in the context of Wireless Sensor Networks. In both cases only
a limited amount of information on a partially unknown process can
be retrieved due to a limited amount of resources, i.e. the number of
available tests or the channel bandwidth, respectively. The objective is
to optimize where to collect the measurements based on the available
information and on the model of the process. Sensor selection has
been an active field in the last two decades: a method based on
convex optimization is proposed by Joshi and Boyd (2008), a stochastic
policy is studied by Gupta, Chung, Hassibi, and Murray (2006) and the
optimal periodic policy for two sensors is given by Shi, Cheng, and Chen
(2011). In the case of a general number of sensors the problem has been
explored by Vitus, Zhang, Abate, Hu, and Tomlin (2012) over a finite
horizon, by Mo, Garone, and Sinopoli (2014) over the infinite horizon,
and for a general number of independent dynamical systems by Han,
Wu, Zhang, and Shi (2017). However most of available works on sensor
selection focus on real-valued dynamical systems, while the case where
the process state assumes values from a finite set is at the best of our
knowledge still largely unexplored.

The first step to propose an effective smart testing is the selection of
an adequate model to monitor the epidemic. Compartmental epidemic
models proved to provide accurate estimations of the dynamics of an
vailable online 26 March 2021
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epidemic (Brauer, 2008). These models can be divided in determin-
istic models, governed by differential equations (McCluskey, 2010),
or stochastic models, where the heterogeneity of small communities
can be better represented (Bøjrnstad, Finkenstädt, & Grenfell, 2002;
Lopez-Herrero & Amador, 2017). New models tailored for the Covid-
19 case have been developed seeking for more suitable approaches
for the design of control strategies, e.g. Casella (2020), Franco (2020)
and Giordano et al. (2020). However, the nature of compartmental
models implies an homogeneously distributed population with random
mixing between individuals, which does not inform about the granular
distribution of the disease. To model the granularity of the spread of
a disease, network diffusion models provide a better insight of the
population’s distribution and allow to identify the critical clusters of
the spreading.

The most common network diffusion models are based on Stochastic
Cellular Automata (SCA), where the spread of the disease depends on
the interaction between neighbouring cells (Mikler, Venkatachalam,
& Abbas, 2005; White, del Rey, & Sánchez, 2007). This idea has
been lately extended to more complex network topologies (Keeling &
Eames, 2005; Li, Tsai, & Yang, 2014). In these complex network models
the interactions between individuals are modelled as the edges of a
graph. This representation makes it possible to also model time-varying
interactions, as well as selective quarantine policies (e.g. by removing
the connections of certain individual with the rest of the population).
From the theoretical viewpoint it is possible to prove that any SCA
model is equivalent to a Markov chain (Ruhi & Hassibi, 2015). As we
will discuss later on in this paper, this fact, although important from
the theoretical viewpoint, is however not very useful in practice as the
resulting Markov chain has a number of states that is exponential in
the number of the states of SCA.

It is important to mention that while the use of network models has
been often overlooked due to the difficulty to monitor and define the
interactions in real communities, in the authors’ opinion the conception
of more advanced tracking systems during the last pandemic leads
naturally to this kind of approaches.

The problem of estimating the state of partially observable dynamic
networks has been object of only a few studies in the last few years.
One of the most studied problems is the estimation of the source of an
information spread in networks using only limited observations. Zhu
and Ying (2014), Zhu and Ying (2016) propose a sample path algorithm
to estimate the location of a source of information or a disease. Alexan-
dru and Dragotti (2019) extend this idea to the case where multiple
rumours are spread and the time of the origin of the information is
unknown. These works provide interesting idea that can be possibly
adapted for the estimation of the evolution of an epidemic over a
network.

An alternative approach to the surveillance of epidemics within
networks can be found on the use of a sentinel system to estimate
the evolution of the epidemic as done by Braeye, Quoilin, and Hens
(2019). A sentinel system involves a limited network of selected report-
ing sites monitoring the disease in small portions of the population.
The obtained data is used to estimate the behaviour of the entire
network. Souty and Boëlle (2016) estimate the total number of cases of
influenza based on the population density associated to each reporting
site. Although this approach uses the density of population to improve
the estimation of the state of the epidemic, the total population is still
divided into clusters with homogeneous distribution and interactions.

At the time of the writing of this paper, some early work presenting
attempts to define smart testing and quarantine policies have been
just published. In particular (Berger, Herkenhoff, & Mongey, 0000)
propose a policy based on conditional quarantine and random testing.
However, the model based on partial observations assumes that tested
negatives are ‘‘tagged’’ and they remain observable after a single test.
In another recent paper on the subject by Kasy and Teytelboym (2020),
the trade-off between quarantine and testing is regarded by defining a
541

certain threshold based on the infection probability and related to the
cost of testing or quarantining an individual. In this case, the partial
information is inferred based on the social group of the individual
rather than its interactions within the network.

The main contribution of this paper is to propose a smart testing
strategy to select the individuals to be tested based on the estimated
probability of infection of each individual. As a first step we propose
a method to make an approximated estimation of the current state of
the epidemic which is computationally inexpensive. On the basis of this
estimation, the testing policy is defined as a constrained optimization
problem. This testing policy is coupled with a selective confinement
policy which allows to only confine few individuals of the population
based on the outcome of the tests. We compare the proposed strategy
with the current best practice, namely contact tracing of positives,
and a suitable topology-based strategy, where individuals to test are
selected according to their number of contacts. Numerical simulations
show the advantage of this approach both in terms of number of
infected individuals and in terms of number of individuals put in
quarantine at each time. In particular, on a population of 10’000
individuals, the total number of infected is 8 times less and the total
amount of days spent in quarantine is 5 times less with respect to
the current best practice, and the improvement with respect to the
topology-based strategy is even more evident. These results also show
that tracing of contacts is crucial to keep under control the epidemic
but it can be largely improved by using the algorithms proposed in
this paper. The proposed algorithms can be used in a centralized way
(e.g. by a decision maker) but they are also suitable to work in a
distributed privacy-aware fashion and to integrate with tracing devices.

The remainder of the paper is organized as follows. In Section 2
the proposed model of the epidemic is presented. Sections 3 and 4
introduce the exact and the approximated estimations of the evolution
of the epidemic. Section 5 defines the testing strategy and Section 6 the
quarantine actions. In Section 7 several simulations demonstrate the
performance of the proposed strategies. Section 8 provides conclusions
and future works.

2. Model

Consider a population of 𝑁 individuals where a disease is spreading.
Each individual can be susceptible, infected, or removed. The spreading
of the epidemic is modelled according to the following assumption.

Assumption 1. A susceptible individual can be infected by other
infected individuals of the population with whom he had a direct
contact. Once an individual is infected, the individual will eventually
become removed and cannot be infected a second time.

The exposure to an infected individual is a necessary but not-sufficient
condition for a susceptible individual to become infected. Indeed, the
contagion actually takes place if some events (e.g. exchange of body
fluids for flu-like illnesses) have occurred and thus it is intrinsically
stochastic. Motivated by these considerations, we model the transmis-
sion of the disease through random variables. Similarly, also recovery
is modelled as a random variable to capture the uncertainty of the
recovery process.

Mathematically, each individual 𝑖 has at fixed time instants, say
every day, 𝑡 a state 𝜉𝑖(𝑡) ∈ {𝑆, 𝐼, 𝑅} that can take three logical states:

• S - susceptible, the individual is healthy and was never infected
before, so it is susceptible of being infected;

• I - infected, the individual is infected and can infect others;
• R - removed, the individual has been infected in the past and

cannot be infected anymore (because immune or dead).

e denote with 𝑢𝑖(𝑡) ∈ {0, 1} the binary stochastic input representing
he stochastic contagion event at time 𝑡. The variable takes value 𝑢𝑖(𝑡) =
if the 𝑖th individual has been infected between time 𝑡 and time 𝑡 + 1,
and 𝑢𝑖(𝑡) = 0 otherwise.
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Fig. 1. Evolution of the state 𝜉𝑖(𝑡) of 𝑖th individual.

To characterize 𝑢𝑖 we introduce the transmission variables 𝑇𝑗𝑖(𝑡) ∈
0, 1} which takes value 𝑇𝑗𝑖(𝑡) = 1 if the infection is transmitted
rom 𝑗 to 𝑖 between time 𝑡 and time 𝑡 + 1 given that the individual

was infected and the individual 𝑖 was susceptible. The same way
𝑖(𝑡) ∈ {0, 1} denotes the binary stochastic variable representing the
tochastic recovery event at time 𝑡. In particular, 𝑟𝑖(𝑡) = 1 if the 𝑖th
ndividual becomes removed between time 𝑡 and time 𝑡+1, and 𝑟𝑖(𝑡) = 0
therwise. Note that the recovery variable 𝑟𝑖(𝑡) indicates the moment
hat individual 𝑖 is not infected anymore, due to immunity or death.

Finally the state of each individual evolves according to the follow-
ng equation

𝑖(𝑡 + 1) =

⎧

⎪

⎨

⎪

⎩

𝑆 if 𝜉𝑖(𝑡) = 𝑆 and 𝑢𝑖(𝑡) = 0
𝐼 if 𝜉𝑖(𝑡) = 𝑆 and 𝑢𝑖(𝑡) = 1 or if 𝜉𝑖(𝑡) = 𝐼 and 𝑟𝑖(𝑡) = 0
𝑅 if 𝜉𝑖(𝑡) = 𝐼 and 𝑟𝑖(𝑡) = 1 or if 𝜉𝑖(𝑡) = 𝑅

(1)

ith

𝑖(𝑡) = 1 −
∏

𝑗 ∶ 𝜉𝑗 (𝑡)=𝐼
(1 − 𝑇𝑗𝑖(𝑡)) (2)

The state evolution of each individual is depicted by Fig. 1. From the
ast equation it is clear that an individual 𝑖 can be infected by individual

if individual 𝑗 was infected, i.e. 𝜉𝑗 (𝑡) = 𝐼 , and if the transmission
ccurred, i.e. 𝑇𝑗𝑖(𝑡) = 1. The modelling of variable 𝑇𝑗𝑖(𝑡) is summarized
y the following assumption.

ssumption 2. The transmission of the disease 𝑇𝑗𝑖(𝑡) from an infected
ndividual 𝑗 to a susceptible individual 𝑖 is a Bernoulli random variable
ith mean 𝑤𝑖𝑗 (𝑡), such as 𝑇𝑖𝑗 ∼ (𝑤𝑖𝑗 ). Moreover 𝑇𝑗𝑖(𝑡) is independent of

𝑇𝑚𝑛(𝑘) ∀𝑚, 𝑛, 𝑘 ≠ 𝑖, 𝑗, 𝑡 and of the initial state 𝜉𝑛(0) ∀𝑛. The mean values
are symmetric, i.e. 𝑤𝑖𝑗 (𝑡) = 𝑤𝑗𝑖(𝑡). For any pair 𝑖, 𝑗 of individuals that
have no contacts 𝑤𝑖𝑗 (𝑡) = 0.

The variable 𝑟𝑖(𝑡) is modelled according to the following assumption,

Assumption 3. The recovery 𝑟𝑖(𝑡) is a Bernoulli random variable
with mean 𝜆𝑖 constant over time. Moreover 𝑟𝑖(𝑡) is independent of
𝑟𝑗 (𝑘) ∀𝑗, 𝑘 ≠ 𝑖, 𝑡, of 𝑇𝑚𝑛(𝑘) ∀𝑚, 𝑛, 𝑘, and of the initial state 𝜉𝑛(0) ∀𝑛.

In general the system is partially observable as symptoms only
appear in a small percentage of the population. The appearance of
symptoms is modelled by the random variable 𝑒𝑖(𝑡) ∈ {0, 1} taking value
𝑒𝑖(𝑡) = 1 if 𝑖th individual is infected and shows symptoms between time
𝑡 and time 𝑡+1, and 0 otherwise. We model it according to the following
assumption.

Assumption 4. The appearance of symptoms 𝑒𝑖(𝑡) is a Bernoulli
random variable with mean 𝜃𝑖 constant over time. Moreover 𝑒𝑖(𝑡) is
independent of 𝑒𝑗 (𝑘) and 𝑟𝑗 (𝑘) ∀𝑗, 𝑘 ≠ 𝑖, 𝑡, of 𝑇𝑚𝑛(𝑘) ∀𝑚, 𝑛, 𝑘, and of the
initial state 𝜉𝑛(0) ∀𝑛.
542
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2.1. Problem formulation

In this paper we consider the case in which only a limited amount
𝑁𝑇 of tests are available at each time 𝑡. We assume that when a test is
performed on the 𝑖th individual at time 𝑡 we obtain the information if
𝜉𝑖(𝑡) = 𝐼 or not. No other information is provided by the test, so it is not
ossible to distinguish if an individual is susceptible or recovered. We
an formally introduce the auxiliary state 𝑥𝑖(𝑡), taking value 𝑥𝑖(𝑡) = 1
f 𝜉𝑖(𝑡) = 𝐼 , and 𝑥𝑖(𝑡) = 0 otherwise, that represents the binary variable
ccessed by the test. For Covid-19 the value of 𝑥𝑖(𝑡) can be retrieved by
xploiting several different kind of tests. To date, even if false negatives
re not completely avoided, PCR tests are widely considered to be very
ccurate (it is the only recommended method for the identification of
ovid-19, see World Health Organization (2020a), and the reference
tandard for many medical studies, see e.g. Dinnes et al. (2020)). Based
n this consideration, the paper assumes that available tests are ideal,
hich is in line with an ample part of the literature dealing with testing

trategies (Berger et al., 0000; Piguillem & Shi, 0000).
To model the testing phase, we introduce the selection variable 𝛾𝑖(𝑡)

aking value 𝛾𝑖(𝑡) = 1 if individual 𝑖 is selected to be tested at time 𝑡
nd 𝛾𝑖(𝑡) = 0 otherwise. The variable 𝛾(𝑡) is thus a controlled variable
hat can be managed to tackle the disease diffusion. Beside tested
ndividuals, we also consider that additional information is provided
y symptomatic individuals. In the context of this work, a symptomatic
ndividual is assumed to be an infected person who spontaneously visits

medical centre with clear symptoms and it is diagnosed with the
isease. Let (𝑡) = {𝑠1(𝑡), 𝑠2(𝑡) , … , 𝑠𝑀(𝑡)(𝑡)} be the set containing the
ndices of the individuals who are tested at the time instant 𝑡 and of the
ndividuals who show first symptoms at time 𝑡. Note that the cardinality
(𝑡) of the set is time-dependent since the number of symptomatic

ndividuals is not constant. The observed output at time 𝑡 can be then
xpressed as

(𝑡) =
{

𝑥𝑠1(𝑡)(𝑡), 𝑥𝑠2(𝑡)(𝑡), … , 𝑥𝑠𝑀(𝑡)
(𝑡)
}

(3)

hile the set of the observed outputs up to time instant 𝑡 is
0∶𝑡 = {𝑦(0), 𝑦(1), … , 𝑦(𝑡)} (4)

nd it represents the information available at time instant 𝑡. Beside
he testing phase, the system evolution is affected by the quarantine
echanism represented by the control variable 𝑞𝑖(𝑡), taking value 𝑞𝑖(𝑡) =
if individual 𝑖 is in quarantine at time 𝑡 and 𝑞𝑖(𝑡) = 0 otherwise. The

ariable 𝑞(𝑡) is the control variable that governments use to tackle the
pidemic.

The goal of this paper is the definition of a policy to select the
ndividuals to be tested that, in conjunction with a selective quarantine
olicy, is able to reduce the spread of the disease while keeping a
imited number of individuals in quarantine. To do so, we tackle the
roblem by proposing the closed-loop structure reported in Fig. 2
onsisting of three stages: (1) estimation of the states 𝑥𝑖(𝑡) using the
nformation available 𝑌 0∶𝑡 from the feedback of the outputs; (2) selec-
ion of the 𝑁𝑇 individuals to test by optimizing a reward function 𝑅(⋅);
nd (3) based on the output 𝑦(𝑡), execution of control actions through
elective quarantine.

The following sections focus on the derivation of a proper state
stimation given the information available 𝑌 0∶𝑡 and the definition of
suitable reward 𝑅(⋅).

. Exact estimate: Hidden Markov model

The state of the whole population is defined by the vector

(𝑡) =
(

𝜉1(𝑡), 𝜉2(𝑡), … , 𝜉𝑁 (𝑡)
)

∈ {𝑆, 𝐼, 𝑅}𝑁 . (5)

nder Assumptions 1, 2, 3, at any time 𝑡, the next state of the pop-
lation 𝜉(𝑡 + 1) depends only on the current state of the population

(𝑡). Accordingly, in line of principle, the stochastic process describing
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Fig. 2. Control scheme.

he evolution of the epidemic satisfies the Markov property and can be
epresented by a Markov chain.

To model the dynamics of the Markov chain, we have to derive the
ransition matrix 𝐴 ∈ 3𝑁 × 3𝑁 whose entries are

vz = 𝑃 (𝜉(𝑡 + 1) = 𝑧|𝜉(𝑡) = 𝑣). (6)

here 𝑧, 𝑣 ∈ {𝑆, 𝐼, 𝑅}𝑁 represent two possible states of the network,
nd z, v represent the indices of the transition matrix associated to
hem. Under Assumptions 1, 2, 3, the next states of two individuals
re independent given the previous state of the population. It follows
hat

(𝜉(𝑡 + 1) = 𝑧|𝜉(𝑡) = 𝑣) =
𝑁
∏

𝑖=1
𝑃 (𝜉𝑖(𝑡) = 𝑧𝑖|𝜉(𝑡 − 1) = 𝑣), (7)

llowing to compute the transition probabilities of the network as a
erivation of the transition probabilities between the states of each
ingle individual. Since only the transition from susceptible to infected
epends on the state of other individuals, the following simplification
olds

(𝜉𝑖(𝑡 + 1) = 𝑧𝑖|𝜉(𝑡) = 𝑣) =

{

𝑃 (𝜉𝑖(𝑡 + 1) = 𝑧𝑖|𝜉(𝑡) = 𝑣) if 𝑣𝑖 = 𝑆
𝑃 (𝜉𝑖(𝑡 + 1) = 𝑧𝑖|𝜉𝑖(𝑡) = 𝑣𝑖) otherwise,

(8)

where 𝑧𝑖, 𝑣𝑖 ∈ {𝑆, 𝐼, 𝑅}.
The state transition probability of any individual at time 𝑡 can be

computed as
{

𝑃 (𝜉𝑖(𝑡 + 1) = 𝐼|𝜉(𝑡) = 𝑣, 𝑣𝑖 = 𝑆) = 1 −
∏

𝑗 ∶ 𝑣𝑗=𝐼 (1 −𝑤𝑗𝑖(𝑡))

𝑃 (𝜉𝑖(𝑡 + 1) = 𝑅|𝜉𝑖(𝑡) = 𝐼) = 𝜆𝑖,
(9)

while the probability of remaining in a given state is

⎧

⎪

⎨

⎪

⎩

𝑃 (𝜉𝑖(𝑡 + 1) = 𝑆|𝜉(𝑡) = 𝑣, 𝑣𝑖 = 𝑆) = 1 − 𝑃 (𝜉𝑖(𝑡 + 1) = 𝐼|𝜉(𝑡) = 𝑣, 𝑣𝑖 = 𝑆),
𝑃 (𝜉𝑖(𝑡 + 1) = 𝐼|𝜉𝑖(𝑡) = 𝐼) = 1 − 𝑃 (𝜉𝑖(𝑡 + 1) = 𝑅|𝜉𝑖(𝑡) = 𝐼),
𝑃 (𝜉𝑖(𝑡 + 1) = 𝑅|𝜉𝑖(𝑡) = 𝑅) = 1.

(10)

All other transitions have probability 0.
A major difficulty in our setting is that the evolution of the system

can be only observed by symptomatic individuals and selective tests
on the population. Since 𝑀(𝑡) < 𝑁 , the Markov model is hidden
and can be only partially observed through the output. The complete
characterization of the state given the available information is provided
by the joint distribution 𝑝(𝜉(𝑡), 𝑌 0∶𝑡). For a given 𝑌 0∶𝑡, the joint distri-
bution can be represented by a vector of dimension 3𝑁 with entries
𝑝(𝑧, 𝑌 0∶𝑡) = 𝑝̂𝑡(𝑧) ∀𝑧 ∈ {𝑆, 𝐼, 𝑅}𝑁 . In the case of Hidden Markov
Models, this joint distribution can be easily computed by means of the
forward algorithm (see Blunsom (2004) and Rabiner (1989)), providing
the following expression

̂𝑡(𝑧) = 𝑝(𝜉(𝑡) = 𝑧, 𝑌 0∶𝑡−1, 𝑦(𝑡))

= 𝑃 (𝑦(𝑡)|𝜉(𝑡) = 𝑧, 𝑌 0∶𝑡−1)𝑝(𝜉(𝑡) = 𝑧, 𝑌 0∶𝑡−1)
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= 𝑃 (𝑦(𝑡)|𝜉(𝑡) = 𝑧)
∑

𝑣
𝑃 (𝜉(𝑡) = 𝑧|𝜉(𝑡 − 1) = 𝑣)𝑝(𝜉(𝑡 − 1) = 𝑣, 𝑌 0∶𝑡−1)

= 𝑃 (𝑦(𝑡)|𝜉(𝑡) = 𝑧)
∑

𝑣
𝐴vz𝑝̂𝑡−1(𝑣). (11)

The computation of 𝑃 (𝑦(𝑡)|𝜉(𝑡) = 𝑧) is then easy: 𝑃 (𝑦(𝑡)|𝜉(𝑡) = 𝑧) = 1 if
the state 𝜉(𝑡) = 𝑧 gives the output 𝑦(𝑡), and 0 otherwise, namely if 𝑦(𝑡)
is not a possible output for the state 𝑧.

From the joint distribution, the conditional distribution is

𝑝(𝜉(𝑡) = 𝑧 ∣ 𝑌 0∶𝑡) =
𝑝(𝜉(𝑡) = 𝑧, 𝑌 0∶𝑡)

𝑝(𝑌 0∶𝑡)
=

𝑝(𝜉(𝑡) = 𝑧, 𝑌 0∶𝑡)
∑

𝑧 𝑝(𝜉(𝑡) = 𝑧, 𝑌 0∶𝑡)
(12)

where we used the Bayes rule and the law of total probability. Recall
now that the optimal estimate of a random variable corresponds to the
expected value given the observations, see Anderson and Moore (2012).
Then the optimal estimate of the 𝑖-individual 𝑥̂𝑖(𝑡|𝑡) is

̂ 𝑖(𝑡|𝑡) = E
[

𝑥𝑖(𝑡)|𝑌 0∶𝑡] = 𝑃 (𝑥𝑖(𝑡) = 1|𝑌 0∶𝑡) =
∑

𝑧∶𝑧𝑖=𝐼
𝑝(𝜉(𝑡) = 𝑧|𝑌 0∶𝑡). (13)

here we used the definition of expected value for a binary variable
nd the law of total probability. This procedure allows to obtain
he probability of each individual to be infected at time 𝑡 given the
omplete vector of observations 𝑌 0∶𝑡. However, in spite of allowing to
ompute the exact probability, this approach requires the computation
f all the transition probabilities of the matrix 𝐴 and the use of a vector
ariable of size 3𝑁 , which is not computationally feasible even for small
opulations.

. An approximated state estimate

Due to the prohibitive burden of an exact probability computation,
n this paper we propose an approximated low-computational algorithm
o estimate such probability. The proposed approximated estimation is
ased on the idea of temporal and spatial truncation of the updates and
s also suitable for decentralized implementations More precisely, we
ropose to propagate the information from testing only to individuals
hat are the most correlated to the tested individuals, namely the ones
hat have direct contact with tested people, while for the remaining part
f the population the update is performed based on previous estimates
nd the topology of the network representing the population. In the
ame way, only a limited amount of past state estimates are assumed
o be affected by the new information. This approximation allows
o retrieve the information regarding the individuals that are most
ffected by the result of each test while keeping a limited computational
ime.

.1. Approximated state estimation definitions

We define the estimate of the state of the individual 𝑖 as

̂ 𝑖(𝑡|𝑡) = E[𝑥𝑖(𝑡) ∣ 0∶𝑡
𝑖 ] = 𝑃 (𝑥𝑖(𝑡) = 1 ∣ 0∶𝑡

𝑖 ) (14)

here the local information set for the 𝑖th individual 0∶𝑡
𝑖 is defined as

0∶𝑡
𝑖 = 0∶𝑡−1

𝑖 ∪
{

𝑥̂𝑘(𝑡 − 1|𝑡 − 1), 𝑘 ∶ 𝑤𝑖𝑘(𝑡) ≠ 0
}

∪
{

𝑥̂𝑘(𝜏|𝑡), 𝜏 ≤ 𝑡 − 1, 𝑘 ∈ (𝑡)
}

∪ 𝑦(𝑡). (15)

he local information set 0∶𝑡
𝑖 consists of the local state estimates of

irect contacts, updated at the time instant of the interaction, and the
tate estimates of tested individuals, updated just after the test. In order
o keep the computations associated to the 𝑖th individual limited, we
efine a local approximated estimation which can be retrieved based
nly a partial knowledge of the network. More precisely, the state of
ach individual is estimated under the assumption that only its contacts
re known, and no information on the connections between any other
ndividuals is assumed to be available. In this sense, we will focus only
n individuals with whom the 𝑖th individual was in contact: in the case
f untested individuals we will use only the previous local estimates
̂ (𝑡 − 1|𝑡 − 1) while in the case of tested individuals we will use the
𝑘
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current state 𝑥𝑘(𝑡) ∈ 𝑦(𝑡) and the updated estimation 𝑥̂𝑘(𝜏|𝑡), 𝜏 ≤ 𝑡 − 1
of past states.

Denote by 𝑋0∶𝑡
𝑖 the (random) vector collecting all the random vari-

ables 𝑥𝑖(𝜏) 𝜏 ≤ 𝑡, namely 𝑋0∶𝑡
𝑖 =

(

𝑥𝑖(0), … , 𝑥𝑖(𝑡)
)′. With a little misuse

of notation 𝑋0∶𝑡
𝑖 = 0 denotes the case where all the past states 𝑥𝑖(𝜏), 𝜏 ≤

, are equal to 0. We assume that the random variables 𝑇𝑗𝑖(𝜏)𝑥𝑗 (𝜏), 𝑗 ≠ 𝑖,
re conditional independent given 𝑋0∶𝜏

𝑖 = 0. Similar assumptions are
ade by Boguná, Castellano, and Pastor-Satorras (2013) and Valdano,

erreri, Poletto, and Colizza (2015). The rationale is that, if the in-
ividual 𝑖 has always been healthy, the coupling between two of his
eighbours 𝑚 and 𝑛 is negligible, as in the case when individual 𝑖 is the
nly connection between 𝑚 and 𝑛 or, even if 𝑤𝑚𝑛(𝜏) ≠ 0, contacts of 𝑛
re enough different from contacts of 𝑚. It follows that

[

𝑢𝑖(𝜏) |𝑋0∶𝜏
𝑖 = 0

]

= 1 −
𝑁
∏

𝑗=1
1 −𝑤𝑖𝑗 (𝜏)𝑃 (𝑥𝑗 (𝜏) = 1|𝑋0∶𝜏

𝑖 = 0). (16)

To further simplify the estimation algorithm we will simplify the
tochastic recovery with a deterministic one based on the average
ecovery time 𝐷. Then we have

̂ 𝑖(𝑡|𝑡) = 𝑃 (𝑥𝑖(𝑡) = 1 ∣ 0∶𝑡
𝑖 )

= 𝑃 (at least a contagion in (𝑡 −𝐷, 𝑡) ∩𝑋0∶𝑡−𝐷
𝑖 = 0 ∣ 0∶𝑡

𝑖 )

= 𝑃 (𝑋0∶𝑡−𝐷
𝑖 = 0 ∣ 0∶𝑡

𝑖 ) − 𝑃 (𝑋0∶𝑡
𝑖 = 0 ∣ 0∶𝑡

𝑖 ) (17)

e compute 𝑃 (𝑋0∶𝑡
𝑖 = 0 ∣ 0∶𝑡

𝑖 ) and 𝑃 (𝑋0∶𝑡−𝐷
𝑖 = 0 ∣ 0∶𝑡

𝑖 ) as

(𝑋0∶𝜏
𝑖 = 0 ∣ 0∶𝑡

𝑖 )

= 𝑃 (𝑢𝑖(𝜏 − 1) = 0 ∩ 𝑋0∶𝜏−1
𝑖 = 0 ∣ 0∶𝑡

𝑖 )

= 𝑃 (𝑢𝑖(𝜏 − 1) = 0 ∣ 𝑋0∶𝜏−1
𝑖 = 0, 0∶𝑡

𝑖 )𝑃 (𝑋0∶𝜏−1
𝑖 = 0 ∣ 0∶𝑡

𝑖 )

=
[

1 − E
[

𝑢𝑖(𝜏 − 1) ||
|

𝑋0∶𝜏−1
𝑖 = 0, 0∶𝑡

𝑖

]]

𝑃 (𝑋0∶𝜏−1
𝑖 = 0 ∣ 0∶𝑡

𝑖 )

=

[ 𝑁
∏

𝑗=1
1 −𝑤𝑖𝑗 (𝜏 − 1)𝑃 (𝑥𝑗 (𝜏 − 1) = 1|𝑋0∶𝜏−1

𝑖 = 0,0∶𝑡
𝑖 )

]

× 𝑃 (𝑋0∶𝜏−1
𝑖 = 0|0∶𝑡

𝑖 ) (18)

here the last equality holds since 𝑇𝑗𝑖(𝜏)𝑥𝑗 (𝜏) 𝑗 ≠ 𝑖 are conditional inde-
endent given 𝑋0∶𝜏−1

𝑖 = 0. To obtain the numerical value of 𝑃 (𝑋0∶𝜏
𝑖 =

∣ 0∶𝑡
𝑖 ) would require to compute 𝑃 (𝑥𝑗 (𝜏 − 1) = 1 |𝑋0∶𝜏−1

𝑖 = 0, 0∶𝑡
𝑖 )

hat in turn would require 𝑃 (𝑥𝑘(𝜏 −2) = 1 |𝑋0∶𝜏−1
𝑗 = 0, 𝑋0∶𝜏−1

𝑖 = 0, 0∶𝑡
𝑖 )

nd so on. Since this propagation is very computationally expensive we
ake the approximation that

(𝑥𝑗 (𝜏 − 1) = 1|𝑋0∶𝜏−1
𝑖 = 0,0∶𝑡

𝑖 ) = 𝑃 (𝑥𝑗 (𝜏 − 1) = 1 |0∶𝑡
𝑖 ). (19)

he underlying assumption is that the state of an individual and those
f its neighbours are independent. The accuracy of this assumption has
een explored by Gleeson, Melnik, Ward, Porter, and Mucha (2012)
here it has been shown that the dynamics are well approximated

f the degrees of closest neighbours are high. At the same way, the
ssumption holds when the underlying network of contacts is time-
arying, but the results can be less accurate if pairs of individuals
ave frequent interactions, and many contacts in common. Since this
appens in real life (think of relatives and colleagues), we introduce a
orrection factor 𝜎𝑖𝑗 (𝑤𝑖𝑗 (𝜏), 𝑤𝑖𝑗 (𝜏 − 1),… , 𝑤𝑖𝑗 (0)) ∈ [0, 1], for simplicity
enoted by 𝜎𝑖𝑗 (𝜏), that accounts for the coupling of individuals 𝑖 and 𝑗

due to the interactions before 𝜏

𝑃 (𝑥𝑗 (𝜏 − 1) = 1|𝑋0∶𝜏−1
𝑖 = 0,0∶𝑡

𝑖 ) = 𝜎𝑖𝑗 (𝜏 − 1)𝑃 (𝑥𝑗 (𝜏 − 1) = 1 |0∶𝑡
𝑖 ). (20)

In line of principle, 𝜎𝑖𝑗 (𝜏) is smaller when more interactions have
ccurred between 𝑖 and 𝑗 in the past. In fact, the probability that 𝑗

is infected given that 𝑖 has been healthy (namely the left hand side
of Eq. (19)) is lower than the probability that 𝑗 is infected without
any knowledge on the past states of 𝑖 (namely the right hand side of
Eq. (19)). An efficient way to compute 𝜎𝑖𝑗 (𝜏) is defined in Section 7.
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We can conveniently incorporate the correction factor 𝜎𝑖𝑗 (𝜏) in the term
𝑤𝑖𝑗 (𝜏) as 𝑤̄𝑖𝑗 (𝜏) = 𝑐𝑖𝑗 (𝜏)𝑤𝑖𝑗 (𝜏). We finally obtain the following update
ule

(𝑋0∶𝜏
𝑖 = 0 ∣ 0∶𝑡

𝑖 )

=

[ 𝑁
∏

𝑗=1
1 − 𝑤̄𝑖𝑗 (𝜏 − 1)𝑃 (𝑥𝑗 (𝜏 − 1) = 1|0∶𝑡

𝑖 )

]

𝑃 (𝑋0∶𝜏−1
𝑖 = 0|0∶𝑡

𝑖 ). (21)

To keep a limited number of computations, we also make the
ollowing approximation

(𝑥𝑗 (𝜏) = 1 ∣ 0∶𝑡
𝑖 ) =

{

𝑃 (𝑥𝑗 (𝜏) = 1 ∣ 0∶𝑡
𝑗 ) if 𝑗 ∈ (𝑡)

𝑃 (𝑥𝑗 (𝜏) = 1 ∣ 0∶𝑡−1
𝑖 ) otherwise.

(22)

ith initialization 𝑃 (𝑥𝑗 (𝜏) = 1 ∣ 0∶𝜏
𝑖 ) = 𝑥̂𝑗 (𝜏|𝜏). Roughly speaking, if

ndividual 𝑗 has direct contact with a tested individual 𝑘 and individual
has direct contact with 𝑗 but not with 𝑘, the state estimates of 𝑗
ill be corrected based on the outcome while the state estimates of
will use the old estimation of 𝑗, as derived without the knowledge
f the outcome. This means that we use the information regarding the
utcome from the tests to only update the direct contacts of a tested
ndividual.

.2. State estimation update

Since the update of each individual uses only knowledge from local
onnections, new information can be used differently for tested individ-
als, individuals with a direct contact with them, and the remaining of
he population.

.2.1. Tested individuals
Let 𝛾 denote the outcome of the test to the individual 𝑖. Then we

ave

(𝑋0∶𝜏
𝑖 = 0 ∣ 0∶𝑡

𝑖 ) = 𝑃 (𝑋0∶𝜏
𝑖 = 0| 𝑥𝑖(𝑡) = 𝛾, 0∶𝑡−1

𝑖 ) (23)

(𝑥𝑖(𝜏) = 1 ∣ 0∶𝑡
𝑖 ) = 𝑃 (𝑥𝑖(𝜏) = 1 ∣ 𝑥𝑖(𝑡) = 𝛾, 0∶𝑡−1

𝑖 ). (24)

f 𝑥𝑖(𝑡) = 0, no contagion happened in (𝑡, 𝑡 −𝐷), namely

(𝑋0∶𝜏
𝑖 = 0 ∣ 𝑥𝑖(𝑡) = 0,0∶𝑡−1

𝑖 ) = 𝑃 (𝑋0∶𝑡−𝐷
𝑖 = 0 ∣ 0∶𝑡−1

𝑖 ) (25)

or 𝜏 = 𝑡 −𝐷 + 1,… , 𝑡, and

(𝑋0∶𝜏
𝑖 = 0 ∣ 𝑥𝑖(𝑡) = 0,0∶𝑡−1

𝑖 ) = 𝑃 (𝑋0∶𝜏
𝑖 = 0 ∣ 0∶𝑡−1

𝑖 ) (26)

or 𝜏 ≤ 𝑡 − 𝐷 as no additional information on past states is given by
negative outcome. As 𝑥𝑖(𝑡) = 0, 𝑥𝑖(𝜏) may be equal to 1 only if a

contagion occurs in the interval (𝜏 − 𝐷, 𝑡 − 𝐷), therefore the infection
probability is updated as

𝑥̂𝑖(𝜏|𝑡) = 𝑃 (𝑥𝑖(𝜏) = 1 ∣ 𝑥𝑗 (𝑡) = 0, 0∶𝑡−1
𝑖 )

=
𝑃 (𝑥𝑖(𝜏) = 1 ∩ 𝑥𝑖(𝑡) = 0 ∣ 0∶𝑡−1

𝑖 )

𝑃 (𝑥𝑖(𝑡) = 0 ∣ 0∶𝑡−1
𝑖 )

=
𝑃 (𝑋𝜏−𝐷

𝑖 = 0 ∣ 0∶𝑡−1
𝑖 ) − 𝑃 (𝑋𝑡−𝐷

𝑖 = 0 ∣ 0∶𝑡−1
𝑖 )

𝑃 (𝑥𝑖(𝑡) = 0 ∣ 0∶𝑡−1
𝑖 )

(27)

or 𝜏 = 𝑡 −𝐷 + 1,… , 𝑡 and

̂ 𝑖(𝜏|𝑡) = 𝑃 (𝑥𝑖(𝜏) = 1 ∣ 𝑥𝑗 (𝑡) = 0, 0∶𝑡−1
𝑖 ) = 𝑃 (𝑥𝑖(𝜏) = 1 ∣ 0∶𝑡−1

𝑖 )

= 𝑥̂𝑖(𝜏|𝑡 − 1) (28)

or 𝜏 ≤ 𝑡 −𝐷.
For the case of a positive result, 𝑥𝑖(𝑡) = 1, we have

(𝑋0∶𝜏
𝑖 = 0 ∣ 𝑥𝑖(𝑡) = 1,0∶𝑡−1

𝑖 ) = 1 (29)

or 𝜏 ≤ 𝑡 −𝐷, while for 𝜏 = 𝑡 −𝐷 + 1,… , 𝑡 it holds that

(𝑋0∶𝜏
𝑖 = 0 ∣ 𝑥𝑖(𝑡) = 1,0∶𝑡−1

𝑖 )

= 𝑃 (𝑋0∶𝑡−𝐷
𝑖 = 0 ∩ no contagion in (𝑡 −𝐷, 𝜏) ∣ 𝑥𝑖(𝑡) = 1,0∶𝑡−1

𝑖 )

= 1 − 𝑃 (at least a contagion in (𝑡 −𝐷, 𝜏)|𝑋0∶𝑡−𝐷 = 0, 𝑥 (𝑡) = 1,0∶𝑡−1)
𝑖 𝑖 𝑖
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= 1 −
𝑃 (at least a contagion in (𝑡 −𝐷, 𝜏) ∩ 𝑥𝑖(𝑡) = 1|𝑋0∶𝑡−𝐷

𝑖 = 0,0∶𝑡−1
𝑖 )

𝑃 (𝑥𝑖(𝑡) = 1 ∣ 𝑋0∶𝑡−𝐷
𝑖 = 0,0∶𝑡−1

𝑖 )

= 1 −
𝑃 (at least a contagion in (𝑡 −𝐷, 𝜏) ∣ 𝑋0∶𝑡−𝐷

𝑖 = 0, 0∶𝑡−1
𝑖 )

𝑃 (𝑥𝑖(𝑡) = 1 ∣ 𝑋0∶𝑡−𝐷
𝑖 = 0, 0∶𝑡−1

𝑖 )

= 1 −
𝑃 (𝑋0∶𝑡−𝐷

𝑖 = 0 ∣ 0∶𝑡−1
𝑖 ) − 𝑃 (𝑋0∶𝜏

𝑖 = 0 ∣ 0∶𝑡−1
𝑖 )

𝑃 (𝑋0∶𝑡−𝐷
𝑖 = 0 ∣ 0∶𝑡−1

𝑖 ) − 𝑃 (𝑋0∶𝑡
𝑖 = 0 ∣ 0∶𝑡−1

𝑖 )
(30)

If 𝑥𝑖(𝑡) = 1, 𝑥𝑖(𝜏) is equal to 1 only if the contagion occurred in the
interval (𝑡−𝐷, 𝜏). Knowing that 𝑃 (𝑋𝑡−𝐷

𝑖 = 0 ∣ 0∶𝑡
𝑖 ) = 1, we can compute

he infection probability for these individuals as

̂ 𝑖(𝜏|𝑡) = 𝑃 (𝑥𝑖(𝜏) = 1 ∣ 𝑥𝑖(𝑡) = 1,0∶𝑡−1
𝑖 ) = 1 − 𝑃 (𝑋0∶𝜏

𝑖 = 0 ∣ 0∶𝑡
𝑖 ) (31)

for 𝜏 = 𝑡 −𝐷 + 1,… , 𝑡 and

̂ 𝑖(𝜏|𝑡) = 𝑃 (𝑥𝑖(𝜏) = 1 ∣ 𝑥𝑖(𝑡) = 1,0∶𝑡−1
𝑖 ) = 0 (32)

for 𝜏 ≤ 𝑡 −𝐷.

4.2.2. Neighbours of tested individuals
Formally the neighbours of a tested individual are defined by the

set 𝑄(𝑡) = {𝑖 ∣ ∃𝑤𝑖𝑘(𝜏) ≠ 0, 𝑘 ∈ (𝑡), 𝜏 < 𝑡} which represents the
set of individuals that has been in contact at least once with at least a
tested individual. According to the definition of local information set,
the update of the estimation exploits also the updated estimate of the
past states of tested individual.

The probability relative to the initial time instant is not changed

𝑃 (𝑋0
𝑖 = 0 ∣ 0∶𝑡

𝑖 ) = 𝑃 (𝑋0
𝑖 = 0). (33)

By using the information from the contacts that have been tested at
time instant 𝑡 we can update the probabilities starting from (21) as

𝑃 (𝑋0∶𝜏
𝑖 = 0|0∶𝑡

𝑖 )

= 𝑃 (𝑋0∶𝜏−1
𝑖 = 0|0∶𝑡

𝑖 )
∏

𝑗∈(𝑡)
1 − 𝑤̄𝑖𝑗 (𝜏 − 1)𝑃 (𝑥𝑗 (𝜏 − 1) = 1|0∶𝑡

𝑖 )

×
∏

𝑘∉(𝑡)
1 − 𝑤̄𝑖𝑘(𝜏 − 1)𝑃 (𝑥𝑘(𝜏 − 1) = 1|0∶𝑡

𝑖 )

= 𝑃 (𝑋0∶𝜏−1
𝑖 = 0|0∶𝑡

𝑖 )
∏

𝑗∈(𝑡)
1 − 𝑤̄𝑖𝑗 (𝜏 − 1)𝑃 (𝑥𝑗 (𝜏 − 1) = 1|0∶𝑡

𝑗 )

×
∏

𝑘∉(𝑡)
1 − 𝑤̄𝑖𝑘(𝜏 − 1)𝑃 (𝑥𝑘(𝜏 − 1) = 1|0∶𝑡−1

𝑖 )

= 𝑃 (𝑋0∶𝜏
𝑖 = 0 ∣ 0∶𝑡−1

𝑖 )𝑐𝑖,1(𝜏, 𝑡)𝑐𝑖,2(𝜏, 𝑡) (34)

using (22), where

𝑐𝑖,1(𝜏, 𝑡) =
𝑃 (𝑋0∶𝜏−1

𝑖 = 0 ∣ 0∶𝑡
𝑖 )

𝑃 (𝑋0∶𝜏−1
𝑖 = 0 ∣ 0∶𝑡−1

𝑖 )
(35)

𝑖,2(𝜏, 𝑡) =

∏

𝑗∈(𝑡) 1 − 𝑤̄𝑖𝑗 (𝜏 − 1)𝑃 (𝑥𝑗 (𝜏 − 1) = 1 |0∶𝑡
𝑗 )

∏

𝑗∈(𝑡) 1 − 𝑤̄𝑖𝑗 (𝜏 − 1)𝑃 (𝑥𝑗 (𝜏 − 1) = 1 |0∶𝑡−1
𝑖 )

(36)

ote that the previous update takes advantage from the knowledge
f the update estimate of the past state of tested individuals. The last
quality holds only if individual 𝑖 has not been tested before, otherwise
(𝑋0∶𝜏−1

𝑖 = 0 ∣ 0∶𝑡−1
𝑖 ) would be different according to the update

elative to a tested individual. In that case, the correction procedure
tarts from the instant where the individual was tested. The correction
rocedure works if more than one neighbour have been tested even in
ifferent time instants. Note that 𝑐2,𝑖(𝜏, 𝑡) > 1 if 𝑥𝑗 (𝑡) = 0 and 𝑐2,𝑖(𝜏, 𝑡) < 1
f 𝑥𝑗 (𝑡) = 1. Finally, the infection probability at time 𝑡 is computed as

̂ 𝑖(𝑡|𝑡) = 𝑃 (𝑥𝑖(𝑡) = 1 ∣ 0∶𝑡
𝑖 ) = 𝑃 (𝑋0∶𝑡−𝐷

𝑖 = 0 ∣ 0∶𝑡
𝑖 ) − 𝑃 (𝑋0∶𝑡

𝑖 = 0 ∣ 0∶𝑡
𝑖 ).

(37)

.2.3. Open-loop state estimation
For each individual not having direct contact with any tested in-

ividual, the open-loop estimate is computed as 𝑃 (𝑋0∶𝑡 = 0 ∣ 0∶𝑡−1)
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Fig. 3. 3 level update of the state estimate.

based on the previous estimates 𝑃 (𝑥𝑗 (𝑡−1) = 1 ∣ 0∶𝑡−1
𝑖 ) provided by its

ontacts as

(𝑋0∶𝑡
𝑖 = 0 ∣ 0∶𝑡

𝑖 )

=

[ 𝑁
∏

𝑗=1
1 − 𝑤̄𝑖𝑗 (𝑡 − 1)𝑃 (𝑥𝑗 (𝑡 − 1) = 1 |0∶𝑡−1

𝑖 )

]

𝑃 (𝑋0∶𝑡−1
𝑖 = 0 ∣ 0∶𝑡

𝑖 )

=

[ 𝑁
∏

𝑗=1
1 − 𝑤̄𝑖𝑗 (𝑡 − 1)𝑥̂𝑗 (𝑡 − 1|𝑡 − 1)

]

𝑃 (𝑋0∶𝑡−1
𝑖 = 0 ∣ 0∶𝑡

𝑖 ) (38)

sing (21) and (22). Other required values are updated according to

(𝑋0∶𝜏
𝑖 = 0 ∣ 0∶𝑡

𝑖 ) = 𝑃 (𝑋0∶𝜏
𝑖 = 0 ∣ 0∶𝑡−1

𝑖 ) 𝜏 ≤ 𝑡 − 1 (39)

(𝑥𝑖(𝜏) = 1 ∣ 0∶𝑡
𝑖 ) = 𝑃 (𝑥𝑖(𝜏) = 1 ∣ 0∶𝑡−1

𝑖 ) 𝜏 ≤ 𝑡 − 1 (40)

̂ 𝑖(𝑡|𝑡) = 𝑃 (𝑋0∶𝑡−𝐷
𝑖 = 0 ∣ 0∶𝑡

𝑖 ) − 𝑃 (𝑋0∶𝑡
𝑖 = 0 ∣ 0∶𝑡

𝑖 ). (41)

.3. Overall estimation scheme

The state estimation scheme proposed above performs a hierarchical
pdate of the infection probability. This update is structured around
ndividuals that are tested at time 𝑡, the neighbours of the tested
ndividuals and the remaining of the population. At each time instant,
he estimation is thus divided into 3 levels of update based on the
erivations obtained in the previous subsection:

• First level: Tested individuals, using the output 𝑦(𝑡) from the
performed tests

• Second level: Neighbours of tested individuals, including the up-
date estimate from the first level and the previous estimates
𝑥̂(𝜏|𝑡), 𝜏 < 𝑡

• Third level: Rest of the population (open loop), using only the
previous estimates 𝑥̂(𝑡 − 1|𝑡 − 1).

his scheme is depicted in Fig. 3.
In line of principle, buffers of increasing length are needed to store

ast probabilities. In the spirit of a temporal truncation of the updates,
ince the current test outcomes bring little information on the oldest
tates except for positive tested individuals, we assume that for untested
ndividuals past probabilities older than 𝐷𝑤 are not affected by the new
utcomes, i.e.

(𝑋𝑡∶𝑡−𝐷𝑤
𝑖 = 0 ∣ 0∶𝑡

𝑖 ) = 𝑃 (𝑋𝑡∶𝑡−𝐷𝑤
𝑖 = 0 ∣ 0∶𝑡−1

𝑖 ). (42)

nder this approximation, in terms of information storage, the local
pdate of the current state estimate requires the storage of the fol-
owing two buffers of information for each individual, namely the
usceptibility buffer
𝑖
𝑠𝑢𝑠(𝑡) = {𝑃 (𝑋0∶𝑡−𝐷

𝑖 = 0 ∣ 0∶𝑡
𝑖 ),… , 𝑃 (𝑋0∶𝑡

𝑖 = 0 ∣ 0∶𝑡
𝑖 )} (43)

nd, the Infection probability buffer
𝑖
𝑖𝑛𝑓 (𝑡) = {𝑃 (𝑥𝑖(𝑡 −𝐷 −𝐷𝑤) = 1 ∣ 0∶𝑡

𝑖 ),… , 𝑃 (𝑥𝑖(𝑡) = 1 ∣ 0∶𝑡
𝑖 )}. (44)

It is worth to note that the complexity of the proposed estimator

s much lower than the optimal estimation devised in the previous
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Fig. 4. Information collection and update of each individual.

Fig. 5. Required communications. Full lines represent local data exchange while dotted
lines indicate remote communication.

section. At each update, the open-loop state estimation requires for
each individual the product of at most 𝑁 real factors, see (38). Since
only effective contacts (namely those with 𝑤𝑖𝑗 ≠ 0) affect the product,
the number of required multiplications drastically falls and scales with
the node degree. The second level update requires, for each contact of
a tested individual, the correction of the last 𝐷𝑤 values and involves
simple multiplications of scalar quantities, see (34). Similarly, at the
first level, for each tested individual, the update of the last estimates
requires only elementary operations using already available quantities
(see (27) and (30)).

An interesting feature of the proposed approach is that it is not only
computationally efficient to be used in a centralized way for a given
community, but that it can be also implemented in a decentralized
manner. This is the case where each individual is equipped with a
smart device (e.g. a smartphone) provided with small computational
capability and able to communicate with other devices and with a
central testing unit, see Fig. 5.

Contact tracing mechanisms have already been applied by many
countries during the Covid-19 epidemic and software applications are
already available in the market. With respect to them, our algorithm
can be implemented based on the same hardware and with a larger
amount of transmitted data. In particular, when individuals get in
contact during the day, their previous estimate 𝑥̂𝑖(𝑡 − 1|𝑡 − 1) has to
be exchanged. The outcomes of the tests 𝑦(𝑡) are provided to tested in-
dividuals who compute and communicate the updated estimates of the
previous states 𝑥̂𝑗 (𝜏|𝑡), 𝑗 ∈ (𝑡) to the server. Then remote communica-
tions of those updated estimates are performed once per day from the
main server to the population. An explanatory representation is given
in Fig. 4. Note that no information on interactions is communicated
neither to the central unit nor to other individuals, so that privacy is
preserved and vulnerability of a central data collector is avoided. Then,
each individual transmits the updated estimates 𝑥̂𝑖(𝑡|𝑡) to the server
which decides who to test the next day and convokes them.

5. Testing policy

Similarly to the literature on sensor selection, it is possible to
formulate the test selection problem as a constrained optimization
problem based on the state estimate. Formally, we introduce the binary
control variable 𝛾 (𝑡) taking value 𝛾 (𝑡) = 1 if 𝑖th individual is selected
546

𝑖 𝑖
at time instant 𝑡 to be tested at the next time instant 𝑡+ 1, and 𝛾𝑖(𝑡) = 0
otherwise, while we denote 𝛾(𝑡) = (𝛾𝑖(𝑡), … , 𝛾𝑁 (𝑡))′. Then the test
selection problem can be formulated as

𝛾𝑖(𝑡) = argmax
𝛾

𝑅(𝑥̂(𝑡|𝑡), 𝛾) (45)

s.t.
𝑁
∑

𝑖=1
𝛾𝑖 ≤ 𝑁𝑇 (46)

where 𝑅(⋅) is a suitable reward function.
Several possibilities exist for the choice of the cost function. Differ-

ently from most of the works on sensor selection for remote estimation,
we avoid to adopt the error covariance matrix because it is com-
putationally infeasible for large 𝑁 . More suitable cost functions can
be computed based on different metrics of the current state of the
population or the topology and characteristics of the network. Namely,
intuitive choices would focus on the expected number of detected
people, the expected number of infections at the next time instant 𝑡+1
or targeting individuals with high number of contacts (e.g. first-line
health workers). In this context, different cost functions may provide
different results based on the time of application of their actions, the
number of available tests or the applied quarantine actions.

Based on good preliminary results, in this paper we propose to maxi-
mize the expected value of the number of detected positive individuals,
that is

𝑅(𝑥̂(𝑡|𝑡), 𝛾) = E

[ 𝑁
∑

𝑖=1
𝛾𝑖𝑥𝑖(𝑡)

|

|

|

𝑌 0∶𝑡

]

=
𝑁
∑

𝑖=1
𝛾𝑖𝑥̂𝑖(𝑡|𝑡). (47)

This policy is equivalent to select the 𝑁𝑇 individuals whose proba-
bility of being infected 𝑥̂𝑖(𝑡|𝑡) is the highest.

It should be noted that the proposed cost function is a primary
attempt to define an efficient metric in line with the presented frame-
work. Nonetheless, the selection of the optimal cost function is out
of the scope of this paper and remains an open problem for further
research.

6. Quarantine actions

The outcomes of the tests are exploited to act on the population
through a selective quarantine. Formally, we introduce the control
variable 𝑞𝑘(𝑡) such that 𝑞𝑘(𝑡) = 1 if 𝑘th individual is selected to be
quarantined at time instant 𝑡, and 𝑞𝑘(𝑡) = 0 otherwise. In this paper
for any positive 𝑖 we propose to quarantine the 𝐿 closest neighbours,
i.e. the 𝐿 individuals with the highest transmission probability 𝑤𝑖𝑗 (𝑡).
The parameter 𝐿 can be properly tuned to trade-off between the
total number of quarantined for positive and the expected number of
infected (but not detected) that are quarantined because they have a
direct contact with a positive. We consider that individuals will leave
quarantine after 𝐷𝑄 days.

Note that in line of principle other quarantine strategies can be
designed based on probabilities of infection of the neighbours of a
positive tested, as well as preventive quarantine based only on the state
estimate, and they will be the subject of future investigations.

7. Numerical simulations

This section shows, through numerical simulations, the effectiveness
of the proposed solution by comparing it to current approaches.

7.1. Setting

The simulation setup considers a closed population of 10’000 in-
dividuals with the following parameters regarding the spread of the
disease

• 𝑅0 = 2. This value is equivalent to a virus with high spread-
ing, e.g. the Covid-19, when no social distance measures are

adopted (Giordano et al., 2020; Salath et al., 2020).
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• 0.1% of the population is initially infected.
• 20% of new infected present symptoms of the disease before

the recovery, in agreement with Ing, Cocks, and Green (2020)
and Lavezzo, Franchin, Ciavarella, Cuomo-Dannenburg, Barzon,
Del Vecchio, et al. (2020).

• 0.5% of the population can be tested at each day, corresponding
to 𝑁𝑇 = 50. This value is similar to the percentage of daily
tests in South Korea or in USA at December 2020, see https:
//covidtracking.com/data.

• The 𝐿 = 5 closest individuals of each individual with positive
test are put in quarantine for 𝐷𝑄 = 14 days. When in quarantine,
all the transmission probability 𝑤𝑖𝑗 are reduced to 1∕100 of their
normal value.

The population distribution can be conveniently represented
hrough a weighted undirected graph, where each node represents
n individual, an edge between two nodes represents an interaction
etween two individuals, and the weight is set equal to the probability
f transmission 𝑤𝑖𝑗 . The graph topology has been generated to emulate
small-world network. This kind of graphs are characterized by the

resence of clusters, which are subgraphs that are (almost) complete,
nd of short paths connecting (almost) any pair of nodes. They have
een introduced to capture the evidence of human connections and
ave been widely studied in the literature, see de Sola Pool and Kochen
1978) and Watts and Strogatz (1998). In our case, each individual
elongs to more clusters (at least 2, up to 6) to mimic families, offices,
abitual relations and activities, etc. The dimensions of the clusters are
niformly distributed and the range depends on the kind of relationship
hat they capture: for example the dimensions of households randomly
ary from 1 to 8, while dimensions of offices vary from 4 to 40.
andom links are also added to the network. The resulting graph is

hen heterogeneous and possibly unbalanced. The average weights are
et in a realistic way, e.g. the average weights in a household are four
imes the ones in a small office. For the sake of simplicity the graph
s assumed to be time-invariant, except for the effects of quarantine
ctions.

Initial conditions 𝜉(0), i.e. which individuals are initially infected,
re stochastically generated based on the initial probability of each
ode to be infected. To test the robustness of the proposed strategy,
e assume that the probability distribution of the initial conditions is
erturbed up to the 10%. It is also assumed that 10% of the arcs of the
raph are unknown.

The presented simulations compare three different scenarios:

• Test and trace (T&T). This policy traces the contacts (based on
the knowledge of the network) of symptomatic and detected cases
(see Dar, Lone, Zahoor, Khan, and Naaz (2020) and Ferretti et al.
(2020)). More formally we define the set of individuals that have
been detected at a generic time 𝜏 as (𝜏) = {𝑖 ∈ (𝜏) ∶ 𝑥𝑖(𝜏) = 1}.
Then for any individual 𝑖 ∈ (𝑡 − 1) we retrieve the set of recent
contacts 𝑖(𝑡) = {𝑗 ∶ 𝑤𝑖𝑗 (𝜏) > 0, 𝑡 − 𝐷 < 𝜏 < 𝑡}, and we
refine it by removing already detected individuals and individuals
that have been recently tested. From the set 𝑖(𝑡) we select the
individuals that have been more in contact with the individual
𝑖 ∈ (𝑡 − 1). Among the different possibilities for doing so, we
choose  𝑖(𝑡) ⊆ 𝑖(𝑡) such that

𝑤𝑖𝑘(𝑡 − 1) ≥ 𝑤𝑖𝓁(𝑡 − 1) ∀𝑘 ∈  𝑖(𝑡) ∀𝓁 ∈ 𝑖(𝑡) (48)
|

|

|

|

|

|

⋃

𝑖∈(𝑡−1)
 𝑖(𝑡)

|

|

|

|

|

|

= 𝑁𝑇 (49)

| 𝑖(𝑡)| − | 𝑗 (𝑡)| ∈ {−1, 0, 1} (50)

where | ⋅ | denotes the cardinality of the set. Less rigorously, we
can say that  𝑖(𝑡) contains the contacts of 𝑖 with which the
last interaction has been the most dangerous, while the number
of individuals in each set  (𝑡) is chosen such that tests are
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Fig. 6. Evolution of the cumulative number of infected individuals.

allocated as uniformly as possible among the sets 𝑖(𝑡) of contacts
of detected positive. Please note that, since in the following
simulations the graph is fixed, 𝑤𝑖𝑘(𝑡 − 1) ≥ 𝑤𝑖𝓁(𝑡 − 1) implies that
𝑤𝑖𝑘(𝜏) ≥ 𝑤𝑖𝓁(𝜏) for any 𝜏 ≤ 𝑡−1 if 𝑘,𝓁 has not been in quarantined.
Remaining tests are used to randomly explore other parts of the
graph in order to model test selection policies that are not based
on the probabilities of infection, as it is done in reality where
tests are also partially allocated to the employs of interested
companies. Test and trace strategy is a well-known policy which
has provided good results in several countries and it has been
considered the best practice by the medical community (World
Health Organization, 2020b).

• Topology-based testing. This scenario presents a policy where,
based on the topology of the graph, i.e. the number of contacts,
certain individuals are periodically tested. In particular we choose
a period 𝑇 = 20days and we solve the constrained optimization
problem

𝛾𝑇 = argmax
𝛾

∑

𝑖

∑

𝑗
𝑤𝑖𝑗 (0)𝛾𝑖 (51)

s.t.
∑

𝑖
𝛾𝑖 ≤ 𝑇𝑁𝑇 . (52)

Individuals such that 𝛾𝑇𝑖 = 1 are then randomly sorted and tested
accordingly. The periodical testing campaign is delayed on-line in
order to allocate tests to the closets neighbours of a new detected.
However we consider only a partial tracing, assuming that at most
8 contacts are provided. The application of topology-based cen-
trality metrics for test selection is quite new but they have been
studied to select the edges to remove (see Doostmohammadian,
Rabiee, and Khan (2020) and references therein).

• Smart testing (T&EST). This scenario follows the proposed control
scheme where individuals are selected according to the proba-
bility of being infected, Eq. (47), and the outcomes of the tests
are used to update the state estimate according to Section 4. The
correction term is set as

𝜎𝑖𝑗 (𝑤𝑖𝑗 (𝑡), 𝑤𝑖𝑗 (𝑡 − 1),… , 𝑤𝑖𝑗 (0)) = (1 − 𝜖)|𝑖𝑗 (𝑡)| (53)

with

𝑖𝑗 (𝑡) = {𝜏 > 0 ∶ 𝑡 −𝐷 < 𝜏 < 𝑡,𝑤𝑖𝑗 (𝜏) > 0} (54)

so |𝑖𝑗 (𝑡)| is the number of days in the last 𝐷 with a contact
between individual 𝑖 and 𝑗. We set parameter 𝜖 by fitting the
time evolution of the mean probability computed by the proposed
estimator to the incidence of cases obtained by simulating a graph
of a similar topology in the case of no action on the system.

Given the stochastic nature of the model, 100 simulations have been
enerated for each scenario. The spread of the infectious disease is
onitored for a time span of 300 days.

https://covidtracking.com/data
https://covidtracking.com/data
https://covidtracking.com/data


Annual Reviews in Control 51 (2021) 540–550M. Pezzutto et al.
Fig. 7. Evolution of the number active cases.

Fig. 8. Evolution of active cases for test-and-trace and the presented strategy.

Fig. 9. Evolution of the number of individuals in quarantine.

Fig. 10. Variation of the strategy performance based on the knowledge of the network.

7.2. Results

As we can see in Fig. 6, the proposed control mechanism (testing
based on estimation and conditional quarantine) is effective in reducing
548
Table 1
Summary of the averaged results for the 3 scenarios.

Scenario Peak of active cases Total infected Work days lost

Test and trace 116 1472 2564
Topology-based strategy 365 3859 5847
Smart testing 20 169 444

the total number of infected people in a given temporal window both
with respect to the topology-based strategy and test-and-trace. It is
important to note that the test-and-trace strategy clearly outperforms
the topology-based strategy even if the latter, when no new known
positives are present, allocates tests on crucial points of the network
instead of on random individuals. This result confirms how important
is to trace contacts of positive individuals in order to keep the epidemic
under control. On the other hand, the comparison between T&T and
T&EST shows that the performances of pure tracing can be largely
improved by using control methodologies. In particular, when many
positive individuals have been detected, it is impossible to test all of
their contacts due to the limited number of available tests. In that
case, with the proposed strategy, the contacts that should be tested
naturally come up among all the other contacts. When no new positive
is detected, T&EST selects who to test using updated information on the
state of the population. Thus, the proposed strategy takes into account
both information on the graph topology (for individuals that have not
been in contact with tested individuals, estimation is affected by the
number of interactions) and the information from tests. The obtained
results show that including dynamics provides better performances
than simpler off-line strategies.

The proposed strategy is effective also in mitigating the epidemic
outbreak by avoiding any peak of active cases, as shown in Fig. 7. This
is an important result since it is fundamental to have a low number
of active cases to avoid the health-care system maximum capacity to
be reached. It is important to remark that the presented approach has
shown to be very effective when applied to cases where the initial
number of infected individuals is small compared to the total size of the
population. In such a case, a fast identification of clusters of infection
is essential, providing enough tracing to detected positive individuals
but also exploring new areas of the network. This improvement in the
performances can be better appreciated in Fig. 8.

The number of people in quarantine at each time instant is depicted
in Fig. 9. Although not intuitive, this plot shows lower numbers of
people in quarantine for the smart testing policy, indicating that the
improvement in performance does not require a greater number of
people in quarantine but that actually can be achieved with less but
better focused quarantines. In these simulations the number of people
in quarantine for the T&EST is almost negligible, showing that an
efficient testing policy can have a great impact also in the required
control actions. This is a very promising result especially from an
economic point of view since it would limit the social and economical
impact of the measures.

A synoptic overview of the numerical simulations is reported in
Table 1. The results show the clear improvement on the containment
of the epidemic, in terms of both active cases and people in quaran-
tine, by using a testing and quarantine policy based on the presented
probability estimation algorithm.

An important aspect of the presented strategy is the assumption of a
good knowledge of the network topology. In this sense, Fig. 10 provides
the variation in the performances of the presented strategy with respect
to the number of individual interactions known. From this plot it can be
seen that within the range of 80%–100% of knowledge of the network,
the results are very similar and promising. For a percentage of unknown
interactions superior to 20%, a threshold behaviour can be seen, where

the performance is clearly worse and a more evident peak of infection
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can be seen. However, it must be noted that even if the performance is
clearly poorer, the results are still much better than the other strategies.

8. Conclusions

In this paper we presented a novel testing strategy to smartly select
the individuals to be tested during an epidemic. This policy is based on
a decentralized state estimation of the status of the epidemic obtained
from the outcome of the tests.

The testing policy is defined as an optimization problem based on
the state estimation. The proposed estimation algorithm is computa-
tionally inexpensive and can even be implemented in a distributed
fashion.

The numerical results based on Monte Carlo simulations demon-
strate that the use of the proposed scheme, testing and selective quar-
antine, significantly reduces the total number of infected people as well
as the peak of active case and the number of people put in quarantine.

Future works will focus on the link between the test selection
objective functions and the quarantine policies. The case where the
reliability of the tests is considered is another subject of study in future
research.
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