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a b s t r a c t

Reducing the peak time of an epidemic disease in order for slowing down the eventual dynamics and
getting prepared for the unavoidable epidemic wave is utmost significant to fight against the risks
of a contagious epidemic disease. To serve to this purpose, the well-documented infection model of
SIR is examined in the current research to propose an analytical approach for providing an explicit
formula associated with a straightforward computation of peak time of outbreak. Initially, the time
scale from the relevant autonomous SIR epidemic model is formulated analytically via an integral based
on the fractions of susceptible and infected compartments. Afterwards, through a series expansion of
the logarithmic term of the resultant integrand, the peak time is shown to rely upon the fraction of
susceptible, the infectious ratio as well as the initial fractions of ill and susceptible individuals. The
approximate expression is shown to rigorously capable of capturing the time threshold of illness for
an epidemic from the semi-time SIR epidemiology. Otherwise, it is also successful to predict the peak
time from a past history of a disease when all-time epidemic model is adopted. Accuracy of the derived
expressions are initially confirmed by direct comparisons with recently reported approximate formulas
in the literature. Several other epidemic disease samples including the COVID-19 often studied in the
recent literature are eventually attacked with favourable performance of the presented formulae for
assessing the peak time occurrence of an epidemic. A quick evaluation of the peak time of a disease
certainly enables the governments to take early effective epidemic precautions.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Rapid emergence and spread of a deadly disease wave orig-
nated from a local region can easily threaten the rest of the
lobe in this global world from the experienced outbreaks so
ar. Therefore, early understanding of the critical parameters of
n epidemic disease is significant to take necessary precautions
n order for controlling hazardous epidemiological impacts. This
ttracted many researchers from the scientific community to
evelop new mathematical tools to model epidemic contractions
s well as to predict threshold parameters from them [1]. In an
im to reduce the amplitude of the epidemic peak, one of the
mportant thresholds is the peak time of a spreading infectious
isease which is the essential target of the present effort.
The mathematical SIR model of epidemiology initiated as early

s in 20th century in [2] is one of the most widely recognized and
tudied models after the simple logistic differential equation of
ernoulli [3]. The main reason is that it is not complicated and
an be applicable to a variety of illnesses existing in the world
ncluding the flu, influenza, fever, measles, malaria, smallpox,

∗ Correspondence to: Department of Mathematics, Hacettepe University,
6532 Beytepe, Ankara, Turkey.

E-mail address: turkyilm@hacettepe.edu.tr.
ttps://doi.org/10.1016/j.physd.2021.132902
167-2789/© 2021 Elsevier B.V. All rights reserved.
plague, cholera, predator–prey interaction of phages and bacte-
ria, sexually transmitted diseases like HIV, Zika and Ebola, and
coronavirus-based diseases like SARS and COVID-19, among many
others, provided that the initial vulnerable people and infected
people are known with infection and recovery rates.

A great deal of theoretical and numerical research has been
implemented so far on the SIR model, hence the present work
has only a limited space to cite a small percentage focusing
mostly on the recent publications. To start with, not only the
classical numerical integration schemes [3] were used to sim-
ulate the SIR model system, but some further semi-analytical
approaches were employed, too; such as, the differential trans-
formation method [4], the variational iteration method [5] and
the Adomian decomposition method [6]. An analytical prediction
was given in [7] for the S(E)IR epidemic model, whose rigorous
validation and comparisons with the full simulations were not
implemented. It was shown in [8] that if the susceptibles are
represented as a finite multi-exponential or a logistic function,
a closed form solution to the SIR model can be given. Using the
SIR model, the model predictions were compared to data for the
Bombay plague epidemic, the English boys school epidemic and
the Eyam plague outbreak in [9]. [10] proposed an analytical
parametric form solution of SIR epidemic model and showed that
the numerical solution reproduces their analytical solution. The

https://doi.org/10.1016/j.physd.2021.132902
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2021.132902&domain=pdf
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lassical SIR model and its potential application areas were later
eviewed in [11]. [12] connected the SIR model through a sexual
ontact network and direct contact vector to explain the sexual
ransmission and spread of diseases. The epidemic model based
n Bailey’s continuous differential system was solved analytically
n [13], which was later extended to time scales. [14] aimed
t approximating the recovery rate, infection rate, and the loss
f immunity rate by comparing the SIR relevant models with
eal world data. Especially, COVID-19 in Italy from February 15th
o April 6th was studied. SIR and SEIR epidemic models were
sed to predict the peak time of COVID-19 in Egypt in [15].
t was suggested that the peak time will be delayed by miti-
ation strategies and other lockdown measures will help delay
he expected peak. [16] highlighted the analogy between the
ynamics of disease transmission in the conventional SIR model
nd chemical reaction kinetics. Time evolution of the COVID-19
andemic in Italy by a Gauss error function and Monte Carlo
imulations was reported in [17]. The numerical results in [18]
ased on the SIR model pointed to the fact that tracing early
etection and isolation of infecteds are more efficient than those
ased on social distancing, which is of high premise in treating
OVID-19. The COVID-19 epidemic in Italy was comprehensively
tudied in [19] to assess the epidemic size and its timescale from
he SIR and SIR-type models (A-SIR). Asymptotically consistent
eries expansion technique was applied in the research papers
20] and [21] to SEIR models in order to accelerate the conver-
ence of series, but no estimates for the peak times were given.
nfection peak predictions of coronavirus disease in Japan were
omputed through full numerical simulations of the S(E)IR model
n [22]. In [23] S(E)IR models were criticized for not being able
o provide adequate predictions of the time to peak. However,
n real computations, deterministic and stochastic approaches
re better being simultaneously used to predict the thresholds.
ndeed, from the deterministic models, we should rely on the
pidemic peak thresholds coming out of the SIR model. A rather
ruitful approach was adopted in the recent publication [24] to
onstruct an analytic solution for the all-time SIR model with
ime-dependent infection rate. The differential rate of infections
uring a single wave captured by the Gauss model was also
ddressed regarding the COVID-19 pandemic disease. The global
symptotical stability analysis was considered in a continuous
eactor in [25] for a mathematical dynamical system involving
oth deterministic and stochastic SIR epidemic models.
As highlighted from the above cited literature, predicting the

hresholds of an infectious illness in order for realizing the peak
ime right from the beginning of an outbreak is of vital im-
ortance to assess how an epidemic will turn into an harmful
henomenon in the end. Nevertheless, reducing the epidemic
odels can most effectively be fulfilled if precise knowledge of

he peak time is known. This was commonly achieved so far by
umerically simulating the full system of SIR model by different
echniques of integration. The main objective of the current work
s to derive formulas from which the peak time of a disease can
e obtained without requirement of use of the entire system of
quations during computer simulations. This is accomplished by
irst presenting an integral expression of the infection time from
he SIR model. An elaborative and accessible formula is then ex-
racted from the series expansion making use of the leading term
pproximation only. Adding the first order term to the expansion,
n improved and more accurate formula involving the hyperbolic
nd logarithmic functions is also devised. Hence, through series
xpansion around the initial susceptible fraction, the results are
he first-order and second-order approximate analytical expres-
ions involving the hyperbolic and logarithmic functions, for the
eak time of a disease given the epidemic parameters. This is a

seful result that can be readily incorporated into future studies

2

and codes. Accuracy of the formulas are initially verified on
recently published approximate methods. A number of tests are
eventually performed on the recently studied SIR models with a
great success. In addition, the values found for the peak time of
COVID-19 infection in countries like Japan, Korea, Italy and Iran,
are very close to the exact values. By the help of quick evaluation
of peak time from the presented formulae, the early effective
epidemic precautions, such as the isolation, the tracing, the social
distancing and, if necessary, the lockdown can be taken by the
governments.

2. Governing equations

The traditional SIR mathematical model of epidemiology is
well-known as a compartmental-based epidemiological model,
thus we briefly outline the model here. A cumulative number
of individuals N consisting of susceptible (S), infected (I) and
recovered (R) is thought in different compartments. Only a vivid
interaction between the susceptible and ill is permitted through
the productive contact SI . As a result, defining β̄ as the con-
stant rate of susceptibles to become ill per time per population,
γ as the constant rate of ills to turn into a recovered patient
(dead/immune) per time, and also under certain common as-
sumptions [2,3] and [18], the initial value problem among the
three species is expressed via the SIR epidemiologic nonlinear
mathematical model
dS
dt

= −β̄SI, S(t = 0) = S0 (1a)

dI
dt

= β̄SI − γ I, I(t = 0) = I0 (1b)

dR
dt

= γ I, R(t = 0) = R0, (1c)

here S0, I0, R0 stands for initial number of susceptible, ill and
ecovered, respectively. On defining the fractions or density func-
ions

s, i, r) = (S/N, I/N, R/N)

and β = Nβ̄ , the model in (1a)–(1c) can be rewritten as
ds
dt

= −βsi, s(t = 0) = s0 (2a)

di
dt

= βsi − γ i, i(t = 0) = i0 (2b)

dr
dt

= γ i, r(t = 0) = 1 − s0 − i0. (2c)

3. Epidemic thresholds at the peak time

Making use of Eqs. (2a)–(2b), we obtain the sum of infection
and susceptible densities

i + s = i0 + s0 + γ /β ln(s/s0). (3)

To facilitate the understanding, since it is difficult to solve analyt-
ically in the time domain, it is noted that to obtain solution (3) it
is necessary to eliminate differential dt in system (2a)–(2c), and
then integrate the first two equations.

At the peak time of an endemic disease (most probably the
pandemic), Eq. (2b) dictates the number of susceptible s = Sm =

/β and hence, using (2b) and (3), the peak time thresholds are
iven by ([26])

Sm =
γ

β
, (4a)

I = −S + i + s + S ln(S /s ), (4b)
m m 0 0 m m 0
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Table 1
Comparison of peak infection times with those obtained from the approximations in [18,19] denoted
by superscripts c1, c2 . Superscripts e and 1, 2 refer, respectively, to the numerical integration of
system (2a)–(2c) and approximate formulae in (7a)–(7b). The initial fractions of ill/vulnerable people
are i0 = 0.5 × 10−5 and s0 = 1 − i0 .
β γ R0 tep tc1p tc2p t1p t2p
0.3333 0.1111 2.9999 58.3916 49.5168 x 56.2219 57.5961
0.2222 0.1111 1.9999 108.623 92.9849 109.852 103.616 107.265
0.3333 0.1667 1.9999 72.4152 61.9899 73.2349 69.0776 71.5097
0.1667 0.1111 1.4999 198.465 169.956 39.5469 187.458 197.987
0.3333 0.2222 1.4999 99.2323 84.9781 19.7735 93.7290 98.9845
0.1333 0.1111 1.1999 425.688 359.499 91.1995 396.225 422.914
0.3333 0.2778 1.1999 170.275 143.800 36.4798 158.490 169.165
0.3333 0.3222 1.0345 549.133 425.794 178.491 489.759 547.955
0.1149 0.1111 1.0345 1592.48 1234.80 517.625 1420.30 1589.07
t
r
t
p
a
d
o

i
p
t
k
i

(
c
r
C

Rm = 1 − Sm − Im. (4c)

Although the extreme values are worked out in system (4a)–
4c), the critical peak time leading to these extrema is not known
et. However, the time t of the autonomous system (2a)–(2c) can
e solved by means of integrating equation (2a) in the manner

(s) =
1
β

∫ s

s0

1
s(s − Sm ln(s/s0) − i0 − s0)

ds. (5)

eeping the system (2a)–(2c) in mind, the denominator of the
ntegrand in (5) can never vanish at a finite time. Consequently,
onsidering (4a)–(4c), the peak time of an epidemic/pandemic
isease takes place at the location s = Sm yielding

p =
1
β

∫ Sm

s0

1
s(s − Sm ln(s/s0) − i0 − s0)

ds. (6)

Altogether, the data in (6) and (4a)–(4c) present the peak
ime thresholds, but it is unfortunately impossible to analytically
valuate tp from (6) due to the appearance of logarithmic term.
t is noted here that the initial number of susceptibles s0 has
he largest value in the interval of integration. Therefore, series
xpansion of the logarithmic term around s0 and integrating the
esulting integrands will yield the following first and second
rder term approximates, given as Eqs. (7a) and (7b) in Box I,
eing valid for the magnitudes of order O(s − s0)2 and O(s − s0)3,
espectively. Hence, for those values of s (and also Sm from (6))
ot departing far from s0, the formulae in (7a)–(7b) result in
igher accuracy.
As clear from (6) or (7a)–(7b), the peak time of epidemic

epends on the infection and recovery rates as well as the ini-
ial loadings. However, defining the most significant controlling
arameter of the epidemic disease, the reproductive number as a
esult of combining the infection rate and the recovery rate

0 =
s0β
γ

, (8)

it is further possible to express the peak time of a disease in the
subsequent forms as Eqs. (9a) and (9b) in Box II.
Having known a very small portion of initially ill people at the
beginning of a contagious disease, since contribution from the
i0s−1

0 term is negligible, a further refined version of the peak times
can be written by virtue of as Eqs. (10a) and (10b) in Box III.
It is worth to mention that since the analytical estimates above
for the epidemic peak time are obtained from the exact integral
formula from Eq. (6), small errors/uncertainities in the epidemic
parameters would result in small errors in the final results.

4. Results and discussion

Before presenting further results, we initially compare the
performance of our formulas of peak endemic time in (7a)–(7b)
3

and (9a)–(9b) with those from the approximate formulas recently
derived in [18] and [19]. The goal of [18] was to reduce the
amplitude of the epidemic peak of COVID-19 by estimating the
peak time from an approximant valid for reproduction number
R0 less than e. For a true comparison, the reader better look at
Table 1 on page 5 of [18]. The predictive formulae in [18,19] are
actually given respectively in the forms

tc1p =
1

γ (R0 − 1)
ln
(
Im
i0

)
,

tc2p = 2
tanh−1

[
s0
Sm

− 1
]

γ

((
s0
Sm

− 1
)2

+
2
S2m

s0i0

) .

The above comparative Table 1 is a clear evidence pointing to the
better accuracy of our formulae. Note that the exact values are
given by the symbol te. For all the magnitudes of the reproduction
number R0 shown, moderate and large values of epidemic peak
imes (as large as 1592) are accurately predicted by the presented
elations here in (7a)–(7b). On the other hand, it is apparent that
he approximation obtained in [19] making use of the Taylor ex-
ansion of the number of recovered individuals is not as accurate
s ours; even worse, the approximation of the former can badly
iverge for some parameter range listed in the Table 1 (possibly
wing to the argument s0

Sm
− 1 exceeding unity), see the first line

with a cross mark. So, the present formulas provide rather more
fruitful knowledge than incremental numeric improvements.

We should also remark here that Kröger and Schlickeiser
[24] constructed accurate analytical approximants of the peak
epidemic time as illustrated in their Fig. 5. However, a close
look through their analysis proves that the model they consider
is the all-time SIR model meaning that the initial data should
match the time t → −∞ data, as given on page 4 Section 2.2
n their paper. Based on their approach, the peak time formula
resented by Eq. (59) (see page 15 in [24]) in their paper requires
he past (t → −∞), present (t = 0) and future (t → ∞)
nowledge of the illness. Since initially at time t → −∞, the
nfected and recovered data must be zero, at time t = 0 neither
the infected not the recovered data can be zero in the all-time
model pursued in [24], which puts a severe restriction on the
peak time estimate. Their Fig. 5 was in fact generated with a
non-zero recovereds at t = 0. Because of these facts, they did
not compare their formula with the literature, since most of the
research in the literature is based on the semi-time SIR model
with t ≥ 0, which may involve a vanishing recovered initially at
time t = 0. Our model is also about the semi-time SIR model
even though it accurately estimates the past history in some
ases), which results in peak time epidemic formulae successfully
eproducing many published data in the literature including the
OVID-19 disease, to be evidenced later on. Based on the above
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tp1 =
1
β

1
i0 + s0 − Sm

ln
[
i0s0 + (Sm − s0)2

i0Sm

]
, (7a)

tp2 =
1
β

1
2(i0 + s0) − 3Sm

(
−

2(s0 − 2Sm)
(
coth−1

[
s0
√

(s0−Sm)2+2i0Sm
(s0−Sm)2

]
− tanh−1

[
s0−Sm√

(s0−Sm)2+2i0Sm

])
√
(s0 − Sm)2 + 2i0Sm

+ ln

[(
2s20(i0 + s0) − 5s20Sm + 4s0S2m − S3m

)
2i0S2m

])
, (7b)

Box I.
tp1 =
1
γ

1
R0(i0s−1

0 + 1) − 1
ln
(
R0 + i−1

0 (R0 − 1)2
)
, (9a)

tp2 =
1
γ

1
2R0(i0s−1

0 + 1) − 3

(
−

2(R0 − 2)

(
coth−1

[
R0
√
(R0−1)2+2i0s

−1
0 R0

(R0−1)2

]
− tanh−1

[
R0−1√

(R0−1)2+2i0s
−1
0 R0

])
√
(R0 − 1)2 + 2i0s−1

0 R0

+ ln
(
(2i0)−1((i0 + s0)R2

0 − 5s0R0 + 4s0 − s0R−1
0 )
))

. (9b)

Box II.
tp1 =
1
γ

1
R0 − 1

ln
(
R0 + i−1

0 (R0 − 1)2
)
, (10a)

tp2 =
1
γ

1
2R0 − 3

(
−

2(R0 − 2)

(
coth−1

[
R0
√
(R0−1)2+2i0s

−1
0 R0

(R0−1)2

]
− tanh−1

[
R0−1√

(R0−1)2+2i0s
−1
0 R0

])
√
(R0 − 1)2 + 2i0s−1

0 R0

+ ln
(
(2i0)−1((i0 + s0)R2

0 − 5s0R0 + 4s0 − s0R−1
0 )
))

. (10b)

Box III.
arguments, there is no basis to make a direct comparison of the
all-time model of [24] with the semi-time model of the present
case.

Assuming no initially recovereds, the variation of peak times
against recovery rate for some selected epidemic parameters is
demonstrated in Figs. 1(a–d). It is clear that the peak time is
short enough as the initial fraction of ill is large, otherwise,
smaller fractions give rise to larger peak time of epidemic, a
well-documented fact in the studied literature. Another striking
feature from Figs. 1(a–d) is that increase in the infection rate will
absolutely reduce the infection peak time, since the reproduction
4

number is high in this case leading to an intense spread of the
disease among the susceptibles. It is not surprising that the peak
tends to infinity as γ limits to zero, since in that case everybody in
the community will become ill with a peak susceptible Sm = γ /β

tending to zero, which is possible for infinite times. It is also
anticipated from the figures that nearly unaltered peak times are
attained for large infectious conditions for the moderate recovery
rates. On the other hand, the peak time curve rises up again
after falling for smaller β values having reached a minimum at
a certain γ . Having determined the local extremum with respect
to γ of the first approximation in (7a), this minimum takes place
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a

Fig. 1. Epidemic peak time against the recovery rate for three initial fractions of ill. (a) β = 10, (b) β = 6, (c) β = 4 and (c) β = 2.
t the location where the following relation holds

ln

[(
i0s0 + (s0 − Sm)2

)
β

i0γ

]
=

(i0 + s0 − Sm)(i0s0β + (s0 − Sm)(s0β − Smβ + 2γ ))(
i0s0 + (s0 − Sm)2

)
γ

.

(11)

As a result, all the possible scenarios on the epidemic peak time
are readily grasped from the formulae presented in (7a)–(7b) for
given set of epidemic parameters without having to resort to
numerical simulations.

It is now time to test the performance of peak time predictions
in (7a)–(7b) and (9a)–(9b) for large to small reproduction num-
bers R0 = s0β/γ prescribing the initial values i0 and s0 against full
numerical simulations, from which the following Figs. 2–4 were
obtained. It should be recalled that outbreak takes place if R0 > 1
resulting in a positive peak time, otherwise no spread of illness
occurs, but with a potential past history peak at negative time.
Figs. 2(a–c) reveal the evolution of epidemic for the parameters
β = 10 and γ = 1 with no initial recovered case. The actual
peak thresholds from (4a)–(4c) and (6), and the predicted peak
times from (7a)–(7b) are summarized in Table 2. It is fascinating
to observe that the peak times of epidemic at very large values
of reproduction numbers are successfully estimated from our
5

Table 2
Peak time thresholds for β = 10 and γ = 1.
i0 R0 Sm Im Rm tep t1p t2p
0.2 8 0.1 0.6921 0.2079 0.4078 0.3868 0.3960
10−5 9.999 0.1 0.6697 0.2303 1.5442 1.5116 1.5264
10−8 10 0.1 0.6697 0.2303 2.3023 2.2792 2.2939

approximates. The short peak times at large reproduction number
is fully consistent with the results displayed in Figs. 1(a–d).

The scenario of contagious outbreak is exhibited next in
Figs. 3(a–d) for the parameters β = 1/2 and γ = 3/10. The
relevant epidemic parameters can also be inferred from Table 3
for the associated thresholds. Small to larger peak times corre-
sponding to the small reproduction number are also successfully
captured by the presented formulas in (7a)–(7b).

When the epidemic cannot start off with R0 < 1, the disease
is dying out in time, but the peak has already occurred in the
past time, as physically realized from Figs. 4(a–c), corresponding
to parameters β = 0.5961 and γ = 0.8023, for instance. A
summary of critical parameters is also listed in Table 4. Even in
this circumstance, the derived formulae in (7a)–(7b) are able to
correctly predict the past peak time of disease. Knowing time is
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Fig. 2. Time development of infectious disease corresponding to the parameters β = 10 and γ = 1. (a) i0 = 2 × 10−1 , (b) i0 = 10−5 and (c) i0 = 10−8 .
able 3
eak time thresholds for β = 1/2 and γ = 3/10.
i0 R0 Sm Im Rm tep t1p t2p
0.2 1.333 0.6 0.2274 0.1726 2.6371 2.5541 2.6259
10−3 1.665 0.6 0.0941 0.3059 30.776 27.936 30.147
10−7 1.667 0.6 0.0935 0.3065 76.620 73.982 76.294
10−8 1.667 0.6 0.0935 0.3065 87.038 85.495 87.807

Table 4
Peak time thresholds for β = 0.5961 and γ = 0.8023.
i0 R0 Im tep t1p t2p
0.013 0.7331 0.0720 −12.070 −10.038 −12.614
0.133 0.6439 0.2465 −3.672 −3.173 −3.859
0.333 0.4953 0.5997 −2.397 −2.042 −2.689

also significant to understand the stage at which the epidemic
situation prolongs and how far it is from the peak.

In Table 5, we provide further comparisons of actual peak dis-
ase times versus approximate ones for various epidemiological
roblems studied in the open literature by the researchers. The
ood fit of approximates for the peak times given in the present
tudy is once more witnessed from these quantitative results for
6

a range of reproduction numbers. A particular attention should
be paid to those peak times predicted excellently by the present
approach connected with the traditional high school influenza
example given in almost every epidemiology textbooks, see for
instance [8,11] and [1] (with 763 school boys, 3 of them are
initially infected) and the Hong Kong flu with open simulator
in [27] (with 7.9 million people of New York, 10 of them are
initially contracted).

We eventually display in Table 6 the peak times of COVID-19
pandemic disease in the capital cities of some countries men-
tioned. It is recalled that the fitting parameters are taken from
the website [28]. It can be mathematically justified that since the
factor Sm is too small in the infection case of Korea, the exact in-
tegral in (6) results in an excellent match with the approximates
in (7a)–(7b). Other peak times are also well-recovered at desired
sensitivity.

5. Conclusions

Evaluation of peak time of an infection from the epidemio-
logical mathematical SIR model is considered within the current
investigation. The goal is, rather to determine explicit analytical
formula for the epidemic peak time, in the absence of which it
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i

Fig. 3. Time development of infectious disease corresponding to the parameters β = 1/2 and γ = 3/10. (a) i0 = 2 × 10−1 , (b) i0 = 10−3 , (c) i0 = 10−7 and (d)
0 = 10−8 .
Table 5
Comparison of peak infection times from the models studied in some open literature as stated.
Reference β γ i0 s0 R0 tep t1p t2p
[10] 0.45 0.02 0.3333 0.4444 10 9.514 9.197 9.325
[8] 1.66 0.4545 0.0039 0.9948 3.633 5.503 5.142 5.355
[14] 0.9178 0.7068 10−6 0.9999 1.298 55.620 52.585 55.231
[9] 4.6291 2.82 0.0268 0.9732 1.597 1.428 1.256 1.390
[27] 0.5 0.30 1.27 × 10−6 0.9999 1.666 64.230 61.274 63.586
[12] 10 1 0.05 0.95 9.5 0.5886 0.5597 0.5723
[16] 2 1 10−5 0.9999 2 11.376 10.820 11.225
Table 6
Comparison of peak infection times of COVID-19 in some capitals. The initial
fractions of ill/vulnerable people are i0 = 2/15000 and s0 = 1 − i0 .

β γ R0 tep t1p t2p
Japan 0.1391 0.0184 7.565 91.124 88.361 89.695
Korea 0.1947 10−8 1.95 × 107 132.033 132.033 132.033
Italy 0.2569 0.0141 18.160 49.141 48.223 48.577
Iran 0.5961 0.0802 7.429 21.274 20.623 20.939

has to be computed from the full numerical simulations, as has
been implemented by the researchers so far. Many important
conclusions can be drawn from such a formula during a real time
7

epidemic disease via playing with the characteristic parameters
of a running epidemic, otherwise heavy computations from nu-
merical simulations are required. Particularly, if the calculation of
peak time is required as a subroutine in an iterative procedure
to estimate parameters, it will be called several times, and its
numerical evaluation can become rather expensive. Thus, and
analytic replacement as given here can enable more efficient
calculations.

To achieve the target, the peak time of an outbreak is ini-
tially formulated in terms of an integral from the system of
equations of SIR model. Since an anti-derivative of the pertinent
integrand is not possible to directly evaluate, a series expansion
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Fig. 4. Time development of infectious disease corresponding to the parameters β = 0.5961 and γ = 0.8023. (a) i0 = 0.0133, (b) i0 = 0.1333 and (c) i0 = 0.3333.
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round the initial susceptible fraction is fulfilled yielding first-
rder and second-order approximate analytical expressions for
he peak time representations of an epidemic disease given the
pidemic parameters. The peak time of a disease is straightfor-
ardly accessible when the initial fractions of susceptibles, and

nfection/recovery rates are prescribed. The well-known charac-
eristic features of peak time of an epidemic disease studied so
ar from the SIR model are now transparent from the presented
xplicit formulae. Accuracy of the obtained expressions is initially
ested against the recently given formulas in [18] and [19]. Not
nly the peak time of an epidemic disease is well-predicted from
he presented formulae, but also the peak time from the past
istory of the disease is well-captured for the peak time of an
ndemic disease. A series of epidemic disease problems from the
vailable models in the open literature are predicted with good
ccuracy from the given formulas. In particular, the COVID-19
eak times under given local epidemic parameters of countries
ike, Japan, Korea, Italy and Iran are accurately estimated, which
ad to be numerically simulated otherwise in the previously
ublished papers.
Since many epidemiological models are only differentiations

f the basic SIR model, the present approach may also be adopted
n other class of models that predict the spread of diseases in
8

rder to capture the peak time of an epidemic disease, which war-
ants further investigation. Hence, new formulas can be obtained
ncorporating the effects of incubation period, growth/decay/
omogeneity of population, recovered individuals again in the
usceptible category, etc.
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