Skip to main content
. 2021 Mar 18;2021:6615411. doi: 10.1155/2021/6615411

Table 2.

Parameter settings.

Algorithm Parameters Values
KNN Number of neighbours 5
Distance function Euclidean distance
(N × D) training data N, no. of samples; D, dimensionality of each data point
(M × D) testing data M, no. of data points
NB Model Gaussian base distribution
N Size of data
DT Splitting criterion Gini
Minimum instances per leaf 2
ANN Size of input layer Size of data
Type of ANN Feed-forward
Number of neurons 20
Training and testing set 75% of training and 25% of testing set
FCNN Input 56 × 28
Fuzzification 2 × (input)-Gaussian MF
In and out channel range 1 to 100
Stride and padding 1 & 0
Conv3x d 2 × (in & out channels, kernel size = (3 × 128), stride & padding), ReLU, Max_Pooling (55 × 1)
Conv4x d 2 × (in & out channels, kernel size = (4 × 128), stride & padding), ReLU, Max_Pooling (54 × 1)
Conv5x d 2 × (in & out channels, kernel size = (5 × 128), stride & padding), ReLU, Max_Pooling (53 × 1)
Defuzzification 2 × 128