Skip to main content
. 2021 Mar 26;11:6950. doi: 10.1038/s41598-021-85699-0

Table 4.

The performance of Kernel SVM, decision tree, random forest, KNN, and Naïve Bayes using all six ocular instrumentation features.

Model Predicted Actual classes Accuracy (%) Sensitivity (%) Specificity (%) AUROC (%)
Healthy PM
Kernel SVM Healthy 204 8 91.47 80.00 93.58 86.79
PM 14 32
Decision Tree Healthy 186 8 84.50 80.00 85.32 82.66
PM 32 32
Random Forest Healthy 204 10 90.70 75.00 93.58 84.29
PM 14 30
KNN Healthy 190 10 85.27 75.00 87.16 81.08
PM 28 30
Naïve Bayes Healthy 196 9 87.98 77.50 89.91 83.70
PM 22 31

AUROC area under receiver operating characteristic curve, SVM support vector machine, PM pathologic myopia.