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The metabolic network of the last bacterial
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Bacteria are the most abundant cells on Earth. They are generally regarded as ancient, but

due to striking diversity in their metabolic capacities and widespread lateral gene transfer, the

physiology of the first bacteria is unknown. From 1089 reference genomes of bacterial

anaerobes, we identified 146 protein families that trace to the last bacterial common

ancestor, LBCA, and form the conserved predicted core of its metabolic network, which

requires only nine genes to encompass all universal metabolites. Our results indicate that

LBCA performed gluconeogenesis towards cell wall synthesis, and had numerous RNA

modifications and multifunctional enzymes that permitted life with low gene content. In

accordance with recent findings for LUCA and LACA, analyses of thousands of individual

gene trees indicate that LBCA was rod-shaped and the first lineage to diverge from the

ancestral bacterial stem was most similar to modern Clostridia, followed by other autotrophs

that harbor the acetyl-CoA pathway.
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Among all cells on Earth1, bacteria are not only the most
abundant, they comprise the most diverse domain in
terms of physiology and metabolism2 and are generally

regarded as ancient3–5. Isotopic signatures trace autotrophy 3.9
billion years back in time6. Based on the universality of the
genetic code, amino acid chirality, and universal metabolic cur-
rencies, there is an agreement that a last universal common
ancestor (LUCA) predated the divergence of bacteria and archaea.
Because the bacterial and archaeal domains are monophyletic,
there is evidence for one clear ancestor for each domain—the last
bacterial common ancestor (LBCA) and the last archaeal com-
mon ancestor (LACA). Phylogenomic reconstructions indicate
that LUCA was a thermophilic anaerobe that lived from gasses in
a hydrothermal setting7, notwithstanding contrasting views8,9.
Both phylogenomics and geological evidence indicate that LACA
was a methanogen10–12, or a similar anaerobic autotroph that
fixed carbon via the Wood–Ljungdahl (also known as acetyl-
CoA) pathway12. Reconstructing the habitat and lifestyle of LBCA
is, however, impaired by lateral gene transfer (LGT)13, which
decouples physiological evolution from ribosomal phylogeny.
Like LUCA and LACA, LBCA must have been an anaerobe,
because the accrual of atmospheric oxygen occurred much later in
Earth’s history, as a product of cyanobacterial metabolism14–16.
Although some details of Earth’s oxygenation continue to be
debated, it is generally accepted that the Great Oxidation Event
occurred ~2.4 billion years ago4,16,17. The most important dif-
ference between anaerobes and aerobes is related to energy;
anaerobic pathways such as fermentation, sulfate reduction,
acetogenesis, and methanogenesis yield only a fraction of the
energy when compared to aerobic pathways18, but this is com-
pensated by the circumstance that the synthesis of biomass costs
13 times more energy per cell in the presence of O2 than under
anoxic conditions. This is because, in the reaction of cellular
biomass with O2, the thermodynamic equilibrium lies very far on
the side of CO2. That is, the absence of O2 offers energetic ben-
efits of the same magnitude as the presence of oxygen does19–21.
Although the advent of O2 expanded routes for secondary
metabolism, allowed novel O2-dependent steps in existing bio-
synthetic pathways, and allowed the evolution of new hetero-
trophic lifestyles by enabling the oxidation of unfermentable
substrates, the advent of O2 did not alter the nature of life’s
basic building blocks nor did it redesign their biosynthetic
pathways22,23. It did, however, promote LGT for genes involved
in O2 utilization24. In other words, the fundamentals of bio-
chemistry, metabolism, and physiology were invented in a time
when the Earth was anoxic.

Both from the geochemical and the biological standpoint,
looking back into the earliest phases of evolution ca. 4 billion
years ago is challenging. The geological challenge is that rocks of
that age are generally rare, and those that bear traces of life are
extremely scarce. The biological challenge is that LGT has reas-
sorted genes across genomes for 4 billion years. As an alternative
to reconstructing gene history, metabolic networks themselves
harbor independent inroads to the study of early evolution25.
Metabolic networks represent the set of chemical transformations
that occur within a cell, leading to both energy and biomass
production26. Genome-scale metabolic networks are inferred
from a full genome and the corresponding full set of functional
(metabolic) annotations27, allowing for predictive models of
growth and insights into physiology28. Furthermore, metabolism
itself is connected to the informational processing machine in the
cell, because enzymes are coded in DNA, transcribed, and
translated, while they also produce the building blocks of DNA
and RNA and polymerize them. However, metabolism is much
more versatile than information processing. Metabolic networks
include multiple redundant paths, and in different species,

different routes can lead to the same functional outcome. Because
metabolism is far more variable across lineages than the infor-
mation processing machinery, the genes coding for enzymes are
not universal across genomes and are much more prone to
undergo LGT than information processing genes are29. This
circumstance has impaired the use of metabolic enzymes for the
study of early prokaryotic evolution.

Metabolic networks and metabolic enzymes unquestionably
bear witness to the evolutionary process, but methods to har-
ness their evolutionary information are so far lacking. Here we
take a simple but effective approach at inferring the metabo-
lism of LBCA, by focusing on anaerobic genomes and genes
that are widely distributed among them. We reconstruct the
core metabolic network of LBCA independent of any single
backbone phylogenetic tree30 for the lineages in question. In
doing so, we harness the information in thousands of indivi-
dual trees for gene families of anaerobic prokaryotes, analyze
converging signals, and point to the modern groups most
similar, in terms of metabolism, to the groups that diverged
earliest from LBCA.

Results
Conservation in anaerobic groups unveils LBCA’s physiol-
ogy. To identify genes tracing to the LBCA, we started from
5443 reference genomes from bacteria and selected those 1089
classified as anaerobic by virtue of lacking oxygen reductases31

and having >1000 protein sequences (to exclude energy para-
sites; Supplementary Data 1 and Supplementary Table 1). The
resulting genomes contained 2,465,582 protein sequences that
were then clustered into 114,326 families. Of these, 146 families
have at least one sequence present in all the 25 major taxo-
nomic groups analyzed. These groups correspond roughly to
phyla in GenBank taxonomy, with the exception of Proteo-
bacteria and Firmicutes, which we split into Classes due to
their high representation in the dataset. It is worth mentioning
that the abundance of Firmicutes and Proteobacteria is not
only a result of taxonomic oversampling but is also a reflection
of their orders-of-magnitude larger abundance in natural
habitats32. Upon closer inspection, the families were present in
most of the genomes in the analysis, with 122 of the 146 pre-
sent on average in at least 90% of all genomes in a group
(Supplementary Data 2 and Supplementary Fig. 1). These genes
are nearly universal and are among the most vertically inher-
ited genes in prokaryotes (Table 1). These 146 families were
rechecked manually with regards to functional annotation
(Supplementary Data 3) to provide a list of gene functions that
trace to LBCA. Around half of those families are involved in
information processing, protein synthesis, or other structural
functions (Table 1), and the other half can be mapped to at
least one metabolic reaction in KEGG, the Kyoto Encyclopedia
of Genes and Genomes (even if often also involved in infor-
mation processing, e.g., the transfer RNA (tRNA) charging
category), thus providing insights into LBCA’s physiology and
lifestyle.

Various lines of evidence suggest that the first cells were
autotrophs that generated acetyl-CoA and pyruvate via the acetyl-
CoA pathway33–35 and sugars via gluconeogenesis36–38. LBCA
possessed a nearly complete trunk gluconeogenetic pathway with
pyruvate kinase (PK), enolase, phosphoglycerate kinase (PGK),
glyceraldehyde 3-phosphate dehydrogenase, and triosephosphate
isomerase. Phosphoglycerate mutases, which can be either 2,3-
bisphosphoglycerate-dependent or cofactor-independent, escape
the criteria of universality, but are highly distributed, the former
in 21, the latter in 18 of the 25 bacterial groups sampled. Because
the PK reaction is reversible in eukaryotes in vivo39 and in
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bacteria40, bacterial PK likely functioned in the gluconeogenetic
direction to provide LBCA with phosphoenolpyruvate for amino
acid and peptidoglycan synthesis41 and carbon backbones with
more than three carbon atoms in an early Earth environment rich
in CO2

42. Four other kinases in addition to PK and PGK trace to
LBCA, two involved in cofactor metabolism and two in
phosphorylating ribonucleotides to nucleoside diphosphates,
whose further activation to LBCA’s NTPs could have been
carried out via substrate promiscuity of PK, as it occurs in
anaerobically grown Escherichia coli43. Also tracing to LBCA are
two enzymes involved in cell division, FtsH and FtsY, which
however also fulfill a number of other functions in the cell
including protein degradation and assembly44 and correct
targeting of proteins and ribosomes to the membrane45. Three
other membrane-targeting proteins can be traced to LBCA: Ffh,
YidD, and SecA of the sec pathway. One validation of our analysis
is the absence of important genes in LBCA’s families that were
lost in the ancestor of particular groups, for example, FtsZ,
present in only 24 out of 25 of the taxonomic groups in our
dataset, consistently with previous reports of its loss in
Chlamydiae46.

Only nine compounds were required to complete intermediary
metabolism in LBCA. The list of LBCA genes is conservative
because our criteria, although not imposing bacterial universality,
do require the presence in 25 higher taxonomic groups. However,
even though the list is short, the 146 protein families of LBCA
generate a tightly connected metabolic network (Supplementary
Fig. 2) of 243 compounds with only one reaction (diaminopi-
melate epimerase) out of 130 disconnected from the rest (Sup-
plementary Data 4A). The network is close to complete in that it
generates 48 of the 57 universally essential prokaryotic
metabolites47: the 20 amino acids, four DNA bases, four RNA
bases, eight universal cofactors, glycerol 3-phosphate as a lipid
precursor, and 20 charged tRNAs (Supplementary Data 4B). The
compounds missing are the charged tRNAs for Lys, Met, Ile, Pro,
Asn, Gly, and Gln and two cofactors (thiamine diphosphate and
pyridoxal 5-phosphate). Using a network expansion algorithm48,
adding all reactions encoded by non-LBCA genes to the network,
and then sequentially and gradually removing them until the
production of all universal metabolites was possible with
the minimal set of reactions (see “Methods”), we found that the
addition of only nine genes—seven aminoacyl tRNA synthetases
(aaRS), ADP: thiamine diphosphate phosphotransferase and

D-ribulose 5-phosphate, D-glyceraldehyde 3-phosphate pyridoxal
5′-phosphate-lyase—completes the network to generate all 57
universal compounds (Fig. 1 and Supplementary Data 4). It is
likely that ancestors of the two classes of aaRS enzymes acted
promiscuously in charging tRNA in LBCA49. The network is not
self-generated from an initial set of nutrients50. It would have
required additional genes derived from LUCA7 and lost in some
lineages of anaerobic bacteria (including transporters, completely
absent in the set of 146 genes) and compounds from geochemical
synthesis34,35 to be a completely functional genome-scale meta-
bolic network. However, the majority of the core of cellular
metabolism is represented in the network.

LBCA’s network is highly structured around three major
metabolic hubs: (i) ATP/diphosphate, (ii) NADP(H)/H+, and
(iii) CO2/ACP/malonyl-ACP. These represent the cores of (i)
energy, (ii) hydride transfer, and (iii) carbon metabolism of LBCA
(Fig. 1). Malonyl-ACP is central in the initiation and regulation of
fatty acid biosynthesis51. When we remove PK from the set of
enzymes, the phosphorylation of dADP to dATP is no longer
possible, suggesting that PK may have acted promiscuously in
early nucleotide phosphorylation43,52. The connectivity of ATP
mainly involves tRNA charging and protein synthesis (Fig. 1),
which might seem unexpected at first, because ATP is the
universal currency in all of the metabolism. In modern anaerobes,
although, roughly 90% of the cell’s energy budget is devoted to
protein synthesis21, and similar appears to have applied to LBCA
as well.

The first lineages to diverge were most similar to modern
Clostridia. The deepest split in the bacterial trees can identify
lineages and traits that reflect LBCA’s lifestyle. Lineages such as
Aquificae and Thermotogae were long considered early
branching based on trees of ribosomal proteins and ribosomal
RNA (rRNA)53, but the ribosome cannot speak to the physiology
of LBCA because LGT decouples ribosomal evolution from
physiology. LGT is extremely frequent within and between most
bacterial groups13, it hinders the inference of the bacterial root
via traditional phylogenetic analysis by introducing conflicting
signals that reduce verticality. To mitigate the effect of LGT, we
examined the relative order of emergence for the 25 bacterial
groups using 63,324 trees rooted with minimal ancestor devia-
tion (MAD)54. In current practice, the majority of root infer-
ences for the domain Bacteria have been done with outgroup
rooting55,56. Our choice of an outgroup-independent rooting

Table 1 Functional categories for the 146 LBCA protein families.

Functional category Number of protein families Average family size Average verticality

Ribosomal proteins 27 1082 12.260
Translation 17 1083 11.803
tRNA charging 16 1058 12.618
DNA recombination and repair 10 1055 13.165
DNA replication 9 1025 12.669
tRNA modification 9 1075 11.036
Transcription 3 1091 16.123
rRNA modification 5 1056 9.513
Carbohydrate and energy metabolism 10 1062 9.422
Protein modification, folding, sorting, and degradation 9 1113 9.727
Lipid and cell wall metabolism 8 1020 9.473
Nucleotide metabolism 7 1073 10.712
Metabolism of cofactors and vitamins 6 901 7.797
Amino acid metabolism 5 917 9.765
Membrane protein targeting 3 984 13.823
Cell division 2 1060 14.946

For each category, the number of protein families annotated, the average family size, and the average verticality (higher meaning less subject to LGT; see “Methods”) are shown.
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method applied to multiple gene trees is threefold: (i) LGT
between Archaea and Bacteria confounds results13,57,58;
outgroup sequences are notoriously prone to long-branch phy-
logenetic artifacts59; and lack of criteria to assess the quality of
different roots, which is possible with MAD. Independent studies
have recently shown that the MAD method is more efficient
than other rooting methods and robust to a wide spectrum of
phylogenetic parameters, both with simulated and empirical
prokaryotic gene trees60.

We started by focusing on the trees for the 146 LBCA protein
families, and we analyzed the divergence accumulated from the
bacterial root to each modern genome, measured as root-to-tip
distance in terms of (i) sequence divergence (branch length) and (2)

node depth (Fig. 2) (15 trees with ambiguous root inferences were
discarded; root ambiguity indexes given in Supplementary Data 3;
see “Methods”). The results identify clostridial genomes as the least
diverged both in terms of sequence divergence (Wilcoxon’s signed-
rank test with Bonferroni correction, largest p value < 1e− 5,
average normalized distance 0.299) and node depth (Wilcoxon’s
signed-rank test with Bonferroni correction, largest p value < 0.05,
average normalized distance 0.116; Supplementary Fig. 3), followed
by Deltaproteobacteria (average normalized divergence 0.354, and
average normalized depth 0.156). Anaerobic members of Aquificae
also show significant proximity to the root as judged by branch
length (average normalized distance 0.382, Supplementary Fig. 3).
There are only three genomes of (anaerobic) Aquificae in our
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dataset, and all three belong to chemolithoautotrophs isolated from
hydrothermal vents that can grow on H2 and CO2

61. The
divergence values for all genomes in all trees ranked from least to
most distant show that the top-ranking 12 genomes are all
thermophilic species belonging to the class Clostridia, several
possessing the acetyl-CoA pathway (Supplementary Table 2). The
results shown in Fig. 2 are not dependent on genome abundance in
the dataset (the most abundant group is Bacilli, with 38% of all
genomes; Supplementary Table 1).

Prokaryotic gene trees differ from the species tree due both to
random phylogenetic errors and to the cumulative impact of
LGT62. In the absence of LGT, gene lineages branch together
(monophyletic) and the phylogenetic diversity of sister clades
reflects the time since their origin, with older lineages having
higher sister diversity. In the context of gene evolution with LGT,
gene lineages branch into multiple clades, with the number of
clades increasing with gene transfer prevalence. Because LGT is a
continuous phenomenon in prokaryotic evolution, the taxonomic
labels of sister lineages change dynamically, but their phyloge-
netic diversity gives us the means to infer the relative timing for
the origin of lineages. To integrate the information of sister
relation from all gene trees spanning the 25 bacterial groups, we
scored the phylogenetic diversity for sister clades of each group in
the individual trees permitting as many inter-group LGT as
necessary in the trees (5402 trees with at least six groups, Fig. 3
and Supplementary Data 5). The analyses show Clostridia as the
group with the highest sister clade diversity, measured as the
maximum number of phyla in a sister clade (on average five),

followed by a tie between Deltaproteobacteria, Bacilli, Actino-
bacteria, and Spirochaetes all with three distinct groups on
average present in sister clades. The result stands when looking at
the 131 universal trees only, where Clostridia has on average nine
distinct sister groups, followed by Actinobacteria with seven
and Deltaproteobacteria with five (Supplementary Data 6).
Maximum-likelihood ancestral state reconstructions using 131
universal trees indicate that LBCA was a rod-shaped cell
(Supplementary Fig. 4) and reconstructs Clostridia as the most
ancestral lineage (Supplementary Fig. 5) in agreement with the
previous analyses.

The analyses so far suggest that the 146 protein families conserved
in all groups of anaerobic bacteria were present in LBCA, not only
due to their ubiquitous and nearly universal nature (Supplementary
Fig. 1) but also because they form a functional unit: a highly
connected, nearly complete core metabolic network (Fig. 1). But is
the ubiquitous nature of these genes caused by their antiquity, or is it
the result of LGT? To address this question, we obtained all values of
verticality for prokaryotic gene families29 as a proxy to measure the
gene’s tendency to undergo or resist LGT. LBCA’s protein families
are distinctively and significantly (Kolgomorov–Smirnov statistic=
0.99, p value= 2.4e – 318) more vertical than the average prokaryotic
protein family (Fig. 4a, Supplementary Data 7, and Table 1). The
metabolic network annotated with verticality values shows that genes
involved both in metabolism and information processing (as aaRSs)
are highly vertical (Fig. 4b and Supplementary Data 7). Although the
most vertically evolving genes in prokaryotic genomes, those for
ribosomal proteins, are not involved in specific biosynthesis and
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Fig. 2 Divergence analyses for 1089 anaerobic genomes using 131 universal trees reveal clostridial species are closer to the root. Analysis of 131 rooted
trees of genes universally present in bacterial anaerobic taxa spanning major functional categories (sorted horizontally according to curated classifications
shown on top; order as in Supplementary Data 3). Illustrative trees on the side portray the metric used in each analysis and identify the group at the root in
each with yellow nodes. a Root-to-tip distance measured as node depth (normalized by the largest distance in each tree). b Root-to-tip distance measured
as branch length (normalized by the largest distance in each tree).
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hence not represented in metabolic maps, the metabolic functions
most closely associated with protein synthesis, those of aaRSs, build
the core of a metabolic network that is vertical in nature and thus
ubiquitous due to antiquity, not transfer (Fig. 4) and hence ancestral
to the domain Bacteria.

Discussion
By investigating the genomes of anaerobic bacteria, we were able to
obtain inferences about the metabolism and physiology of LBCA.
Our results indicate that LBCA was autotrophic, gluconeogenetic,
and rod-shaped. Our analyses of trees for all genes, not just those
universally present in all genomes, point to Clostridia (a class within
the phylum Firmicutes) as the modern bacterial group most similar
to the first lineages, which diverged from LBCA. This result con-
trasts with previous analyses placing other groups at the root based
on concatenated protein phylogeny53,56,63,64, but it is consistent
with early proposals based on the evolution of tetrapyrrole
synthesis65, with studies that place the broader taxon of Firmicutes
deep-branching in bacterial trees37,66 and with the proposal of a
rod-shaped Gram-positive ancestor for bacteria67, and, more
recently, for Firmicutes68. Why do our inferences on the root of the
bacterial tree contrast with different roots63,64 proposed in other
recent analyses? First, our results are based on genome data for
cultured organisms with high-quality and complete genomes, and
are therefore independent of binning procedures inherent to
metagenomic data69. In addition, our data are based on genomes
for anaerobic bacteria available to date, and is thus less prone to
LGT effects associated with the rise of oxygen24. The assumption
that LBCA was anaerobic is supported by geochemical14,17 and
phylogenomic4,16,24 evidence, and it undoubtedly reduces phylo-
genetic noise that would be introduced with late-coming aerobic
sequences. Furthermore, our results do not rest upon one or two
branches in a single concatenated or consensus tree based on
ribosomal sequences, an approach that notwithstanding long tra-
dition has strong potential problems30, not the least of which is that
with concatenated alignments, different methods give fully resolved
but conflicting trees, making the results dependent on ad hoc site
filtering procedures and specific maximum-likelihood parameters70.

Our results are internally consistent, based on the convergence
of signals from multiple individual trees for individual protein
families (with statistical support, Supplementary Fig. 3). In

addition, the core set of 146 families trace to LBCA through
multiple lines of evidence: (i) the families are universally present
in all taxonomic groups analyzed, and (ii) nearly universally
present in all genomes analyzed (Supplementary Fig. 1); (iii) they
enable a highly connected and nearly complete core metabolic
network (Fig. 1); (iv) they are enriched in information processing
genes, known to be ancient (Table 1); (v) their functional
repertoire (including RNA modifications, multifunctionality, and
gluconeogenesis-early) is in accordance with independent studies
for LUCA7 and LACA12,37; and (vi) they are among the most
vertical genes known (Table 1, Supplementary Data 7, and Fig. 4).
The metabolic network enabled by the 146 LBCA genes can be
completed for universal essential metabolites with only nine
genes, all nine of which are present both in Clostridia and Del-
taproteobacteria (Supplementary Data 2).

It has been proposed that Gram-negative bacteria originated
from Gram-positive bacteria by an early sporulation event71, a
hypothesis that is compatible with our results. Endospore for-
mation is specific to Firmicutes, implying that if sporulation was
an ancient trait, it was subsequently lost before the divergence
of most other anaerobic lineages. Spores could have survived
in the geologically challenging environments of early Earth3,
and the loss of sporulation in more moderate environments is
facile72.

Other groups showing proximity to the root in the phyloge-
nomic tests we performed are Deltaproteobacteria (all tests), three
anaerobic species of Aquificae that are significantly closer to the
root by branch length (Figs. 2 and 3 and Supplementary Fig. 3)
than other lineages, and Actinobacteria, which rank higher than
both Deltaproteobacteria and Aquificae in the sister diversity
analysis (Fig. 3). What do these groups have in common?
Members of all have the acetyl-CoA pathway for carbon fixation
and/or energy metabolism73; the only carbon fixation pathway
present in both archaea and bacteria that traces to LUCA7 and
that is also present in methanogens, the root of the archaeal
tree10–12. This physiological trait links LBCA both to LUCA
and LACA, and also to anaerobic H2-dependent growth in
hydrothermal environments7. Whereas most Deltaproteobacteria
use the acetyl-CoA pathway solely for carbon fixation while
reducing sulfate for energy metabolism, recent reports show that
some members can use the acetyl-CoA pathway for ATP supply
as well74,75. The divergence patterns herein inferred are fully

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Acidobacteria

Aquificae

Bacteroidetes

Chlorobi

Fusobacteria

Nitrospirae

Alphaproteobacteria

Betaproteobacteria

Gammaproteobacteria

Deltaproteobacteria

Epsilonproteobacteria

Chlamydiae

Verrucomicrobia

Spirochaetes

Synergistetes

Cyanobacteria

Actinobacteria

Chloroflexi

Erysipelotrichia

Bacilli

Clostridia

Negativicutes

Tenericutes

Thermotogae

0 4 8 12 16 20 24

Sister
Diversity
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analyses, where the yellow group is the one with the highest sister diversity score and therefore inferred as most ancestral.
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consistent with the observation that both Clostridia and Delta-
proteobacteria are known to be remarkably polyphyletic.
Recently, a proposal to divide Deltaproteobacteria into new phyla
has been published, confirming that sulfate/sulfite reduction
within the class is ancient76. Deep-branching Actinobacteria with
the Wood–Ljungdahl pathway have recently been uncovered in
serpentinizing systems77. In terms of physiology, the acetyl-CoA
pathway is undoubtedly an ancient biochemical route78. By the
measure of analyses presented here, several lineages that use it for
survival appear to be ancient as well. The reconstruction of
LBCA’s metabolism reveals the presence of several multi-
functional enzymes, reducing the number of genes required for its
viability, an important evolutionary consequence of ancestral
enzyme promiscuity79 and possibly a general strategy among the
earliest prokaryotes. The physiology of LBCA reconstructed from

anaerobes reveals traits well suited to the inhospitable environ-
ment of the early Earth42.

Methods
Data collection and clustering. Bacterial genomes were collected from NCBI,
version September 201680. Genomes were classified as anaerobic or aerobic as done
elsewhere31, rendering 1089 bacterial genomes from anaerobes. Briefly, a dataset of
1784 sequences labeled as heme-copper oxygen reductases (HCOs) and nitric oxide
reductases (NORs) was blasted against our dataset of prokaryotic genomes. If one
homolog (>25% identity, e value <10−10, coverage of at least 300 amino acids) for
HCOs and NORs was found, the genome was classified as aerobic.

Genomes were assigned their corresponding phyla in NCBI taxonomy, except
for (i) Firmicutes and Proteobacteria (the size of which exceeded other phyla by an
order of magnitude) where species were assigned to classes for resolution, and (ii)
phyla with fewer than 5 species, assigned to “Other Bacteria.” Pairwise local
alignments for all protein sequences were calculated with a reciprocal blastp
(BLAST+ version 2.5.0)81, followed by the calculation of global identities with an
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adaptation of EMBOSS needle82. Pairs of sequences with a minimum global
identity of 25% and an e value ≤1E− 10 were then used to create protein families
with the MCL algorithm83,84. For the creation of protein families with the MCL
algorithm, the parameters --abc -P 180000 -S 19800 -R 25200 were used, resulting
in 114,326 families. Of these, 64,149 were present in at least three species and at
least four genomes, and were retained for further analyses.

Functional annotation. All protein sequences were aligned against the KEGG
Orthology (KO) database26 (accessed August 2017) using BLAST searches. The
best query-subject hits as judged by E value, query coverage, and length ratio (cut-
off: query coverage ≥80%, E value ≤1E− 10, and length ratio between 0.7 and 1.3)
were used to annotate the protein sequences individually. We assigned the func-
tional category to each gene family according to the most frequent annotation for
the protein sequences in the family. If two or more functional categories occurred
with the same frequency, the gene family was annotated within all equally sup-
ported categories. For the 146 universal protein families, the annotation of each
family in its corresponding functional categories was rechecked manually (Sup-
plementary Data 3).

Sequence alignment, tree reconstruction, and root inferences. For each gene
family, the protein sequences were aligned using MAFFT (Multiple Alignment with
Faster Fourier Transform) version 7.13085 (parameters: --maxiterate 1000 --localpair;
alignments not predictable this way were constructed using the parameter --retree 2).
The resulting alignments were used to reconstruct maximum-likelihood trees with
RAxML version 8.2.886 (parameters: -m PROTCATWAG -p 12345). Trees were
rooted with MAD54. Trees with more than one possible MAD root were ignored,
leaving 63,324 trees for the subsequent analyses (available in Supplementary Data 5).

Tree analysis
Divergence analysis. To quantify divergence since the LBCA split for each bacterial
genome, we calculated root-to-tip distances for all tips in all gene trees measured as
(i) the sum of branch lengths (phenetic distance) along the path connecting each
operational taxonomic unit to the root and (ii) the sum of branch splits (node
depth). To allow for comparisons among trees we normalized the root-to-tip
distances for each tree according to the largest distance attained in the tree, so that
distance values are bound to the unity interval, with large values indicating more
divergence. We scored divergence values to each taxonomic group across all the
trees according to the affiliated genome with the smallest root-to-tip distance,
independently for each metric (phenetic and node depth). All analyses were per-
formed with custom Python scripts using the Environment for Tree Exploration87

(ETE3, version 3.1.1).

Sister diversity. We analyzed the distribution of sister relationships for each taxo-
nomic group across the rooted trees as follows: for a given tree with the leaves
labeled according to the taxonomic group, we retrieved the set of pure clades for
each taxonomic group represented by at least one species in the tree. Note that even
though some taxa may not branch as a single clade in the tree, the minimal set of
pure (monophyletic) clades can be identified. For each pure clade, the number of
taxonomic groups present in the sister clade was recorded (a value in the range of
[1–24]) and the sister clade with maximal diversity (in terms of the number of
taxonomic groups) was used as sister diversity score. All analyses were performed
with custom Python scripts using ETE387 (version 3.1.1).

Verticality. All 261,058 values of verticality for all prokaryotic gene families were
obtained from Nagies et al.29, where the highest possible value is 24 and the lowest
is zero. All LBCA protein families were ranked from most to least vertical (Sup-
plementary Data 7). For reactions encoded by multiple protein families, the average
value of verticality was taken.

LBCA metabolic network
Network construction. For all 6164 anaerobic bacteria KOs the respective reactions
were downloaded from the KEGG reaction database26 (version 16-08-2019), 2414
KOs had at least one reaction associated, resulting in 3550 reactions. Reaction
reversibility was determined by parsing KGML (KEGG Markup Language) files
from 165 KEGG pathway maps. Reactions that did not occur in the KGML files
were assigned as irreversible. Seventy-three reactions containing ambiguous stoi-
chiometries (characters n and m) or unknown compounds were discarded. The
final set consisted of 3477 reactions.

Metabolic network expansion. Twenty proteinogenic amino acids, four DNA bases,
four RNA bases, eight universal cofactors, one lipid, and 20 uncharged tRNAs were
investigated as targets in the network. The algorithm48 started with a complete
reaction network containing all 3477 LBCA candidate reactions regardless of their
taxonomic distribution. A score was assigned to each reaction, reflecting the
likelihood of their presence in LBCAs metabolic network. Reactions with low
distribution among taxonomic groups were scored lower, whereas the score
increased with the higher taxonomic distribution. The reactions were sorted
increasingly by their score. Starting with low scores, reactions were removed

temporarily from the full network sequentially. If neither the presence of the target
compounds nor the core network was violated, the respective reaction was removed
permanently. The reduction algorithm stopped when no further reaction could be
removed. The network was visualized with Cytoscape88 (version 3.7.2).

Ancestral state reconstruction. Ancestral state reconstruction for cell shape and
taxonomic groups was performed with PastML89 version 1.9.20 using the 131 trees
with all taxonomic groups as independent estimates of the prokaryotic phylogeny.
The underlying metadata for the tip states was downloaded from JGI GOLD90 v.6.
The maximum-likelihood-based prediction method MPPA (marginal posterior
probabilities approximation) with model F81 was used to reconstruct the states at
the root of each tree. The reconstructed states at the root of the trees occurring in
the highest frequencies were considered the most likely state for LBCA.

Statistics and reproducibility. Statistical tests were performed to assess differences of
root-to-tip distances between all 276 possible taxon pairs. For a given taxon pair a
and b, all 131 trees with all taxonomic groups were used and the representative
species with smallest root-to-tip distance were recorded for each tree resulting in
two distance vectors Da and Db. Statistical tests were performed with one-sided
Wilcoxon’s signed-rank test for paired samples, such that:

H0: Da=Db

H1: Da <Db

Across all taxon pairs, the tests generated a p value matrix (24-by-24), and p
values were considered significant <0.05 after Bonferroni correction (Supplementary
Fig. 3). The tests were conducted using the scipy.stats91 implementation of the
Wilcoxon’s signed-rank test in Python. The Kolmogorov–Smirnov test used to
measure significance in the comparison of verticalities was also conducted with the
default parameters in the scipy.stats implementation in Python. No random
sampling was made in the analyses conducted in this paper.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequence data that supports the findings of this study are available in NCBI RefSeq80

(GCF identifiers used are provided in Supplementary Data 1). Metabolic data is available
in KEGG26. Metadata is available from JGI GOLD90. Phylogenetic trees and all other
relevant data are provided as Supplementary Datasets.

Code availability
All data sources, software packages, and their usage are described in the “Methods” with
the corresponding versions and references, including NCBI, KEGG, JGI GOLD v. 6,
BLAST v. 2.5.0, EMBOSS needle, MAFFT v. 7.130, RAxML v. 8.2.8, MCL, MAD, ETE3 v.
3.1.1, PastML v. 1.9.20, and Cytoscape v. 3.7.2. New codes used here consisted of batch
subroutines to run the aforementioned algorithms multiple times, calculations, and
statistical analyses thoroughly described in the “Methods”. The data and results
presented in this paper do not result from new software development.
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