Skip to main content
. 2021 Mar 26;11:6968. doi: 10.1038/s41598-021-86327-7

Table 2.

Models’ parameters.

Model Parameter Parameter space Chosen value
RSFs No. trees {25, 50, 75, 100, 250, 500, 750, 1000, 1500} 500
Max. depth {1, 2, 3, 4, 5, 10, 15, 25, 50, 100, 250, 500} 250
Min. samples split {5, 10, 15, 20, 25, 50} 15
Min. samples leaf {1, 2, 3, 4, 5, 10, 25} 1
SSVMs Kernel linear, rbf, sigmoid rbf
α Logarithmic space ranging from 0.00001 to 10 0.113
γ Logarithmic space ranging from 0.001 to 1 0.717
Booster gbtree gbtree
XGB No. trees {25, 50, 75, 100, 250, 500, 750, 1000, 1500} 50
Max. depth {1, 2, 3, 4, 5, 10, 15, 25, 50, 100, 250, 500} 5
Learning rate Logarithmic space ranging from 0.01 to 1 0.05
Subsamples {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} 0.6

Each model was parametrized using a randomized search of 25 different parameter settings with a 10-fold cross validation to maximize the c-index.* γ is only relevant for the rbf kernel. It was ignored for the rest.