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Abstract

Motivation: Circular RNAs (circRNAs), a class of non-coding RNAs generated from non-canonical back-splicing
events, have emerged to play key roles in many biological processes. Though numerous tools have been developed
to detect circRNAs from rRNA-depleted RNA-seq data based on back-splicing junction-spanning reads, computation-
al tools to identify critical genomic features regulating circRNA biogenesis are still lacking. In addition, rigorous stat-
istical methods to perform differential expression (DE) analysis of circRNAs remain under-developed.

Results: We present circMeta, a unified computational framework for circRNA analyses. circMeta has three primary
functional modules: (i) a pipeline for comprehensive genomic feature annotation related to circRNA biogenesis, includ-
ing length of introns flanking circularized exons, repetitive elements such as Alu elements and SINEs, competition score
for forming circulation and RNA editing in back-splicing flanking introns; (ii) a two-stage DE approach of circRNAs based
on circular junction reads to quantitatively compare circRNA levels and (iii) a Bayesian hierarchical model for DE ana-
lysis of circRNAs based on the ratio of circular reads to linear reads in back-splicing sites to study spatial and temporal
regulation of circRNA production. Both proposed DE methods without and with considering host genes outperform
existing methods by obtaining better control of false discovery rate and comparable statistical power. Moreover, the
identified DE circRNAs by the proposed two-stage DE approach display potential biological functions in Gene Ontology
and circRNA-miRNA-mRNA networks that are not able to be detected using existing mRNA DE methods. Furthermore,
top DE circRNAs have been further validated by RT-gPCR using divergent primers spanning back-splicing junctions.
Availability and implementation: The software circMeta is freely available at https://github.com/lichen-lab/circMeta.
Contact: li.chen@auburn.edu or bing.yao@emory.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

biological functions. For example, a recent analysis showed that
circRNAs are highly abundant in the mammalian brain compared to
other analyzed tissues. Importantly, many circRNAs are upregulated

1 Introduction

Circular RNAs (circRNAs) are a class of single-stranded and cova-

lently ‘head-to-tail’ joined RNA species, initially described in the
human genome in the 1990s with scrambled exon order (Nigro
et al., 1991), and recently emerged as a multi-functional family of
RNAs in eukaryotes (Chen, 2016; Li et al., 2018; Wilusz, 2018).
circRNAs are derived from a non-canonical form of alternative
splicing when the pre-mRNA splicing machinery ‘back splices’ to li-
gate a downstream splice donor site to an upstream splice acceptor
(SA) site (Wilusz, 2018). Recent studies using RNA-seq data
revealed that thousands of circRNAs could be detected in eukar-
yotes (Szabo and Salzman, 2016; Wilusz, 2018). Many circRNAs
display tissue-specific expression, implying their potential critical

during neurodevelopment and become highly enriched in synapses
(Rybak-Wolf et al., 2015). Loss of mammalian circRNA Cdrlas
leads to miRNA network dysregulation and impaired brain func-
tions (Piwecka et al., 2017). These observations together highlighted
the critical roles that circRNA plays in mammalian central nervous
systems. Besides the important roles of circRNAs in neurodegenera-
tive diseases, several recent studies have revealed circRNAs are
abundant and functional in cancer and could serve as potential bio-
markers (Chen et al., 2019; Vo et al., 2019).

Due to the scramble exon ordering of circRNA, most circRNA
detection algorithms such as findcirc (Memczak et al., 2013),
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CIRCexplorer (Zhang et al., 2014) and CIRI (Gao et al., 2015) use
back-splicing junction-spanning reads from rRNA-depleted RNA
sequencing data to predict the landscape of circRNAs. These algo-
rithms utilize different read aligners, such as Tophat2 (Kim et al.,
2013), Bowtie2 (Langdon, 2015) or BWA (Li and Durbin, 2009), to
map back-splicing junction-spanning reads to the whole genome or
transcriptome. As a consequence, large numbers of circRNAs identi-
fied are mainly from exonic regions. Though tools for predicting
circRNAs are well-established, downstream methods for critical
genomic feature annotation involved in circRNA biogenesis, as well
as optimized differential expression (DE) methods for circRNAs in a
unified framework are not readily available.

Several key genomic features have been recently suggested to play
important roles in circRNA biogenesis. For instance, the flanking
introns of circularized exons are substantially longer than those that
are randomly chosen, which could introduce more cis-regulatory ele-
ments that promote circRNA formation (Zhang et al., 2014). Intronic
repetitive elements such as Alu elements and short interspersed nu-
clear elements (SINEs), could form RNA duplexes through
orientation-opposite complementary sequences termed inverted
repeated Alu pairs (IRAlus) or inverted repeated SINE pairs (IRSINEs),
which facilitate the effective back-splicing by bringing back-splicing
sites into proximity through intron pairing. It has been shown that the
efficiency to form circRNAs depends on the overall score of IRAlus or
IRSINEs pairing within or across the flanking introns. In addition to
the simple base complementarity, recent evidence indicates RNA
adenosine-to-inosine (A-to-I) editing, often enriched in Alu elements,
affects the thermodynamics of flanking intron pairing (Li ez al., 2018).
Knockdown of the RNA-specific adenosine deaminase elevates
circRNA formation, possibly due to the downregulation of inosine and
enhancement of RNA pairing (Rybak-Wolf et al., 2015). Although
these genomic features in flanking introns provide critical insights for
the formation of circRNAs, a systematic and unified framework to
identify and characterize these features is lacking.

Different from annotated genes (e.g. ~20K in human), the num-
ber and back-splicing sites of circRNAs vary a lot across different
biological conditions (Nicolet et al., 2018; Rybak-Wolf ez al.,
2015), providing a sophisticated post-transcriptional gene regula-
tory network. Moreover, the distribution assumption for back-
splicing junction reads of circRNAs may differ from linear reads in
mRNAs, rendering standard DE methods for mRNAs less optimal.
Therefore, it is important to develop a DE method specifically for
circRNAs based on junction reads. In addition, it has been shown
that expression level of circRNAs determined by back-splicing junc-
tion reads may vary relative to expression level of their host gene
measured by linear splice junction reads (Westholm et al., 2014).
The relative expression level of circRNAs and their parental linear
mRNA could differ significantly between cell types, indicating they
could be subjected to independent regulatory mechanisms (Salzman
etal.,2013). In order to accurately cross-compare circRNA differen-
tial levels, several publications employed circular-to-linear ratio
(CLR) to define expression levels of circRNAs among differential
cell types (Nicolet et al., 2018; Rybak-Wolf ez al., 2015; Zhou et al.,
2017). However, rigorous statistical methods are under-developed
to identify differential CLR where the expression of circRNAs and
linear isoform could be highly correlated or diverged.

In this work, we develop a unified computational framework
‘circMeta’, to perform comprehensive analyses of predicted circRNA
including three primary tasks (i) back-splicing flanking intron identifi-
cation and genomic feature annotation for flanking introns including
host genes, intron length, repetitive elements, circulation competition
score and A-to-I editing (ii) a two-stage method for DE analysis of
circRNAs based on junction reads to quantitatively compare circRNA
levels (iii) a Bayesian hierarchical model for DE analysis of circRNAs
based on CLR with considering host genes to study spatial and tem-
poral regulation of circRNA production. Top DE circRNAs have been
further validated by RT-qPCR using divergent primers spanning back-
splicing junctions. Our proposed DE methods outperform existing
methods based on simulation studies and real data applications, and
the results provide important biological insights by an example of regu-
latory roles of circRNAs in different human brain regions.

2 Materials and methods

2.1 Datasets and methods for predicting circRNAs

We collect ribosomal RNA (rRNA) depleted RNA-seq datasets and
matched miRNA-seq datasets in three brain regions including front-
al cortex, cerebellum and diencephalon with two replicates each
from ENCODE project (Thomas et al., 2007). These datasets will be
used to demonstrate the workflow and effectiveness of circMeta. As
findcirc, CIRCexplorer and CIRI are the most popular circRNA pre-
diction methods that allow accurate prediction of circRNAs based
on back-splicing junction reads from rRNA-depleted RNA-seq data,
circMeta accommodates the identified circRNAs in the output for-
mat of the three methods to perform genomic feature annotation
and DE analysis in a unified framework. In the following analyses,
we use the common circRNAs identified by CIRIL findcirc and
CIRCexplorer as input for circMeta, as circRNA prediction algo-
rithms should ideally be combined to achieve reliable predictions
(Hansen et al., 2016).

2.2 Genomic feature annotations of circRNAs
The current version of circMeta provides the following genomic fea-

tures to annotate circRNAs, which will help better predict and quan-
tify circRNAs.

2.2.1 Host or nearest gene

We first classify predicted circRNAs into exonic, intronic and inter-
genic circRNAs based on their origin. Exonic circRNAs contain at
least one back-splicing exon. Recent studies indicate the dynamics
between canonical and back-splicing depends on the availability of
core spliceosome, suggesting the circRNA-linear mRNA balance
control could contribute to the post-transcriptional gene regulation
(Liang et al., 2017). The information of host or adjacent genes could
potentially provide biological insights of circRNA-linear mRNA
interplay. We annotate the host genes that harbor these intronic and
exonic circRNAs, and define the adjacent genes to the circRNAs
derived from intergenic sequences.

2.2.2 Back-splicing flanking intron

For exonic circRNAs, we obtain the flanking introns of the back-
splicing sites since they are crucial in forming RNA pairing to facili-
tate efficient back-splicing.

2.2.3 Repetitive elements

As both computational analyses and experimental evidence confirm
that flanking intron RNA pairing, mainly through IRAlus or
IRSINEs, promotes circRNA formation (Zhang et al., 2014),
circMeta calculates the number and orientations of Alu elements in
circRNA flanking introns and offers a fast way to calculate IRAlus
across or within individual flanking introns. We follow the defin-
ition of IRAlus-within as the number of pairing inverted repeated
Alu elements within one flanking intron that may prevent the forma-
tion of circulation and IRAlus-across as the number of pairing
inverted repeated Alu elements across two flanking introns that may
promote the formation of circulation (Zhang et al., 2014). We then
calculate the IRAlus-score that reflects the competition between
IRAlus-within and IRAlus-across to serve as likelihood indication
for RNA pairing across the flanking introns for circRNA biogenesis
(Zhang et al., 2014).

IR Alus-score

IRAlus-across < IRAlus-within

0
N { IRAlus-across-IRAlus-within  IRAlus-across > IRAlus-within

2.2.4 RNA modification
Based on the fact that inosine can form a base pair with cytidine (C)
thereby being converted to guanosine (G) in the cDNA sequence by
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reverse transcription, the A to G conversion at any given site can be
regarded as a potential RNA editing site (Suzuki ez al., 2015). RNA-
seq sequence alignments could be obtained from intermediate steps
in these circRNA prediction methods. The number of RNA-seq
reads supporting the edited (G in the sense of transcription) and un-
edited (A in the sense of transcription) sequences could be further
detected using the samtools and bcftools (Li et al., 2009). circMeta
could obtain and filter A-to-I sites by reported RNA editing sites in
RNA editing database such as RADAR (Ramaswami and Li, 2014)
and DARNED (Kiran and Baranov, 2010).

2.2.5 Circular-to-linear ratio
circMeta first detects the linear reads in the back-splicing junctions
and then calculates CLR as the ratio of circular junction read count
to linear junction read count.

2.3 Differential expression analysis of circRNAs without

considering host genes

Since circRNA is mostly defined based on circular junction reads
spanning the back-splicing sites, many published works directly take
the circular read counts as the expression level of circRNAs. Though
the negative binomial distribution (NB) is the most widely used for
modeling mRNA counts and for performing DE analysis, it remains
unclear whether the direct extension of NB for modeling circular
read counts and downstream NB-based DE analysis is optimal,
given circular read counts might be less over-dispersed than mRNA
read counts. Considering this, we propose a two-stage DE analysis.
First, we perform deviance goodness of fit (GOF) test for both NB
and Poisson distributions for each circRNA. The deviance is defined
as D =237 {l(x;) — I(w;)}, which is twice the difference between
the log-likelihood of the saturated model and the log-likelihood of
the fitted model. The deviance follows the y* distribution and we
use the 77 test to calculate the P-value for each fitting. A good fitting
is indicated by P-value <0.05. Second, we adopt the DE method
with the distribution assumption that obtains overall better GOF.
To be specific, we let x;; be the observed circular read counts of ith
circRNA, jth condition and Ith replicate. x;; can be assumed to
follow NB as xj ~ NB(sjii;, ¢;;) or Poisson distribution as
x; ~ Pois(s;;). In the above, s;; is the size factor such as sequenc-
ing depth, 1; and ¢;; denote the mean expression and dispersion of
ith circRNA in jth condition, respectively. It should be noted that ¢,
offers the flexibility to model the mean—variance relationship in the
way of var(x;) = sju; + (si,,ui,-)zrpi/ in NB. If NB achieves better
GOF, circMeta uses edgeR (Robinson et al., 2010) as default. If
Poisson distribution obtains better GOF instead, circMeta uses
approximated z-test for testing the Poisson rates between ith
circRNA in two conditions as

i = ~ — Hij — )]
[l i = S
n + - ifl
If the circular read count is low, a square root transform helps the z-
test statistic approach normality, which is given by

V .aiZ Y :&il

1 /11
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In brief, circMeta has two stages for performing DE analysis of
circRNAs based on circular reads: (i) GOF test for NB or Poisson
distribution and (ii) NB-based test (edgeR) or Poisson-based test (z-

test). As a result, circMeta outputs the circular read counts, fold
change, P-value and FDR for all circRNAs.

i — g fip = Xijl i—1,2.

i = .

2.4 Differential expression analysis of circRNAs with
considering host genes

Similarly, we define x;; as the observed circular read counts, #;; is the
total read counts including circular and linear reads covering back-
splicing junctions of ith circRNA, jth condition and Ith replicate.

Thus, CLR could be calculated as x;; /(73 — x;1). To achieve an easier
statistical modeling, we alternatively use CLP (circular-to-linear pro-
portion) x;i/n;; as a representative of CLR. We define p;; as the
underlying CLP and assume x;; follows a binomial distribution as
xi|pijt, nijs ~ Binomial(ny, pjr). Since pj; is bounded between 0 and
1, we further assume that p;; follows a beta distribution as
piji ~ Beta(g;, p;;). The beta distribution is parameterized by mean u;;
and a dispersion parameter p;;. The mean and variance of the beta
distribution hold the relationship as var(p;) = p;;(1 — ).
Actually, the above parameterizations are similar to the model for the
proportion of methylated rate for CpG in single nucleotide resolution
sequencing data (Feng et al., 2014).

Thus, we employ a beta-binomial model to model circRNA expres-
sion relative to that of the host gene among multiple biological condi-
tions. Though either moment of moments (MOM) or maximum
likelihood estimation (MLE) could obtain the estimates of p;; and y;;, we
choose MOM for its simplicity. However, the replicates of RNA-seq for
each condition are limited, ranging from two to five for a typical study.
It is therefore important to employ a Bayesian approach to estimate the
parameters for each circRNA by borrowing information from others.
Especially, the Bayesian approach will help stabilize the variance esti-
mate and thus might improve the power in DE analysis. To stabilize the
variance estimate var(p;), we adopt a shrinkage approach on dispersion
parameter p;;. Specifically, we will build up another level of the beta-
binomial model by imposing a distribution for p;;. To choose a reason-
able distribution, we explore the empirical distribution of p estimated
from all circRNAs detected in frontal cortex with two replicates RNA-
seq and observe the distribution approximates a log-normal distribution
(Fig. 2B). Thus, we assume p; ~ log — normal(m;, 5;2) and we have
the final Bayesian hierarchical model as follows,

Xijt|piji, mij ~ Binomial(n, pi)
piji ~ Beta(u;, p;)

p; ~ log — normal(m;, 6;%)

To make the statistical inference, we first obtain ji; using MOM
and 7; and &;* based on pj; in the log-normal distribution. To ob-
tain a shrunk estimate of p;;, we adopt a similar penalized approach
used by DSS (Feng et al., 2014) by maximizing the conditional likeli-
hood of p;; as follows,

logL(pj|it;j» Xijes mije)
o Zlog(Beta — Binomial (pfu;, xj1, miit) ) — log(log - normal(p”\rh/, [7,»2)).
[

After all parameters are estimated, hypothesis tests can be per-
formed at each circRNA in two groups with the null hypothesis
Hy : ujy = wjp. We first use Wald test for ith circRNA as,

By — [
var(ft;y) + var(fi;)

The details of obtain var(j;) can be found in Supplementary
Material.
We also use likelihood ratio test (LRT) with one degree freedom as,

1= =20 =),

where I is the log-likelihood under Hy and /; is the log-likelihood
under H,. After P-values are obtained, false discovery rate (FDR)
can be obtained using Benjamini and Hochberg (1995).

3 Results

3.1 Genomic feature annotation of circRNAs

We use circMeta to obtain flanking intron length, Alu and SINE en-
richment, IRAlus-score and IRSINEs-score from the top and bottom
1K predicted circRNAs ranked by circular read counts in three brain
regions and plot these genomic features (Fig. 1). We find that top
circRNAs usually have longer flanking introns, more abundant Alu
and SINE (excluding Alu), higher IRAlus-score and IRSINEs-score
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Fig. 1. Genomic annotations of common circRNAs identified by findcirc,
CIRCexplorer and CIRI in frontal cortex, cerebellum and diencephalon (F, frontal
cortex; C, cerebellum; D, diencephalon). Distribution of natural logarithm of junc-
tion intron length, Alu enrichment, IRAlus-score, SINE enrichment and IRSINEs-
score in top and bottom 1K of identified circRNAs. SINE excludes Alu elements

than bottom circRNAs (P-value <0.05), which is consistent with
previous observations (Zhang et al., 2014). As expected, we also
find more than 90% identified A-to-I editing sites are within intronic
Alu. Since circRNAs have been shown to display tissue-specific or
developmental-specific expression (Nicolet et al., 2018; Rybak-Wolf
et al., 2015; Zhou et al., 2017), it is useful to demonstrate the
relationship between circRNAs and their host genes by CLP or
CLR. We thus calculate CLP and fit a smoothing spline between nat-
ural logarithm of circular reads and CLP (Fig. 2A, Supplementary
Fig. S1) and find a strong correlation between circular reads
and CLP (R=0.680, 0.705, 0.695) in three brain regions. The corre-
lations indicate that, while many circRNAs and their host genes re-
main correlated, some circRNAs are independent of their host genes
and could possess unique tissue-specific functions.

3.2 Differential expression analysis of circRNAs without

considering host genes

We first perform simulation studies to demonstrate the workflow and
performance of the two-stage DE analysis approach. In the first stage,
we perform the GOF test for all predicted circRNAs in each brain re-
gion and find that Poisson distribution actually achieves overall better
GOF than NB (Table 1, Supplementary Fig. S2). In the second stage,
we thus choose and apply Poisson-based z-test statistic on simulated
datasets generated based on predicted circRNAs in frontal cortex. In
each simulation, we assume there are 10 000 circRNAs with random-
ly sampled estimated Poisson rate ; from all estimates. To evaluate
the power, we let y;; = p,» for all circRNAs except 5% randomly
sampled circRNAs differentially expressed between two groups with
a log-fold change of 2 in either y;; or w;,. We further allow two repli-
cates for each condition and generate the circular read counts from
Poisson distribution. Finally, the simulation is repeated 50 times and
the average power (True Positive Rate), FDR (False Discovery Rate),
TP (True Positive) and FP (False Positive) for Poisson-based z-test and
NB-based edgeR, DESeq2 (Love et al., 2014) are reported respective-
ly. The simulation results are presented in Table 2. We could observe
that z-test achieves the highest power and estimated FDR closest to
the nominal level 0.05 (0.033 versus 0.05), edgeR obtains the second
highest power but significantly over-estimated FDR (0.169 versus
0.05) and DESeq2 is the most conservative test with the lowest power
and no FP is reported. As expected, z-test is a more powerful DE test
statistic if Poisson distribution fits the data better.

We next apply three tests to detect DE circRNAs in the pairwise
comparisons of three brain regions. Similar to the observations from
the simulation study, we find z-test obtains most DE circRNAs
(FDR < 0.05), followed by edgeR. DESeq2 is the most conservative
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Fig. 2. (A) Correlation of logarithmic circular read counts and circular-to-linear pro-
portion (CLP) for common circRNAs identified by findcirc, CIRCexplorer and CIRI
in frontal cortex. (B) Histogram of the logarithmic estimated dispersion p from
common circRNAs identified by findcirc, CIRCexplorer and CIRI in frontal cortex.
The solid line is the theoretical density curve for a normal distribution with parame-
ters estimated from sample mean and variance of logarithm of p

Table 1. GOF test for circRNAs identified in three brain tissues (P-
value <0.05)

Brain tissue Poisson (GOF) B (GOF) #circRNA
F 14799 5633 28674
D 11076 3729 16466
C 6262 1701 14855

F, frontal cortex; C, cerebellum; D, diencephalon.

Table 2. Simulations when DE is declared with nominal FDR 0.05

TPR FDR TP FP
edgeR 0.845 0.169 422.560 88.380
DESeq2 0.560 0.000 280.100 0.000
z-test 0.884 0.033 441.760 15.140

Table 3. Real data DE results for pairwise comparisons between
three brain tissues

edgeR DESeq2 z-test #circRNA
Fversus C 351 138 1248 19796
Fversus D 99 40 366 20001
Cversus D 40 8 419 11516

F, frontal cortex; C, cerebellum; D, diencephalon.

test with the fewest number of DE circRNAs identified (Table 3).
We further evaluate common DE circRNAs among three DE meth-
ods in each pairwise comparison. In the comparison between frontal
cortex and cerebellum, all 351 DE circRNAs identified by edgeR are
readily detected by z-test. Meanwhile, 129 out of 138 DE circRNAs
identified by DESeq2 are detected by z-test. We also find the trend
holds similarly between frontal cortex and diencephalon where 75
out of 99 DE circRNAs identified by edgeR and all DE circRNAs
identified by DESeq2 are detected by z-test, respectively. Comparing
cerebellum to diencephalon, all DE circRNAs identified by edgeR
and DESeq?2 are detected by z-test. These observations indicate that
most, if not all, DE circRNAs identified by edgeR and DESeq2 can
also be detected by z-test, whereas z-test can further detect high-
confident DE circRNAs that are missed in existing methods without
losing the stringency.

In order to first shed light on the biological roles of circRNAs,
we perform Gene Ontology (GO) analyses using host genes harbor-
ing DE circRNAs between cerebellum and frontal cortex identified
by z-test. Interestingly, while there are common GO terms, host
genes harboring circRNAs expressed high in cerebellum are enriched
in pathways such as cerebellum and hindbrain development
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(Fig. 3A). On the other hand, host genes harboring circRNAs
expressed higher in frontal cortex are involved in biological path-
ways including neuron projection and cognition (Supplementary
Fig. S3A). In addition, cerebellum—diencephalon comparison also
renders numerous GO terms related to brain development and func-
tions (Supplementary Figs S4A and S5A). These findings indicate
that host genes harboring DE circRNAs identified by z-test are po-
tentially related to key brain development and functions.

Since circRNAs have been suggested to serve as ‘miRNA sponge’
to interfere with miRNA-mediated gene regulation (Chen, 2016; Li
et al., 2018; Wilusz, 2018), we use starBase database (Li et al., 2014;
Yang et al., 2011) to predict potential miRNAs bound to top DE
circRNAs identified between cerebellum and frontal cortex to explore
the biological roles of DE circRNAs in gene regulation. As an ex-
ample, circRELL1, one of the top circRNAs expressed higher in cere-
bellum, could potentially interfere with a number of miRNAs through
base pair complementarity. In addition, the DIANA-miRPath analysis
(Vlachos et al., 2015) reveals a circRNA-centered miRNA-mRNA
network that could be regulated by circRELL1. This network is
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Fig. 3. (A) Gene ontology (GO) analysis using host genes harboring circRNAs
expressed higher in cerebellum than infrontal cortex. Bar charts showing selected
biological processes ranked by false discovery rate (FDR) (FDR <0.05). (B) The pu-
tative miRNAs that could be sponged by circRELL1 are predicted by starBase data-
base and indicated in dark green. The mRNAs regulated by miRNA changes are
shown in yellow. miRNAs that are not expressed in corresponding tissues are
marked in gray. The circRNA-miRNA-mRNA network is related to neurotrophin
signaling pathway. (C) The expression of three cerebellum enriched circRNA pre-
dicted by circMeta, namely circRELL1, circZFAND6 and circKCNN2, is experi-
mentally validated by RT-qPCR. (D) The expression of three frontal cortex enriched
circRNA  predicted by circMeta, namely circSATB2, circRAPGEFS and
circATRNLI, is experimentally validated by RT-qPCR

potentially related to many biological events, such as neurotrophin
signaling pathway that has been shown in brain development (Huang
and Reichardt, 2001) (Fig. 3B). Moreover, circSATB2, expressed
higher in frontal cortex, could potentially regulate the ErbB signaling
pathway (Supplementary Fig. S3B). Similarly, many biological events
could also be regulated by top DE circRNAs identified between cere-
bellum and diencephalon (Supplementary Figs S4B and S5B).
Importantly, most of the predicted miRNA bound to these circRNAs
are expressed in their respective tissues determined by miRNA-seq
(Supplementary Tables S1 and S2). These results together demonstrate
DE circRNAs identified by circMeta could have independent and dis-
tinctive biological roles in brain development and functions from their
linear mRNA counterpart.

To further validate the top DE circRNAs identified by circMeta,
we obtain cerebellar and cortical RNA samples from fetal brains
and perform RT-qPCR using divergent primers (Supplementary
Table S3) amplifying back-splicing junctions of these top DE
circRNAs (Rybak-Wolf et al, 2015; Zhang et al., 2014).
Importantly, RT-qPCR validates top DE circRNAs identified by
circMeta (FDR < 0.05). For example, three top DE circRNAs
(circRELL1, circZFANDG6, circKCNN2) identified by circMeta
expressed higher in cerebellum than cortex, indeed show the same
trend in RT-qPCR (Fig. 3C). Similarly, circSATB2 circRAPGEFS,
circATRNL1 with a higher expression in frontal cortex also show
the same trend in RT-qPCR (Fig. 3D). Taken together, these RT-
gqPCR validations further support the accuracy and power of
circMeta optimized to identify DE circRNAs.

Based on the results from both the i silico simulation study and
the real data analysis, we find that z-test outperforms the traditional
mRNA DE methods for the nature of less over-dispersed circular read
counts. The host genes harboring identified DE circRNAs by z-test are
enriched in a circRNA-centered miRNA-mRNA network involved in
brain development and functions. In contrast, DE circRNAs identified
by either edgeR or DESeq2 do not show significantly enriched GO
terms. Thus, the two-stage DE approach (z-test) is well optimized with
comparable power and better FDR control than DE methods not
designed specifically for circRNAs. This approach is suitable to quanti-
tatively detect circRNA levels and study their downstream functions,
such as miRNA sponge, decoy for RNA-binding protein or circRNA
translation.

3.3 Differential expression analysis of circRNAs with

considering host genes

We employ the real data-based simulation study to evaluate the per-
formance of the proposed DE method with considering host genes.
Based on circular reads and linear reads obtained from predicted
circRNAs in frontal cortex, parameters such as p;, p; and #; resembling
real circular proportion, dispersion and total read coverage for ith
circRNA could be estimated. For each simulation, we assume 10 000
circRNAs with simultaneously randomly sampled triples of u;, p; and
n; from all estimates. To evaluate the power, we allow 5% randomly
sampled y; differential between two groups with a log-fold change of 2
in either w;; or p;,. We allow two replicates for each condition and gen-
erate the circular read counts x;; from beta-binomial distribution. We
repeat the simulation 50 times and report the average power, FDR, TP
and FP for our proposed Wald test and LRT with shrunk variance esti-
mate and their naive counterparts. We further include 3> test and
Fisher’s exact test as comparisons. In addition, we add CircTest (Cheng
et al., 2016) that is based on an ANOVA-based LRT in beta-binomial
distribution for DE circRNA analysis as another comparison.

In Table 4, Fisher’s exact test and y* test achieve the highest power
by detecting almost all DE circRNAs. However, they suffer from a sig-
nificant high FDR, making these tests undesirable. Although both
Wald test with shrinkage and LRT with shrinkage obtain comparable
power compared to their naive counterparts, they achieve a much bet-
ter FDR control (0.069 versus 0.297 for Wald test; 0.104 versus 0.489
for LRT). Comparing Wald test with shrinkage, LRT with shrinkage
obtains higher power (0.825 versus 0.744) but suffers from a little loss
of FDR control (0.104 versus 0.069) on a FDR nominal level of 0.05.
Furthermore, both Wald test with shrinkage and LRT with shrinkage
achieve higher power and better FDR control than CircTest.
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We again apply all DE methods to identify DE circRNAs with
considering host genes in the pairwise comparisons among three
brain regions. The number of DE circRNAs (FDR < 0.05) is demon-
strated in Table 5. We observe that the overall trends are consistent
with the results of the simulation study. y* and Fisher’s exact test de-
tect most DE circRNAs. Wald test with shrinkage detects more DE
circRNAs than naive Wald test in all three comparisons. With or
without shrinkage, LRT detects more DE circRNA than Wald test.
Moreover, CircTest detects the fewest DE circRNAs out of all three
comparisons. Especially, CircTest only detects six DE circRNAs be-
tween frontal cortex and diencephalon, and one DE circRNAs be-
tween cerebellum and diencephalon, respectively.

We plot the distribution of Wald test statistic with and without
shrinkage and corresponding FDR distribution in the comparison
between frontal cortex versus cerebellum (Fig. 4A and B). We also
plot the distribution of LRT statistic with or without shrinkage and
corresponding FDR distribution (Fig. 4C and D). We find that Wald
test statistic approximates to a normal distribution and LRT statis-
tics approximates to a y* distribution. As expected, either Wald test
or LRT with shrinkage achieves an overall lower FDR estimate than
their naive counterparts without shrinkage. In addition, we do the
same plots for frontal cortex versus diencephalon comparison and
cerebellum versus diencephalon comparison (Supplementary Figs S6
and S7) and observe similar trends.

From both the simulation study and the real data analysis, we find
that our proposed test statistics outperform other methods by achiev-
ing a much better FDR control. Between Wald test with shrinkage
and LRT with shrinkage, we find that LRT with shrinkage obtains a
higher power at the cost of inflated FDR. We include both tests in
circMeta and users can choose either of them depending on the need.

4 Discussion

In this work, we develop circMeta, a unified and comprehensive
computational workflow for state-of-the-art circRNA analyses.
circMeta contains several key modules for circRNA analyses: identi-
fying and categorizing circRNA based on back-splicing junction
reads from rRNA-depleted RNA-seq data; annotating various func-
tional genomic features including intron length, repetitive elements
and A-to-I editing that play a critical role in the circRNA biogenesis;
calculating the competition score to provide the likelihood for flank-
ing intron pairing and circRNA formation; calculating linear read
counts for back-splicing sites and corresponding CLR; and perform-
ing DE analysis with or without considering host genes.

Through real data analysis on three distinctive brain regions using
three of the most widely used circRNA prediction methods, we consist-
ently find that intron length, number and competition score for Alu or
SINE, as well as CLR, are positively correlated with back-splicing

Table 4. Simulations when DE is declared with nominal FDR 0.05

TPR FDR TP FP
Wald 0.741 0.297 370.580 156.440
Wald (shrunk) 0.744 0.069 371.980 27.420
LRT 0.890 0.489 445.220 426.400
LRT (shrunk) 0.825 0.104 412.480 48.160
Fisher 0.966 0.758 483.240 1511.720
P 0.965 0.754 482.440 1482.820
CircTest 0.628 0.167 313.780 63.180

junction reads, confirming their critical roles in circRNA biogenesis.
These functional genomic features could be used to integrate with junc-
tion reads for better predicting, quantifying and validating circRNAs
in vivo. The information could also serve as key targets to experimen-
tally modulate circRNA expression, such as mutating or deleting critical
Alu elements or inosine sites to affect endogenous circRNA formation.

As the number and back-splicing sites of circRNAs vary dramat-
ically compared to mRNA, the current DE methods designed for
mRNA expression might not be optimal to identify DE circRNAs.
To address this, we first merge circRNAs identified in different con-
ditions before carrying out DE analysis, and we develop DE methods
for circRNAs with or without considering host genes, respectively.
Without considering the host genes, we develop a data-driven two-
stage DE approach for circRNAs based on circular junction reads:
we first check the GOF of the junction reads under the assumption
of Poisson distribution and NB respectively and adopt an appropri-
ate DE method with the distribution assumption of overall better
GOF. The two-stage DE approach is suitable to quantitatively detect
circRNA levels and study their downstream functions, such as
miRNA sponge. Since we find that circular junction reads in DE
circRNAs in all three brain regions fit a Poisson distribution better
than NB, we adopt a Poisson-based z-test for both simulation and
real data analysis. In the simulation study, we find that Poisson-
based z-test outperforms other methods by obtaining high power and
better FDR control compared to standard DE methods for mRNAs
such as edgeR and DESeq2 that are based on the assumption of NB.
The results of the real data analysis are consistent with the simulation
study: our approach identified the most DE circRNAs. Moreover,
host genes bearing DE circRNAs identified by Poisson-based z-test
are enriched in GO terms related to brain development and functions
and interact with potential miRNAs. It should be noted that we do
not exclude the possibility that NB may fit better in other datasets
when NB-based test such as edgeR may be more powerful.
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Fig. 4. Differential expressed circRNA analysis between frontal cortex and cerebel-
lum. (A, B) Comparison of statistics distribution and FDR distribution between
Wald test versus Wald test (shrunk); (C, D) Comparison of statistics distribution
and FDR distribution between LRT versus LRT (shrunk). The median of test statis-
tics or FDR is indicated by a dashed vertical line

Table 5. Real data DE results for pairwise comparisons between three brain tissues

Wald Wald (shrunk) LRT LRT (shrunk) Fisher P CircTest #circRNA
F versus C 2071 2734 2818 2826 5695 5329 1418 19796
F versus D 880 1114 1238 1257 3547 3241 6 20001
C versus D 71 87 184 135 1206 1087 1 11516

F, frontal cortex; C, cerebellum; D, diencephalon.
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A great number of circRNAs have a low CLR (e.g. CLR < 1 or
CLP < 0.5), indicating the parental linear mRNA are dominant, with
a small amount of circRNAs being produced. In contrast, many
circRNAs show a high value of CLR (e.g. CLR > 1 or CLP > 0.5) sug-
gesting that the levels of circRNAs are even higher than their host
genes. This observation indicates that circular junction reads do not
fully represent the CLR, particularly when a high level of circRNAs is
produced in a given loci. With this consideration of the host genes, we
adopt a Bayesian hierarchical model to perform DE analysis based on
CLR. By adopting a similar shrinkage strategy used in detecting differ-
ential methylation loci from single nucleotide resolution DNA methy-
lation data, we find both Wald test and LRT with shrunk variance
estimate achieve better FDR control than their naive counterparts
without shrinkage in the simulation. Moreover, the proposed ap-
proach outperforms CircTest, that is the only published DE method
for circRNAs based on CLR, by achieving higher power and better
FDR control. Furthermore, Fisher’s exact test and 7 test suffer signifi-
cant loss of FDR control and thus are undesirable. The DE approach
using CLR could provide important insights on spatial and temporal
regulation of circRNA production. circMeta is the first to offer two
separate, fully optimized algorithms to determine DE of circRNAs.

A recent study (Hansen et al., 2016) performed a systematic com-
parison of circRNA prediction tools, and concluded that combining
any two algorithms would greatly decrease the false positive rate and
in general strengthen the output quality. To reduce the false positives
generated from individual circRNA prediction algorithm, we recom-
mend using the common circRNAs predicted by multiple circRNA pre-
diction methods as input to circMeta, as performed in this study.

Public research database consortia provide an unprecedented op-
portunity for researchers to explore the prevalence and functional roles
of circRNAs in different diseases. For example, Accelerating Medicines
Partnership—Alzheimer’s Disease (AMP—AD) is a multi-institutional,
multidisciplinary project and publicly accessible database funded by
National Institute of Aging that offers a wide cohort studies of both
normal control subjects and severe terminal AD patients with corre-
sponding rRNA-depleted RNA-seq datasets. Other consortia such as
TCGA and ENCODE provide a rich collection of rRNA-depleted
RNA-seq datasets across various cancer types. By utilizing the datasets
from these consortia, researchers could apply circMeta to investigate
the genomic features that foster RNA circulation formation and detect
the cancer-specific DE circRNAs or AD-associated circRNAs between
normal subjects and disease patients, which may offer additional
insights into the onset and progression of AD or cancer.

In conclusion, we provide an integrative computational frame-
work for analyzing circRNAs. The proposed framework could be eas-
ily extended to include more functional genomic features such as N6-
methyladenosine (m6A) and more complex study designs in DE ana-
lysis. In our future work, we plan to extend our model from a two
group comparison to multifactorial experimental designs, to include
more genomic features, and to integrate genomic features with circu-
lar junction reads for better predicting and quantifying circRNAs.
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