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Abstract

Intra-operative brain shift is a well-known phenomenon that describes non-rigid deformation of 

brain tissues due to gravity and loss of cerebrospinal fluid among other phenomena. This has a 

negative influence on surgical outcome that is often based on pre-operative planning where the 

brain shift is not considered. We present a novel brain-shift aware Augmented Reality method to 

align pre-operative 3D data onto the deformed brain surface viewed through a surgical 

microscope. We formulate our non-rigid registration as a Shape-from-Template problem. A pre-

operative 3D wire-like deformable model is registered onto a single 2D image of the cortical 

vessels, which is automatically segmented. This 3D/2D registration drives the underlying brain 

structures, such as tumors, and compensates for the brain shift in sub-cortical regions. We 

evaluated our approach on simulated and real data composed of 6 patients. It achieved good 

quantitative and qualitative results making it suitable for neurosurgical guidance.
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1 Introduction

Brain shift is a well-known intra-operative phenomenon that occurs during neurosurgical 

procedures. This phenomenon consists of deformation of the brain that changes the location 

of structures of interest from their locations in pre-operative imaging [2] [17]. Neurosurgical 

procedures are often based on pre-operative planning. Therefore, estimating intra-operative 

brain shift is important since it may considerably impact the surgical outcome. Many 

approaches have been investigated to compensate for brain shift, either using additional 

intra-operative imaging data [14] [20] [11] [21] or advanced brain models to predict intra-

operative outcome pre-operatively [3] [8] [7]. The latter approach has the advantage of being 

hardware-independent and does not involve additional imaging in the operating room. 

However, even sophisticated brain models have difficulty modeling events that occur during 

the procedure. Additional data acquisition is then necessary to obtain a precise brain shift 

estimation. Various types of imaging techniques have been proposed to acquire intra-
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operative information such as ultra-sound [11] [21] [20], Cone-Beam Computed 

Tomography [19] or intra-operative MRI [14].

During a craniotomy, the cortical brain surface is revealed and can be used as an additional 

source of information. Filipe et al. [16] used 3 Near-Infrared cameras to capture brain 

surface displacement which is then registered to MRI scans using the coherent point drift 

method by considering vessel centerlines as strong matching features. A new deformed MRI 

volume is generated using a thin plate spline model. The approach presented by Luo et al. 
[15] uses an optically tracked stylus to identify cortical surface vessel features; a model-

based workflow is then used to estimate brain shift correction from these features after a 

dural opening. Jiang et al. [12] use phase-shifted 3D measurement to capture 3D brain 

surface deformations. This method highlights the importance of using cortical vessels and 

sulci to obtain robust results. The presence of a stereo-miscroscope in the operating room 

makes it very convenient to deploy such methods clinically. Sun et al. [23] proposed to pre-

compute brain deformations to build an atlas from a sparse set if image-points extracted 

from the cortical brain surface. These image-points are extracted using an optically tracked 

portable laser range scanner. Haouchine et al. [9] proposed to use a finite element model of 

the brain shift to propagate cortical deformation captured from the stereoscope to 

substructures. In a similar way Mohammadi et al. [18] proposed a projection-based 

stereovision process to map brain surface with a pre-operative finite element model. A pre-

defined pattern is used to recover the 3D brain surface. In order to build a dense brain 

surface and gather more precise positions, Ji et al. [10] proposed a stereo-based optical flow 

shape reconstruction. The 3D shapes are recovered at different surgical stages to obtain 

undeformed and deformed surfaces. These surfaces can be registered to determine the 

deformation of the exposed brain surface during surgery.

Contribution: We propose a novel method to register pre-operative scans onto intra-

operative images of the brain surface during the craniotomy. As shown in the pipeline of 

figure 1, our method uses images from a surgical microscope (or possibly a ceiling mounted 

camera), rather than intra-operative ultrasound or MRI which requires significant cost and 

time. Unlike previous methods, we rely solely on a single image to avoid tedious calibration 

of the stereo camera, laser range finder or optical stylus. Our method considers cortical 

vessels centerlines as strong features to drive the non-rigid registration. The intra-operative 

centerlines are automatically extracted from the image using convolutional deep neural 

networks, while the pre-operative centerlines are modelled as a network of linked beams 

capable of handling non-linear deformations. Our approach is formulated as a force-based 

shape-from-template problem to register the undeformed pre-operative 3D centerlines onto 

the deformed intra-operative 2D centerlines. This problem is solved by satisfying a 

combination of physical and projective constraints. We present our results through the 

microscope occulars using Augmented Reality view by overlaying the tumor model in the 

miscropcic view after accounting for the estimated brain shift deformation.
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2 Method

2.1 Extracting 2D Cortical Brain Vessels

To extract the vessels from microscopic images we rely on a deep convolutional network 

following a typical U-Net architecture [22]. The input is a single RGB image of size 256 × 

256 × 3 and the final layer is a pixel-wise Softmax classifier that predicts a class label {0, 1} 

for each pixel. The output image is represented as a binary image of size 256 × 256 as 

illustrated in Figure 2. the segmentation can suffer from class imbalance because microsopic 

images of the cortical surface are composed of veins, arteries and parenchyma of different 

sizes. We thus rely on a weighted cross-entropy loss L to account for imbalanced depths [6], 

formulated as follows:

L = − 1
n ∑

i
wci ⋅ ci* ⋅ log ci    witℎ   ci = ezi

∑cezi, ci
   and   wci =

med fci ∣ ci ∈ C
fci

(1)

where n is the number of pixels, C is the set of classes, ci* is the ground truth label of pixel i, 

ci is the probability of classifying pixel i with class ci. (zi, ci) is the output of the response 

map and wci is the class-balanced weight for class ci, with fci being the frequencies of class 

ci and med(·) the median. Once segmented, the vessel centerlines are extracted from the 

binary image by skeletonization. We denote v, the vector of 2D points corresponding to the 

intra-operative centerlines.

2.2 3D Vascular Network Modelling

Let us denote u the vector of 3D vertices representing the vessel centerlines derived from 

MRI scans. This set of vertices is used to build a non-rigid wire-like model that represents 

the behaviour of cortical vessels. More precisely, the vessels are modeled with serially 

linked beam elements that can handle geometric non-linearities while maintaining real-time 

computation. This model has previously been used to simulate guide wires and catheters [4]. 

Each beam element is delimited by two nodes each having 3 spatial and angular degrees of 

freedom. These node positions relate to the forces applied to them thanks to a stiffness 

matrix Ke and account for rotational degrees of freedom through a rotational matrix Re. At 

each node i, the internal forces fi generated by the deformation of the structures is 

formulated as:

fi = ∑
e = i − 1

i
Re(u)Ke Re(u)T u − ue − urest (2)

where e is the index of the two beams connected to this ith node. ui−1, ui and ui+1 are the 

degrees of freedom vectors of the three nodes (respectively i − 1, i, i + 1) and belong to the 

two beams in the global frame. uej denotes the middle frame of the jth beam that is computed 

as an intermediate between the two nodes of the beam, where urest corresponds to the 

degrees of freedom at rest in the local frame. The global force f emanating from the 3D 

vessels can be computed as f = ∑j
nu fj, with nu being the number of nodes of the vascular 

tree.
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2.3 Force-based Shape-from-Template

A shape-from-template problem is defined as finding a 3D deformed shape from a single 

projected view knowing the 3D shape in rest configuration [1]. In our case, the 3D shape at 

rest consists of the pre-operative 3D centerlines u. The single projected view consists of the 

2D intra-operative centerlines v. The unknown 3D deformed shape δu is the displacement 

field induced by a potential brain shift. As in most registration methods, an initial set of nc 

correspondences c between the image points and the model points has to be established. We 

thus initialise our non-rigid registration with a rough manual rigid alignment. Once aligned, 

a vector c is built so that if a 2D point vi corresponds to a 3D point uj then ci = j for each 

point of the two sets. Assuming that the camera projection matrix P is known and remains 

constant, registering the 3D vessels to their corresponding 2D projections amounts to 

minimize the re-projection error Puci − vi  for i ∈ nc. However, minimizing this error does 

not necessarily produces a correct 3D representation since many 3D shapes may have 

identical 2D projections. To overcome this issue, we add to the re-projection constraints the 

vessels’ physical priors following the beams model introduced in Eq. 2. This will force the 

shape of the vascular tree to remain consistent in 3D while minimizing the reprojection error 

in 2D. This leads to the following force minimization expression:

argmin
δu

∑
i

nc
fci − κ Puci − vi

2
(3)

where κ is the stiffness coefficient that permits the image re-projection error to be translated 

to an image bending force. Note the subscript ci that denotes the correspondence indices 

between the two point sets. This minimization can be seen as enforcing 3D vessel 

centerlines to fit sightlines from the camera position to 2D vessels centerlines while 

maintaining a coherent 3D shape.

2.4 Mapping Tumors with Cortical Vessels Deformation

In order to propagate the surface deformation to tumors and other sub-cortical structures, we 

use a linear geometrical barycentric mapping function. We restrict the impact of the cortical 

vessel deformations to the immediate underlying structures (see Figure 6).

Formally speaking, if we denote the vector of vertices representing a 3D tumor by t, we can 

express each vertex ti using barycentric coordinates of facet vertices u, such that 

ti = ∑j = 1
3 ϕj xi, yi, zi uj, where ϕ(x, y, z) = a + bx + cy with (a, b, c) being the barycentric 

coordinates of the triangle composed of nodal points uj, with 1 ≤ j ≤ 3. This mapping is 

computed at rest and remains valid during the deformation.

3 Results

We tested our method on simulated data of a 3D synthetic human brain. The 3D vessel 

centerlines were extracted from the vessels mesh surface using a mean curvature 

skeletonization technique. The number of centerline nodes to build the wire-like model is set 

in a range between 12 and 30 nodes (only a subset of the vascular network has been 
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considered). The stiffness matrix of the vessels is built with a Young’s modulus set to 0.6 

MPa and Poisson’s ratio to 0.45 to simulate a quasi-elastic and incomprehensible behaviour 

where vessels thickness is set to 0.5 mm [5]. We used the Sofa framework (www.sofa-

framework.org) to build the 3D beam-elements model.

We quantitatively evaluated our method by measuring the target registration error (TRE) on 

different locations. We considered four in-depth locations from 0 mm to 45 mm, 0 mm being 

the cortical surface. We simulated a brain shift to mimic a protrusion deformation that can 

occur due to brain swelling after the craniotomy. The deformations were of increasing 

amplitudes: Def1 = 1.7 mm, Def2 = 4 mm, Def3 = 6 mm and Def4 = 10 mm. We extracted 

2D centerlines of each deformation by projecting the deformed 3D centerlines w.r.t a known 

virtual camera. We added Gaussian noise with a standard deviation of 5 mm and a 5 

clustering decimation on the set of 2D points composing the centerlines. The results reported 

in Figure 3 suggest that using our method achieves small TRE ranging from 0.53 mm to 1.93 

mm, on the cortical surface and the immediate sub-cortical structures (≤ 15 mm). Since the 

TRE depends on the amount of brain shift, we also quantify the brain-shift compensation by 

measuring the difference between the initial and the corrected error (normalized by the 

initial error). Brain shift compensation of up to 68.2 % is achieved, and at least a 24.6 % 

compensation is reported for the worst configuration. We can also observe that errors and 

compensation at the cortical surface are very close to the immediate sub-cortical location (≤ 

15 mm). They increase when the targets are located deeper in the brain (≥ 30 mm) or the 

amount of deformation increases (≥ 6 mm).

Our craniotomy dataset was composed of 1630 microscopic image patches with labels 

obtained through manual segmentation. The model is trained on mini-batches of size 32 for 

200 epochs using Adam optimizer [13] with a learning rate of 0.001 that is decreased by a 

factor of 10 each 100 epochs. We used the Tensorflow framework (www.tensorflow.org) on 

an NVidia GeForce GTX 1070.

We tested our method on 6 patient data sets retrospectively. The cortical vessels, brain 

parenchyma, skull and tumors were segmented using 3D Slicer (www.sliced.org). The 

miscroscopic images were acquired with a Carl Zeiss surgical microscope. We only used the 

left image of the sterescopic camera.

The pre-operative vessels are first aligned manually on the image to obtain the rigid 

transform, then the 3D/2D non-rigid registration was performed, and used to drive 

deformation of the underlying tumors. Figure 4 shows the resulting Augmented Reality 

rendering and exhibits good mesh-to-image overlay. Figure 5 shows the measured 

deformation amplitude on each vessel after non-rigid registration. The deformations range 

from 0 to 3 mm and are non-uniformly distributed on the vascular trees which suggest a non-

rigid deformation.

Finally, we show in Figure 6 the ability of our method to rectify tumor positions through 

their mapping with the cortical vessels. We can clearly see that tumor positions are corrected 

according to the brain shift estimated from the cortical vessels registration.
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4 Conclusion and Discussion

We proposed here a brain-shift aware Augmented Reality method for craniotomy guidance. 

Our method follows a 3D/2D non-rigid process between pre-operative and intra-operative 

cortical vessel centerlines using a single image instead of a stereo pair. Restricting our 

method to a single image makes it more acceptable in operating rooms but turns the 

registration process into an ill-posed problem. To tackle this issue we proposed a force-based 

shape-from-template formulation that adds physical constraints to the classical reprojection 

minimization. In addition, our pipeline takes advantage of recent advances in deep learning 

to automatically extract vessels from microscopic images. Our results show that low TRE 

can be obtained at cortical and sub-cortical levels and compensation for brain shift with up 

to 68% can be achieved. Our method is however sensitive to the outcome of the cortical 

vessels segmentation. A fragmented segmentation may lead to discontinuous centerlines and 

thus produce aberrant vascular trees that can affect the whole pipeline. One solution could be 

the use of the complete vessels segmentation in addition to centerlines to make advantage of 

the use of more featured such as radii, curves and bifurcations. Future work will consist of 

developing a learning-based method to perform the non-rigid registration without manual 

initialisation, with the aim of facilitating its usage by surgeons in clinical routines.
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Fig. 1: 
Problem formulation: we aim at recovering the deformed 3D vessels shape δu from its 

known reprojection in the image v, the known pre-operative 3D vessels at rest u and known 

rigid alignment c, satisfying physical and reprojective constraints P.
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Fig. 2: 
Extracting 2D cortical brain vessels: A classical U-Net architecture is used to segment the 

microscopic images. The input images (a) or (d) are segmented to obtain a binary image (b) 

or (e). The images (c) and (f) consist of overlays.
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Fig. 3: 
Quantitative evaluation on simulated data: Charts (a) and (b) show the percentage of 

compensation and target registration error respectively w.r.t to depth and brain shift 

amplitude. The depth axis correspond to the position of the target in the brain where 0mm 

represent the cortical surface and 45mm the deep brain.
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Fig. 4: 
Augmented Reality views after applying our method on 6 patient data sets retrospectively. 

The non-rigid registration provided a good estimation of deformation of the cortical surface, 

as viewed by overlays of the deformed 3D vessels on their 2D projections seen through the 

surgical microscope.
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Fig. 5: 
Color-coded estimated deformation on the vessels.
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Fig. 6: 
Mapping tumors with cortical vessels: In (a) and (c), a visualization of the mapping 

mechanism. Blue lines represent the attachments. In (b) and (d), an Augmented Reality 

visualization of the tumors with the estimate displacement induced from the mapping w.r.t to 

initial positions (dotted blue lines).
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