Skip to main content
. 2021 Mar 12;21(6):2027. doi: 10.3390/s21062027

Table 7.

Summary of liver vessel segmentation approaches using supervised learning (segmentation metrics are given in Table 2). CT: computed tomography, MR: magnetic resonance, USG: ultrasonography.

Author Testing Dataset Synthetic Data Used Metrics Results
Ibragimov et al. [34] 72 CT images No DSC=0.83,eDsym=1.08 mm
Kitrungrotsakul et al. [29] 1 CT volume (3D-IRCADb-01) Yes Sens=0.9,DSC=0.92,PPV=0.84,
(http://www.ircad.fr/research/3dircadb/) VOE=17.2%
(accessed on 5 May 2019)
Keshwani et al. [28] 20 CT volumes from internal dataset Yes Sens=0.96,Spec=0.94,DSC=0.94
and 20 CT (3D-IRCADb-01) volumes Sens=0.96,Spec=0.91,DSC=0.92
(http://www.ircad.fr/research/3dircadb/)
(accessed on 5 May 2019)
Zhang et al. [31] 20 CT (3D-IRCADb-01) volumes No Ac=0.96,Sens=0.73,Spec=0.97,
(http://www.ircad.fr/research/3dircadb/) DSC=0.67
(accessed on 5 May 2019)
20 CT (SLIVER07) datasets [51] Ac=0.96,Sens=0.89,Spec=0.97,
DSC=0.71
Huang et al. [30] 10 CT volumes from internal dataset and Yes Ac=0.97,Sens=0.76,Spec=0.98,
20 CT (SLIVER07) datasets [51] and DSC=0.75
10 CT (3D-IRCADb-01) volumes
(http://www.ircad.fr/research/3dircadb/)
(accessed on 5 May 2019)
Thomson et al. [26] 203 USG volumes No DSC=0.66
Mishra et al. [32] 132 USG images No JSC=0.69
Yan et al. [25] 10 CT volumes from internal dataset and No Sens=0.85,PPV=0.78,DSC=0.8
20 CT (3D-IRCADb-01) volumes Sens=0.93,PPV=0.99,DSC=0.9
(http://www.ircad.fr/research/3dircadb/)
(accessed on 5 May 2019)
Xu et al. [27] 20 CT (3D-IRCADb-01) volumes No Ac=0.99,Sens=0.78,Spec=0.99,
(http://www.ircad.fr/research/3dircadb/) DSC=0.68
(accessed on 5 May 2019)
Nazir et al. [24] 30 CTA internal datasets and No Ac= up to 98.90
10 CT (SLIVER07) datasets [51] Ac= up to 98.89