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Abstract: Cracking in concrete structures can significantly affect their structural integrity and eventu-
ally lead to catastrophic failure if undetected. Recent advances in sensor technology for structural
health monitoring techniques have led to the development of new and improved sensors for real-time
detection and monitoring of cracks in various applications, from laboratory tests to large structures.
In this study, triaxial accelerometers have been employed to detect and locate micro- and macrocrack
formation in plain self-compacting concrete (SCC) and steel-fibre-reinforced SCC (SFRSCC) beams
under three-point bending. Experiments were carried out with triaxial accelerometers mounted on
the surface of the beams. The experimental results revealed that triaxial accelerometers could be used
to identify the locations of cracks and provide a greater quantity of useful data for more accurate
measurement and interpretation. The study sheds light on the structural monitoring capability of
triaxial acceleration measurements for SFRSCC structural elements that can act as an early warning
system for structural failure.

Keywords: triaxial accelerometers; bending; crack detection; self-compacting concrete; steel fibres

1. Introduction

Self-compacting concrete (SCC) is an innovative type of concrete that has the ability
to flow under its own weight without segregation or bleeding, and to fill all areas and
corners of the formwork [1,2]. Therefore, it is a suitable construction material for structures
with complex geometry or highly congested reinforcement [3,4]. In addition, SCC provides
excellent deformability and adequate viscosity due to high paste volume and cement
content, a low water-to-cement ratio (w/c), small maximum aggregate, a finer-combined
aggregate, and the use of a high-range superplasticiser (SP) [2,5,6].

The use of fibres in concrete has grown significantly due to its technical and eco-
nomic advantages in the construction industry [7]. Fibres made of steel, glass, carbon,
and synthetic fibres of various shapes and surfaces and their effects on the fresh and
mechanical properties of SCC have been studied by various researchers [8–12]. The ad-
dition of fibres in SCC is said to reduce its workability [13–15]—that is, its passing and
filling ability, as well as its segregation resistance. However, fibres in SCC offer beneficial
improvements in terms of ductility, toughness, and energy absorption capacity [16–18].
Fibres also control the crack propagation in concrete, contributing to better post-cracking
behaviour [16,19]. In some specific applications, fibres can partially or completely replace
conventional reinforcement [20]. Hence, SFRSCC is a very promising construction material
with a high potential of application that benefits from the potentials of both SCC and
randomly dispersed steel fibres [6].

Over the past decade, extensive research has been conducted on SFRSCC in terms of its
workability, mechanical properties, and structural performance with increasing usage in the
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construction industry [14,21–27]. Its usage expands to both non-structural and structural
applications, such as industrial floors, roads and pavements, sprayed concrete, overlays,
composite slabs on steel decking, tunnel lining segments, and precast elements [28]. Over
time, however, many of these concrete structures may be exposed to extreme structural
loads, climate, and weather conditions. As a result of these conditions, concrete struc-
tures could suffer from severe damage or even structural failure due to stress, cracking,
and deformation [29].

The formation of macrocracks in concrete is a multiscale process that initiates under
tensile stress with the formation of microcracks [30]. Fracture could occur and macrocracks
become unstable, which can cause brittle failure [30]. This brittle failure can be prevented
by incorporating various fibres in concrete to help control crack formation and propa-
gation [31]. According to Soulioti [32], there are three stages of the fracture process in
fibre-reinforced concrete (FRC) under bending: (i) stage 1—microcracking stage; (ii) stage
2—microcracks grow and form macrocracks; and (iii) stage 3—rapid propagation of macro-
cracks that eventually cause failure. Therefore, it is essential to detect these cracks and their
propagation as early as possible prior to structural failure.

The X-ray computed tomography (CT) method, the ultrasonic rebound method, resis-
tance strain gauges, and visual images are some of the conventional methods employed
to monitor cracks in concrete [33]. However, these techniques are dependent on manual
assistance and prone to hysteresis errors, thus cannot be rely upon for accurate and reliable
monitoring [33]. Acoustic emission (AE) testing is a non-destructive testing technique
that has been widely used for real-time monitoring and damage assessment of concrete
structures [32,34–38]. AE refers to the propagation of transient elastic waves due to the
rapid release of energy from a localised source within a material [39]. These elastic waves,
also known as AE signals, are detected by one or more sensors placed on the surface of
the material. These sensors are usually transducers that convert incident elastic waves
into electric signals. A suitable analysis of the AE waveform parameters, namely the peak
amplitude, duration time, and frequency, provides various information such as the pat-
tern of cracks in concrete, the amount of energy released, the modes of fracture, and the
critical conditions prior to final failure [40]. In addition, multiple AE sensors can be used
to accurately identify the location of damage in the concrete based on the differences in
the arrival times of the AE signals [41]. A number of earlier researchers have focused on
the characterisation of the fracture mode using AE methods in laboratory conditions in
bending of plain concrete [40,42] and concrete reinforced with metal bars [43,44], with steel
fibres [45,46], as well as with synthetic fibres [47]. Most of these studies are focused on
the use of multiple single-axial AE sensors at various locations of the concrete specimens.
To monitor the cracks and accurately analyse the three-dimensional (3D) source locations,
each of the single-axial sensors needs to be placed in the X, Y, and Z axis on the surface of
the concrete specimens [48]. However, this can be time-consuming when multiple single
axial sensors are required to be mounted on large concrete structures, and a vast amount
of data would be generated, resulting in increases in the storage cost for the structural
health monitoring.

Previous research has tended to look at single-axis accelerometers with a single
application or multiple single-axis accelerometers fitted to multiple surfaces [34,49]. A
single axis is not able to determine the location of the cracking and tends to use ‘hit
counts’ [32,50]. These ‘hits’ are a cumulative count of how many times a specific frequency
is identified by the accelerometer and does not look further into the depth and the duration
of the single crack, or the behaviour of the concrete in specific locations. It is a somewhat
simple method of identifying that something is happening, but not necessarily where it
is happening—and may lead to the requirement for a broad structure inspection, which
can be time-consuming. There have been complex methods of locating cracking in the
past; these tend to use single-axis accelerometers mounted on multiple surfaces [34]. This
adds additional complication as one has to calculate not just the crack location, but the 3D
relative locations of one accelerometer to another.
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Piezoelectric accelerometers are electromechanical transducers designed for measuring
acceleration, shock, or vibration. When the accelerometer is subjected to vibrations, it trig-
gers the inertial mass to ‘squeeze’ the piezoelectric materials, which produces an electrical
current, which is proportional to the pressure applied to the material [51]. Their sensitiv-
ity is relatively low; hence they are suitable for sensing high frequency [52]. They have
been used in numerous applications including earthquake detection [53], aerospace [54],
medicine [55], and structural monitoring [56]. Piezoelectric accelerometers usually have a
single component and measure acceleration in only one direction. Due to the recent ad-
vances in sensor technology, various new and improved sensors, such as triaxial accelerom-
eters, have been developed for structural health monitoring of concrete structures [29,52].
Triaxial accelerometers combine three orthogonally orientated single-axis accelerometers
into a single package and measure the full elastic acceleration wavefield in three orthogonal
directions, usually termed as X, Y, and Z component directions [57]. Some of their advan-
tages are that they are economical, light, are not affected by electromagnetic interference,
and can be easily installed at a larger scale [52].

The aim of this study is to examine and evaluate the fracture behaviour of steel-fibre-
reinforced self-compacting concrete (SFRSCC) beams under three-point bending using
triaxial accelerometers. Two different types of beams were prepared, namely the plain SCC
without fibres and SFRSCC beams. Triaxial accelerometers were used to collect data in real
time for characterising their fracture modes. The aim is to examine the feasibility of using
triaxial accelerometers for detection and localisation of cracks, and to provide an improved
methodology for concrete structure condition assessment.

2. Experimental Materials and Methods
2.1. Material Properties

Ordinary Portland cement (CEM I 52.5N), conforming to British Standard (BS) EN
197-1:2011 [58] was used as the binder in the study. Crushed limestones with a maximum
diameter of 14 mm were used for coarse aggregate. Natural sand and crushed sand with
maximum diameter of 4 mm were used for fine aggregate. The steel fibres used in this study
were the hooked-end type and prepared from cold-drawn steel wires according to BS EN
14889-1 [59]. Steel fibres were manufactured by Bekaert, with a length of 35 mm, a diameter
of 0.75 mm, and at a dosage of 5 kg/m3 by weight of the cement. To achieve the desired
workability in all concrete mixtures, a polycarboxylic ether polymer superplasticiser (SP)
according to BS EN 934-2:2009 [60] was used. Two different SCC mixes were prepared,
namely the plain SCC without fibres and SFRSCC. The mix proportions are shown in
Table 1. To evaluate the workability of the SCC, slump flow, J-ring, and V-funnel tests
were conducted as per EFNARC recommendations [61,62]. The mechanical properties
were determined by curing the specimens for 28 days. Compressive strength was obtained
according to BS EN 12390-3:2019 [63]. For the tensile strength, the tensile splitting test was
performed as per EN 12390-6:2009 [64]. For each concrete mix, three cubic specimens of
100 × 100 × 100 mm were tested in each test. The fresh and mechanical properties of SCC
and SFRSCC specimens are presented in Tables 2 and 3, respectively.

Table 1. Mix proportions of plain self-compacting concrete (SCC) and steel-fibre-reinforced SCC (SFRSCC).

Mix ID Cement
(kg/m3)

Limestone
(kg/m3)

Natural Sand
(kg/m3)

Crushed Sand
(kg/m3)

Water
(kg/m3)

Superplasticiser
(kg/m3)

Fibres
(kg/m3)

Plain SCC 480 795 668 265 187 3.95 0
SFRSCC 480 795 668 265 187 3.95 5
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Table 2. Fresh properties for plain SCC and SFRSCC.

Mix ID
Slump Flow

V-Funnel Time (s)
D (mm) t500 (s)

Plain SCC 715 2.8 11.7
SFRSCC 650 4.6 20.1

Table 3. Mechanical properties for plain SCC and SFRSCC.

Mix ID Compressive Strength
(MPa)

Tensile Strength
(MPa)

Flexural Strength
(MPa)

Max. Load Deflection
(mm)

Plain SCC 82.79 5.31 9.27 1.17
SFRSCC 92.84 5.43 9.61 1.35

2.2. Specimen Preparation

The test specimens consisted of both plain SCC and SFRSCC beams with dimensions
of 500 × 100 × 100 mm. In total, six beams were tested, three of which were plain SCC and
three were SFRSCC. The specimens were cast by pouring the freshly mixed concrete without
compaction and kept in moulds for approximately 24 h. After demoulding, they were
cured in water at a temperature of 20 ± 2 ◦C for 28 days prior to testing. Each time before
testing, the test specimens were wiped with a damp cloth to remove excess water from the
surfaces and air-dried at a room temperature of 20 ± 2 ◦C for approximately 30 min.

2.3. Experimental Setup and Testing Procedure

The three-point bending tests for the determination of the specimen flexural strength
were conducted using a universal testing machine as per BS EN 12390-5:2019 [65]. The
specimens were tested up to final failure by controlling the vertical displacement of the
hydraulic jack with a rate of 2.2 mm/min. A general view of the experimental setup and
the testing wiring diagram are presented in Figures 1 and 2, respectively.
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For the evaluation of natural frequencies for increasing loads and during crack prop-
agation, the specimens were equipped with two triaxial piezoelectric accelerometers
(AT/04/TB, DJB Instruments), positioned on the top surface of the beam at a 60 mm
interval from either side of the mid-span. They were secured by the use of a thin layer of
tacky adhesive during each test. The main characteristics of the adopted sensors included
dimensions of 16.5 × 16.5 × 15.3 mm, frequency range of 1 Hz to 6 kHz, resonant frequen-
cies of 33 kHz (z axis) and 20 kHz (x/y axis), operating temperature of −50 to +250 ◦C, and
the specimen weight of 16.6 g. These accelerometers were used to identify and locate the
process of crack formation by creating a three-dimensional vector in the form of orthogonal
components. The data was collected by a PROSIG P8020 24-bit data acquisition device.
The sampling frequency was set equal to 10 kHz. The background noise and interference
were eliminated using a high-pass filter with a cut-off frequency of 40 Hz. This frequency
was determined by trial-and-error and was found to be appropriate for the purpose of
this study. All tests were conducted at an ambient temperature of 20 ± 2 ◦C and relative
humidity of about 40%.

The method applied in this study is simple in its application: two triaxial accelerom-
eters fitted to a surface of the beam. The only information required is the 2D location of
the accelerometers relative to one another. This information can be as simple as ensuring
they are on the same plane and knowing the distance between them on that plane. This
specific data analysis was time-consuming and complex initially; however, one script with
small edits could be used multiple times. There is also a large scope where with further
work done by the research team this process could be broadly automated with the correct
computer programming and even applied into a user-friendly graphic interface.
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3. Results and Discussion
3.1. Mechanical Behaviour of Plain SCC and SFRSCC Beams

Figure 3 shows two different plots obtained from the three-point bending tests of plain
SCC and SFRSCC beams. Figure 3a presents the force–time curves for the force measured
by the loading cell at mid-span deflection, while Figure 3b shows the displacement-force
curves for assessing the effect of fibre addition on the elasticity of SCC. As expected, the
load-displacement curve is linear up to the maximum load for all specimens. As seen
in Figure 4a, the behaviour of the plain SCC beam is typical for a brittle material with a
linear force–time curve. The beam fails in tension with the crack initiating from the bottom
surface and propagating towards the top, splitting it into two parts. Once the maximum
load is achieved, any additional load will lead to the formation of the macrocrack and
suffer a catastrophic failure [23,50].

The main observation of the differences on post-peak behaviour are as follows: (i) after
reaching the maximum load, energy absorption in plain SCC beams is negligible; (ii) after
achieving the peak load, there is a sudden load drop on SFRSCC beams; however, it
continues to absorb energy to the end of the test while the load gradually decreases. An
increase in the force can be observed in the force–time curve for the SFRSCC beam after the
macrocrack has formed approximately 50 s into the test. This was due to the presence of
fibres over the macrocrack region. Figure 4b shows the failure of SFRSCC beam where it did
not break into two parts after final failure due to the presence of steel fibres. It is also worth
mentioning that there is a succinct step down in the force–time curve due to fibres bridging
the crack being gradually pulled out as the load continued to be applied. Similar results on
the modes of failure of plain SCC and SFRSCC is also reported in Soulioti et al. [32].

As can be seen in Table 2, the SFRSCC beams exhibit a higher average flexural strength
and a bigger deflection at maximum load than the plain SCC beams. This may be due
to the increasing width of the fracture process zone (FPZ) caused by the distribution of
fracture energy in a larger volume of material [32]. In addition, the SFRSCC beams have a
higher elasticity than the plain SCC beams due to the inclusion of steel fibres.
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3.2. Crack Detection and Localisation

In this section, filtered response data from three plain SCC beams and three SFRSCC
beams were analysed. Further in-depth analysis of the results was then manipulated for
a single plain SCC and SFRSCC in a variety of methods. The chosen beams have typical
results to their equivalents. It is also worth noting that X1 and X2 in Figures 5, 6 and 9–11,
represent the responses obtained from accelerometers 1 and 2, respectively. The benefit
of using two triaxial accelerometers is that the specific crack location can be confirmed.
The point of intersection, where the released energy from the source of the crack, captured
by the two accelerometers, can be determined by a simple trigonometry, is discussed
in Section 3.2.3.
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3.2.1. Amplitude–Time Curves

Figure 5a shows the amplitude–time curves obtained from the plain SCC beam with
a clear notation showing the macrocrack. In addition, Figure 5b shows the microcrack at
32.5 s as a distinctive change in the behaviour during the test with a burst of energy shown
by the increase in density of low amplitude peaks when compared to the surrounding data
points. Figure 5c takes a closer look at the macrocrack, highlighting what was assumed to
be a single distinct event to be at least four discrete events of varying duration, which is
suggestive of multiple breaking or tearing events.

Figure 6a presents the amplitude–time curves from the SFRSCC beam. Figure 6b
shows the microcracking with a similar behaviour to the microcracking in the plain SCC
beam, with a series of low-amplitude peaks over a short period of time. This is then
followed by a macrocrack denoted by two sections of large amplitude peaks. Figure 6c
shows a fibre pull-out event which is easily characterised by its amplitude being larger
than that of the microcrack, but smaller than that of the macrocrack, with no evidence
of precursors.

In order to validate the technique used to determine the stages which define micro-
and macrocracking the following steps have been made:

1. The amplitude–time curves were aligned with the force–time curves, where the largest
force peak time correlates to the largest amplitude peak time.

2. The time at which the macrocrack visibly formed was documented in the testing notes
and the time also correlated with the test results. The times were aligned therefore
validating the macrocrack time.

3. Once the time was validated, this was compared with the other stages of the AE trace.

In addition, the time–amplitude curves could also be used with the time to determine
the crack type. Microcracking has a relatively small amplitude, which occurs prior to the
macrocrack and has no visible precursors. The macrocrack had the clear precursors of
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microcracking; notably the fibre pull-out events had no detectable precursors and occurred
after the macrocrack.

3.2.2. Root Mean Square (RMS) Curves

The RMS curve is a measure of the overall signal energy used to extract key features
of the signal and data trends. Figure 7a shows the RMS curves highlighting the macrocrack
regions for the plain SCC beam, while Figure 7b shows those of the SFRSCC beam. The
RMS curves clearly indicate that the amount of time the macrocrack takes to fully form
reduces when steel fibres were added. Therefore, the higher percentages could withstand a
lower maximum load and catastrophic failure occurs at an increased pace. The RMS curves
shown in Figure 7a,b also identify the length of the macrocrack duration considered for
further analysis. These curves start at the initiation of the macrocrack’s large energy burst,
ending prior to any reciprocating waves. Notably, it shows a clear reduction in macrocrack
duration when steel fibres were added.
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3.2.3. Hodograms

Hodograms have been used as a method to identify crack locations for plain SCC and
SFRSCC beams. In addition to the requirement to plot each stage of cracking identified
by the amplitude time plots, the locations of the accelerometers will cause each to receive
the acoustic emission at a different time, therefore adding to the analysis complexity.
Furthermore, there is only a small window to correctly plot the hodogram, and at points
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it can be as small as 0.0002–0.001 s in duration. The method for finding the correct time
window is to visually identify a larger time window from the amplitude–time plots,
then slowly reduce its size until the hodogram shows the required rectilinear notation
which points directly towards the location of the crack. The hodograms have been used to
derive the angle from which AE occurs with respect to the accelerometers as identified in
Figure 8. The accelerometers were mounted at the distance of 60 mm from either side of
the load point. The vertical distance from the load point was determined by using simple
trigonometry. Figures 9 and 10 shows the hodograms for the micro- and macrocrack stages
for the plain SCC beam, while Figure 11 shows the results from the SFRSCC beam. All the
beams from each concrete type showed similar characteristics and definable stages. Further
experiments may provide more understanding of these characteristics. It is clear in the data
that multiple clear stages of cracking occur. It would not be unreasonable to investigate the
definitions of these stages more clearly with further research. Another experiment would
be expected to show similar behaviour and definable stages.
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Figure 9. Hodogram analysis for the microcrack of the plain SCC beam: (a) amplitude–time curves highlighting the analysed section,
and (b) hodograms for the microcrack.
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Figure 10. Hodogram analysis for various stages of macrocracks of the plain SCC beam: (a) amplitude–time curves highlighting the
analysed sections; (b) hodograms for Stage 1 macrocrack; (c) hodograms for Stage 2 macrocrack; (d) hodograms for Stage 3 macrocrack;
and (e) hodograms for Stage 4 macrocrack.
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Figure 11. Hodogram analysis for the micro- and macrocrack of the SFRSCC beam: (a) amplitude–time curves highlighting the
analysed sections; (b) hodograms for the microcrack, (c) hodograms for Stage 1 macrocrack, and (d) hodograms for Stage 2 macrocrack.

Figure 12a illustrates the crack location trace for the plain SCC beam and it was
created using the values from the hodograms. This trace shows each stage of the crack
and where it is located on the beam with the bottom left-hand corner of the beam being
the plot origin and the crack occurring at its mid-point (25 cm). The trace clearly shows
the initiation of the crack at its lower surface and sequentially moves towards the upper
surface where the load is applied. Notably, on the trace there is some areas where the
cracking stages are mixed—this is due to errors in the margin or identification of the crack
time. Irrespective of these errors, the trace still follows the expected trends of the crack
emanating from the bottom of the beam (the area under tension) to the top of the beam
(the area under compression) as concrete’s material properties lend better to compression
rather than tension [62]. Figure 12b displays the crack location trace for the SFRSCC beam.
This beam shows a much clearer trend to the plain SCC beam with defined areas of micro-
and macrocracking occurring from the lower surface of the beam to the upper surface. The
same markers are used to define the crack stages as used in Figure 12a to ensure the results
are easily comparable. Furthermore, a physical representation of the hodogram plots for
the SFRSCC beam is shown in Figure 13. The stages of cracking are indicated where they
are physically occurring on the beam.

The hodograms use the initial part of the waveform, which presents as a rectilinear
component and ‘points’ to the crack source. The later parts of the waveform present as
circularly/elliptically polarised components and represent resonant modes of the clamped
block. This is supported by the frequencies occurring as multiples of the beam’s dimensions.
Furthermore, the order of the tear is supported by the hodogram analysis (bottom to top).
However, some of the crack locations show values that lie outside of the beam’s boundaries.
This is suggestive of a local scattering effect and could be a large piece of aggregate that
causes rebounding waves, taking a different path to the original AE, thereby skewing the
hodogram plot as shown in Figure 14. It must be acknowledged that concrete’s material
properties are inhomogeneous in nature.
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4. Conclusions

In the present study, triaxial accelerometers were used to detect and locate the frac-
ture process in plain SCC and SFRSCC beams. The experiments involved plain SCC and
SFRSCC beams tested under three-point bending and loaded until failure. Two triaxial
accelerometers were used during the test to detect the natural frequency function of each
beam. In terms of mechanical behaviour, SFRSCC exhibited higher strengths and im-
proved post-peak behaviour compared to plain SCC. Waveform analysis was performed
to determine the crack type, while hodograms were used to identify crack location. The
experimental results demonstrated that the recorded responses from triaxial accelerometers
correspond to the crack formation and propagation This technology may be suitable for
broad applications; it would require further analysis and testing to clarify the applicability.
Its use on a bridge deck would be a good example of where further research would be
appropriate. As part of this investigation, the specific frequencies of the concrete cracks
were detected. When installing a system like this on a road deck, the frequencies of interest
would be programmed in, and as such, irrelevant background noise, i.e., from road traffic,
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would be removed from the system using appropriate filter techniques. When looking at
other uses, the specific concrete cracking frequency could be added into the system and all
other frequencies filtered out. This would remove the background noise from the system
and allow for broader uses. This technique was also considered as part of this investi-
gation and filtering was applied to assist in the removal of background noise from other
equipment in the laboratory. This non-destructive method using triaxial accelerometers
alongside waveform analysis and hodograms has led to improved accuracy in detecting
and locating crack growth and propagation, and would provide a solution for a structural
health monitoring system for concrete structures with easier applications, requiring less
technical knowledge.
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