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Simple Summary: Tumors are not composed of a uniform ball of cells, but rather, a complex set of
diverse cells. Unfortunately, most transcriptomic techniques analyze the entire tumor (bulk), and
thus represent an average profile of genes expressed across heterogeneous cells. To estimate tumor
composition from bulk data, many algorithms have been developed—broadly termed deconvolu-
tion. However, with the advent of single-cell RNA sequencing (scRNA-seq), which provides gene
expression data for individual cells, a few deconvolution algorithms are now more nuanced. We have
used our scRNA-seq data from head and neck tumors along with two cutting-edge deconvolution
algorithms to analyze bulk expression data from >500 tumors. With this approach, we find that
higher proportions of a class of immune cells (tumor-infiltrating regulatory T-cells) are associated
with improved survival in head and neck cancer. Our findings and data establish a generalizable
approach that can be applied across oncology to study tumor composition.

Abstract: Complexities in cell-type composition have rightfully led to skepticism and caution in
the interpretation of bulk transcriptomic analyses. Recent studies have shown that deconvolution
algorithms can be utilized to computationally estimate cell-type proportions from the gene expression
data of bulk blood samples, but their performance when applied to tumor tissues, including those
from head and neck, remains poorly characterized. Here, we use single-cell data (~6000 single cells)
collected from 21 head and neck squamous cell carcinoma (HNSCC) samples to generate cell-type-
specific gene expression signatures. We leverage bulk RNA-seq data from >500 HNSCC samples
profiled by The Cancer Genome Atlas (TCGA), and using single-cell data as a reference, apply two
newly developed deconvolution algorithms (CIBERSORTx and MuSiC) to the bulk transcriptome
data to quantitatively estimate cell-type proportions for each tumor in TCGA. We show that these
two algorithms produce similar estimates of constituent/major cell-type proportions and that a high
T-cell fraction correlates with improved survival. By further characterizing T-cell subpopulations,
we identify that regulatory T-cells (Tregs) were the major contributor to this improved survival.
Lastly, we assessed gene expression, specifically in the Treg population, and found that TNFRSF4
(Tumor Necrosis Factor Receptor Superfamily Member 4) was differentially expressed in the core
Treg subpopulation. Moreover, higher TNFRSF4 expression was associated with greater survival,
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suggesting that TNFRSF4 could play a key role in mechanisms underlying the contribution of Treg in
HNSCC outcomes.

Keywords: head and neck squamous cell carcinoma; deconvolution; single-cell RNA sequencing;
regulatory T-cells

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) arises in the upper aerodigestive
mucosa of the oral cavity, oropharynx, hypopharynx, larynx, and rarely, in the nasal cavity
and nasopharynx [1]. Together, HNSCC is the sixth most common cancer worldwide,
representing 90% of cancers that arise in the head and neck region [2,3] and accounting
for 650,000 (3.6%) of cancer cases and 330,000 (3.4%) of cancer deaths per year [2]. Unfor-
tunately, the prognosis for HNSCC patients remains poor despite numerous advances in
surgical, radiation, and systemic therapies [4]. Advancing new therapeutics for HNSCC
will require insight into the cellular and molecular biology underlying HNSCC.

Knowledge of cell-type composition in tumor tissues represents an important step
towards identifying cellular targets in cancer. Changes in cell composition underlie di-
verse physiological states of complex tissues. In malignant tumors, levels of infiltrating
immune cells are associated with tumor growth, cancer progression, and patient out-
comes [5,6]. However, beyond knowing the proportions, understanding how individual
cell types respond may also be important for understanding the course of disease. For
example, genes changes within particular cells might provide insights into novel avenues
for treatment [6-9].

Intra-tumoral cell proportions can be estimated by histological techniques [10]. How-
ever, such approaches are low throughput, time-consuming methods that are not feasible
to use with large sample sizes due to the requirement for specific antibodies and the limited
number of cell types that can be simultaneously assessed [11]. By contrast, genomic (whole
exome and whole genome sequencing; WES and WGS) and transcriptomic (RNA-seq) se-
quencing are high-throughput methods for analyzing bulk tumor samples which are suited
for large sample sizes, such as The Cancer Genome Atlas (TCGA) dataset [12]. Although
bulk sequencing approaches have identified driver mutations and abnormal expression
profiles characteristic of HNSCC [13], these methods fail to capture intra-tumoral hetero-
geneity [1,14,15], which affects clinical outcomes and treatment response in HNSCC and
other solid cancers [16-20]. Thus, improved therapies for HNSCC critically depend on the
elucidation of the key cellular subpopulations present within these heterogeneous tumors.

Computational methods for the quantitative phenotyping of tumors from bulk RNA-
seq data have significant potential for efficient and low-cost profiling of a large number
of existing samples yet are handicapped by the intrinsic limitations of the bulk data itself.
Single-cell RNA-sequencing (scRNA-seq) technology provides a promising alternative,
providing high-resolution gene expression data for individual cells within a tumor [9,21].
Indeed, scRNA-seq is increasingly being utilized across oncology, but this method is
constrained by the need for freshly acquired patient samples, significant expense, and
technical difficulties in tissue processing [14,15,22]. Fortunately, a relatively small subset of
existing scRNA-seq data can provide detailed cell-type-specific gene expression profiles
that can be inputted into deconvolution algorithms. These algorithms enable cell-type
proportion estimates and even a deciphering of cell-type-specific gene expression from bulk
sequencing data [8,11,12,14,15,23-25]. Thus, deconvolution algorithms based on scRNA-
seq-derived gene expression profiles overcome the resource limitations of scRNA-seq by
permitting in silico cell-type-specific analyses from bulk tissue. This approach can enable
large-scale investigation of novel or poorly characterized cell states in bulk tissue profiles
and enable us to test new hypotheses in the substantial existing bulk profile collections. In
human cancers, cellular states of interest may include subpopulations of activated, resting,



Cancers 2021, 13, 1230

30f20

Single-cell
RNA-seq

Bulk
RNA-seq

Deconvolution

or exhausted T-cells [26-28], cancer-associated fibroblasts [8], or malignant cells [29,30],
including tumor-initiating cells or cancer stem cells [31].

Here, we sought to test the hypothesis that the proportions of individual cell types
influence disease progression and outcome. We leveraged bulk transcriptomic data from >500
HNSCC samples profiled by TCGA. We derived the signature matrix from our previously
profiled transcriptomes of ~6000 single cells from 21 head and neck squamous cell carcinoma
(HNSCC) samples, including 4 matched pairs of primary tumors and lymph node metas-
tases [8]. With this scRNA-seq reference, we used two recently developed deconvolution
algorithms—CIBERSORTX [32] and MuSiC [33]—which allow the use of scRNA-seq as refer-
ence to characterize cell-type compositions from bulk RNA-seq data in complex tissues, to
estimate immune and non-immune cell-type proportions in HNSCC TCGA bulk RNA-seq
data. By correlating proportions of each cell type with patient-matched overall survival, we
identified that high proportions of T-cells are associated with improved overall survival from
HNSCC. By further characterizing T-cell subpopulations, we found that regulatory T-cells
(Tregs) are the major contributor to this superior survival. Lastly, we assessed the specific
gene expression in the Treg subpopulation and found that TNFRSF4 (Tumor Necrosis Factor
Receptor Superfamily Member 4) is differentially expressed in core Tregs and is correlated
with significantly better survival, raising the possibility that this gene could play a key role in
the mechanisms underlying Tyegs in HNSCC.

2. Results
2.1. Overview of Deconvolution Approach

A schematic overview of our deconvolution approach is illustrated in Figure 1. First,
we derived a cell-type expression matrix from our previously profiled transcriptomes of
~6000 single cells using the SMART-seq2 protocol [34] from 21 HNSCC samples [8]. This
matrix established a benchmark for cell-type proportions in heterogeneous HNSCC tissue.
Second, we obtained the bulk RNA-seq data from >500 HNSCC samples within TCGA and
then used both CIBERSORTx [32] and MuSiC [33] to deconvolve the bulk RNA-seq data
based on the derived cell-type expression matrix.
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Figure 1. Schematic illustration of the bulk RNA-sequencing (RNA-seq) deconvolution with single-cell reference profile.

A schematic overview of deconvolution analysis is illustrated. First, we derived a cell-type expression matrix from

our previously profiled transcriptomes of ~6000 single cells by SMART-seq2 protocol from 21 HNSCC (Head and Neck

Squamous Cell Carcinomas) samples, including four matched pairs of primary tumors and lymph node metastases. This

established a benchmark for cell-type proportions in heterogenous HNSCC tissue. Second, we obtained the bulk RNA-seq
data from ~500 HNSCC samples within TCGA. Lastly, we used either CIBERSORTx or MuSiC to derive a signature matrix
and then deconvolve the bulk RNA-seq data to get cell proportions.
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2.2. CIBERSORTx Analysis with scRNA-seq Reference for Nine Major Cell Types

CIBERSORTX is a computational framework to infer cell-type abundance and cell-
type-specific gene expression from RNA profiles of intact tissues. CIBERSORTx had been
validated in HNSCC using simulated tumors reconstructed from single cells [32]. To
further utilize this algorithm to deconvolute bulk RNA-seq data in HNSCC, two inputs
are required. One input is the gene expression dataset representing a bulk admixture of
different cell types, which we obtained from TCGA [35]. The second input is the single-
cell reference that enumerates the genes defining the expression profile for each cell type
of interest, for which we used our previously profiled transcriptomes of ~6000 single
cells [8]. To assign cell types to single cells, we generated a t-SNE (t-distributed Stochastic
Neighbor Embedding) projection of scRNA-seq data revealing nine major cell clusters,
which were further annotated by the expression of known marker genes for T-cells, B
cells, macrophages, dendritic cells, mast cells, endothelial cells, fibroblasts, malignant cells,
and myocytes (Figure 2A). Next, we used the cell-type versus gene matrix to generate
the signature matrix by CIBERSORTx (Supplementary Materials Figure S1A). With this
signature matrix, we estimated the cell fractions for each sample of bulk RNA-seq in TCGA
using the CIBERSORTX algorithm, which revealed a wide range of cell-type proportions
from ~80% malignant cells to ~2% T-cells (Supplementary File S1). The relative percentages
of each cell type (normalized by the corresponding mean within each cell type) are shown
via heatmap (Figure 2B).

To examine the association of tumor origin and stage with cell-type proportions, we
performed hierarchical clustering of samples with nine type proportions and found no clear
separation of origin or stage (Figure 2B). We then explored the association with individual
cell proportions and found that oropharynx tumors were highly correlated with immune
cells” proportions, especially B cells and T cells (Supplementary Figures S2 and S3), which
has been previously reported [12]. To further explore the association of tumor subtype with
cell-type proportions, we first merged the subtype information [12] with our deconvolution
result by TCGA ID and then we did the same hierarchical clustering analysis. We observed
a strong association of the atypical subtype with three immune cell proportions: B cell, T
cell, and Dendritic (Supplementary Figure S4). This association is expected because the vast
majority of atypical subtype tumors are HPV (Human Papillomavirus) -positive oropharynx
patients, which tend to have more immune infiltrate [36]. We also found that fibroblast and
endothelial proportions were positively correlated with mesenchymal subtype and negatively
correlated with basal subtype (Supplementary Figure S5), while malignant proportions were
positively correlated with basal subtype and negatively correlated with mesenchymal subtype
(Supplementary Figure S5), consistent with observations we made previously [8].

Next, we investigated the association of various cell-type proportions with survival in
HNSCC patients. We began by classifying cell-type proportions into two groups, high and
low, with an equal number of patients in each group. We calculated the survival for each
group using the Kaplan-Meier log-rank test with corresponding Kaplan-Meier curves.
A higher proportion of T-cells and B-cells was associated with more favorable survival
with a p-value of less than 0.005 (Figure 2C). By contrast, there was no significant differ-
ence in survival among patients with high and low proportions of fibroblasts, endothelial
cells, malignant cells, macrophages, or dendritic cells. Interestingly, a higher proportion
of myocytes was associated with inferior survival with a p-value less than 0.05. This is
consistent with a recent study [37] demonstrating that patients of tongue squamous cell car-
cinoma with high relative MEF2C (myocyte enhancer factor 2C) expression had an inferior
overall survival. To address potential confounders of patient survival, a multivariate Cox
proportional-hazards model was performed to identify independent prognostic factors
for HNSCC survival. After adjusting for tumor stage, race, smoking status, and age, we
confirmed that T-cell and B-cell proportions serve as independent prognostic parameters
for overall survival (T-cell HR (Hazard Ratio): 0.63, p < 0.05; B-cell HR: 0.59, p < 0.05) in
HNSCC patients, as shown in Tables 1 and 2. To rule out that the effect of T cell proportion
on survival is secondary to B cell, we correlated the estimated proportion of B-cell with that
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of T-cell (Supplementary Figure S6). The Pearson correlation coefficient is 0.42, indicating
there is not a linear relationship between these two cell populations. Therefore, T cell and
B cell are independent proxies.

Table 1. Cox proportional-hazard regression analysis for survival and T-cell proportions estimated by CIBERSORTx and
MusSiC (prop., proportion; HR, hazard ratio; CI, confidence interval; ref, reference).

CIBERSORTX MuSiC
Variables
HR 95% CI P HR 95% CI P

Cell type prop.

T-cell low (ref) 1.00 1.00

T-cell high 0.63 0.47-0.83 0.001 0.71 0.53-0.93 0.014
Stage

Stage I (ref) 1.00 1.00

Stage I 1.50 0.58-3.90 0.404 1.49 0.57-3.87 0.415

Stage III 1.83 0.71-4.71 0.21 1.80 0.70-4.63 0.224

Stage IVA 2.53 1.03-6.21 0.043 2.45 1.00-6.04 0.051

Stage IVB 5.53 1.66-18.39 0.005 5.56 1.67-18.51 0.005

Stage IVC 17.61 1.92-161.32 0.011 18.38 2.00-168.47 0.01

Not reported 2.21 0.84-5.81 0.107 2.05 0.78-5.38 0.145
Race

White (ref) 1.00 1.00

Black 1.39 0.86-2.26 0.18 1.36 0.84-2.21 0.212

Hispanic 1.53 0.85-2.75 0.159 1.46 0.81-2.63 0.21

Other 1.11 0.56-2.19 0.761 1.18 0.60-2.33 0.631
Smoke

Never (ref) 1.00 1.00

Ever 0.88 0.63-1.22 0.437 0.88 0.63-1.22 0.446
Age 1.02 1.00-1.03 0.007 1.02 1.01-1.03 0.004

Table 2. Cox proportional-hazard regression analysis for survival and B-cell proportions estimated by CIBERSORTx and
MusSiC (prop., proportion; HR, hazard ratio; CI, confidence interval; ref, reference).

CIBERSORTx MuSiC
Variables
HR 95% CI p HR 95% CI p

Cell type prop.

B-cell low (ref) 1.00 1.00

B-cell high 0.59 0.45-0.79 3x 1074 0.69 0.44-1.11 0.126
Stage

Stage I (ref) 1.00 1.00

Stage II 1.57 0.60-4.08 0.353 1.67 0.64-4.34 0.293

Stage III 1.93 0.75-4.96 0.173 1.94 0.76-4.99 0.168

Stage IVA 2.71 1.11-6.65 0.029 2.72 1.11-6.66 0.029

Stage IVB 5.95 1.79-19.74 0.004 6.75 2.03-22.44 0.002

Stage IVC 27.77 3.03-254.86 0.003 21.37 2.34-194.94 0.007

Not reported 2.34 0.89-6.14 0.085 2.18 0.83-5.73 0.114
Race

White (ref) 1.00 1.00

Black 1.57 0.97-2.55 0.069 1.46 0.9-2.37 0.127

Hispanic 1.54 0.86-2.78 0.15 1.52 0.84-2.74 0.163

Other 1.08 0.55-2.12 0.834 1.09 0.56-2.16 0.795
Smoke

Never (ref) 1.00 1.00

Ever 0.85 0.61-1.19 0.343 0.88 0.63-1.22 0.432

Age 1.02 1.01-1.03 0.003 1.02 1.01-1.03 0.006
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Figure 2. CIBERSORTx analysis with scRNA-seq reference of nine major cell types. (A) t-SNE projection of scRNA-seq data

from 21 HNSCC samples colored by nine major cell clusters. (B) Heatmap of the relative cell fractions of the nine major

cell types for each sample estimated by CIBERSORTx. The percentage is normalized by the corresponding mean within

each cell type. The tissue origin and tumor stage are annotated as side bars. (HP = Hypopharynx; L = Larynx; OC = Oral

Cavity; OP = Oropharynx). (C) Association between cell proportions and overall survival in patients with HNSCC profiled

by TCGA. Estimated cell proportions were stratified by a half-half split, and the separation between survival curves was

evaluated using a log-rank test.
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2.3. CIBERSORTx Analysis with T-Cell Subtypes/Subpopulations

Given that a higher T-cell proportion was associated with improved survival in HN-
SCC patients and that our prior scRNA-seq dataset included a relatively large number of
T-cells (~1000 T-cells), we next examined T-cell subtypes by finer clustering, producing
four sub-clusters annotated by marker genes [8] as conventional CD4 T-cells (CD4cony;
CCR?, TCF?), regulatory T-cells (Tregs; FOXP3, CD25), conventional CD8 T-cells (CD8cony;
GZMA/B/H/K, PRF1), and exhausted CD8 T-cells (CD8¢yhausted; PD1, LAG3, TIGIT,
CTLAA4) (Figure 3A). With the addition of T-cell subtypes, we created and derived a new
signature matrix of 12 cell types (eight major cell types and four T-cell subtypes) by CIBER-
SORTx (Supplementary Figure S1B). We estimated the prevalence of these 12 cell types
in the same TCGA bulk RNA-seq data as previously used (Figure 3B and Supplementary
File S2) and then associated the proportions (low or high) of T-cell subtypes with patients’
survival outcomes by Kaplan—-Meier curves and log-rank test (Figure 3C). We specifically
examined the four T-cell subtypes: CD4cony and Treg under the umbrella of CD4 T-cells,
and CD8¢ony and CD8eyhausted Under the category of CD8 T-cells. These results showed
that higher proportions of CD4 T-cells were associated with favorable survival outcomes
with a much lower p-value than that of CD8 T-cells (p = 0.00016 for CD4 T-cells, p = 0.04 for
CD8 T-cells). Interestingly, Tregs demonstrated a significantly lower p-value (p = 0.00003)
than that of the other three subtypes, suggesting that Tregs have a stronger association with
improved survival in HNSCC than other T cell subsets. To rule out that Tregs serve as an
indirect or secondary contributor since Tregs negatively regulate CD8 T cells, we noted
that the p-value for CD8 T-cells” effect on survival was not as significant as for Tregs. In
addition, if the effect on survival was primarily driven by Tyegs negatively regulating CD8
T-cells, we might expect the CD8 and Treg effects on survival to be opposed (i.e., high Tregs
and low CD8 T-cells associated with improved survival). These observations directed our
primary motivation for focusing on Tregs. We next performed multivariate analyses with
the Cox proportional-hazards model to identify the independent prognostic factors for
HNSCC survival. After adjusting for tumor stage, patient race, smoking status, and age,
we found that Treg proportion is an independent predictor of overall survival (Table 3, HR:
0.61, p < 0.05).

Table 3. Cox proportional-hazard regression analysis for survival and Treg proportions estimated by CIBERSORTx and
MuSiC (prop., proportion; HR, hazard ratio; CI, confidence interval; ref, reference).

CIBERSORTX MuSiC
Variables
HR 95% CI p HR 95% CI p

Cell type prop.

Treg low (ref) 1.00 1.00

Treg high 0.61 0.46-0.80 4 %1074 0.70 0.52-0.95 0.021
Stage

Stage I (ref) 1.00 1.00

Stage I 1.75 0.67-4.54 0.252 1.54 0.59-4.01 0.372

Stage III 2.05 0.79-5.26 0.138 1.86 0.72-4.79 0.196

Stage IVA 2.87 1.17-7.05 0.022 2.59 1.06-6.36 0.038

Stage IVB 6.21 1.87-20.63 0.003 5.87 1.77-19.46 0.004

Stage IVC 31.03 3.36-286.33 0.002 18.37 2.01-168.11 0.01

Not reported 2.51 0.95-6.61 0.064 2.05 0.78-5.37 0.146
Race

White (ref) 1.00 1.00

Black 1.46 0.90-2.37 0.126 1.52 0.94-2.48 0.089

Hispanic 1.48 0.82-2.67 0.191 1.55 0.86-2.79 0.148

Other 1.06 0.54-2.10 0.862 1.09 0.56-2.15 0.796
Smoke

Never (ref) 1.00 1.00

Ever 0.87 0.62-1.21 0.409 0.85 0.61-1.18 0.335

Age 1.02 1.01-1.03 0.006 1.02 1.01-1.03 0.005
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Figure 3. CIBERSORTX analysis based on T-cell subtypes/subpopulations. (A) t-SNE plots of T-cell population colored by

four subtypes based on the corresponding marker genes: conventional CD4 T-cells (CD4conv; CCR7, TCF7), regulatory
T-cells (Treg; FOXP3, CD25), conventional CD8 T-cells (CD8conv; GZMA/B/H/K, PRF1), and CD8 exhausted T-cells
(CD8exhaust; PD1, LAG3, TIGIT, CTLA4). (B) Heatmap of the relative cell fractions of the 12 cell types (eight major
cell types and four T-cell subtypes) for each sample estimated by CIBERSORTx. The percentage is normalized by the

corresponding mean within each cell type. The tissue origin and tumor stage are annotated as side bars. (HP = Hypopharynx;

L = Larynx; OC = Oral Cavity; OP = Oropharynx). (C) Association between cell proportions and overall survival in patients
with HNSCC profiled by TCGA. Estimated cell proportions were stratified by a half-half split, and the separation between
survival curves was evaluated using a log-rank test. The T-cell CD4 has two subtypes: conventional CD4 cells and regulatory
T-cells (Tregs). The T-cell CD8 population includes conventional CD8 T-cells and exhausted CD8 T-cells.
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2.4. MuSiC Deconvolution Based on T-Cell Subtypes/Subpopulations

To confirm that the Treg subpopulation is associated with improved survival in an
orthogonal approach, we used a separate but similar deconvolution algorithm known as
multi-subject single-cell deconvolution (MuSiC) to validate our results. MuSiC incorporates
cross-subject and cross-cell consistency of marker genes into the deconvolution algorithm,
which allows for scRNA-seq datasets to serve as effective references for independent bulk
RNA-seq datasets involving distinct patients. We first tested the deconvolution perfor-
mance of MuSiC on simulated bulk-RNA-seq data reconstructed in silico from scRNA-seq
that predetermines ground truth cell proportions. To have all 21 samples validated and
avoid overlapping samples in each validation run, we utilized two combinations: 18 (ref-
erence) versus 3 (validation) and 14 (reference) versus 7 (validation). For example, as we
have a total of 21 scRNA-seq samples, we used 18 of them to create the signature matrix
and the remaining three to construct in silico bulk RNA-seq data. This approach yielded a
total of seven (21/3 =7) and three (21 /7 = 3) validation runs for combinations of 14 versus 7
and 18 versus 3, respectively. We then ran each of the cases through MuSiC and compared
the estimated cell proportions with the ground truth (Figure 4A and Supplementary Figure
S7A). We found that the estimates aligned very well with the ground truth cell proportions:
Patients were highly concordant with ground truth by Pearson correlation (Figure 4B and
Supplementary Figure S7B). Strong performance was also maintained when considering
deconvolution results across distinct cell types (except myocytes possibly due to limited
scRNA-seq representation) (Supplementary Figure S7C,D).

After validation of the MuSiC method in our previous HNSCC dataset, we decon-
volved the TCGA bulk RNA-seq data with nine major cell types (Supplementary Figure SSA
and File S3). To evaluate how well the cell type compositions from these two algorithms
align with each other, we calculated the Pearson correlation between the estimated cell pro-
portions from CIBERSORTx with that of MuSiC. Patients were highly concordant between
these two algorithms, with a median Pearson correlation coefficient of 0.96 (Supplementary
Figure S9A). However, when checking the cell types, we found correlation coefficients
are in discrepancies ranging from Myocyte 0.95 to Mast 0.18 (Supplementary Figure S9B).
We focused on results most consistent across algorithms (i.e., correlation coefficient > 0.8).
Therefore, four cell types (myocyte, T cell, Malignant, and Fibroblast) are cross-validated
by these two algorithms.

Next, we further deconvolved the TCGA bulk RNA-seq data with 12 cell types (eight
major cell types and four T-cell subtypes), as described above (Figure 4C and Supplemen-
tary File 54). Similar to the results obtained by CIBERSORTX, we found that a higher T-cell
and B-cell proportion was associated with improved overall survival (Supplementary Fig-
ure S8B). The proportions of other cell types, including fibroblasts, macrophages, dendritic
cells, endothelial cells, malignant cells, myocytes, and mast cells, were not associated with
a significant difference in survival. Within the T-cell subtypes, we again observed that a
higher proportion of Tregs was associated with improved survival (Figure 4D). We then
performed multivariable analyses again and found similar results to CIBERSORTx, namely,
that Treg proportion is an independent predictor of overall survival (Table 3, HR: 0.70,
p < 0.05).
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Figure 4. MuSiC deconvolution based on T-cell subtypes/subpopulations. (A) Comparison of ground-truth cell proportions
with the estimated proportions by MuSiC for all HNSCC samples. The validation run used a combination of 18 (reference)
and 3 (validation). The ground-truth and estimated cell proportions are paired for each sample and demarcated by black
and red lines, respectively. Sample tumor numbers shown with an asterisk (*) indicate metastatic samples. (B) Concordance
between cell type proportions measured by scRNA-seq (ground truth) and MuSiC for all HNSCC samples. The validation
run used a combination of 18 (reference) and 3 (validation). The correlation is calculated by Pearson method and samples
have the same naming criteria as in (A). (C) Heatmap of the relative cell fractions of the 12 cell types (eight major cell types
and four T-cell subtypes) for each sample estimated by MuSiC. The percentage is normalized by the corresponding mean
within each cell type. (D) Association between cell proportions and overall survival in patients with HNSCC profiled by
TCGA. Estimated cell proportions were stratified by a half-half split, and the separation between survival curves was
evaluated using a log-rank test.

2.5. CIBERSORTx Analysis of Gene Expression of Regulatory T-Cells

To complement our cell-proportion-centric analyses, we conducted gene-centric dif-
ferential expression analysis, survival analysis, and identified prognostic associations of
marker genes that could potentially define specific subtypes and states of Tregs [38]. We
first obtained the genome-wide expression values from bulk RNA-seq data as previously
described and split them into halves by the Treg proportion. We used the Wilcoxon signed
rank test to identify differentially expressed genes and the adjusted p-values are plotted
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in Figure 5A for all 33 marker genes. We then split the genes into halves by expression
values and used Kaplan-Meier curves to display survival distributions for each marker
gene (Supplementary Figure 510 and Figure 5C). The log-rank test was used to assess the
difference between patients with high and low values of the corresponding genes and the
p-values are plotted in Figure 5A. Two genes, CTLA4 and TNFRSF4, passed the threshold
(p < 0.001). We further examined the expression of all 33 marker genes, specifically among
Tregs (rather than among all cells), using CIBERSORTx high-resolution mode. This analysis
can impute genes’ expression to define distinct subpopulations, although marker genes
with continuously high expression may not be imputed due to lack of statistical power.
We were able to impute the expression for seven genes with this approach, and two genes,
TNFSF4 and RELB, were differentially expressed in core and effector Tregs, respectively
(Supplementary File S5). We then associated the expression of these seven genes with over-
all survival (Figure 5A,D) and found that TNFRSF4 is the only one that passed the p-value
threshold. We also show the differential expression of TNFRSF4 between the high and
low group defined by Treg proportions in Figure 5B. Combined with the results from bulk
RNA-seq, TNFRSF4 may be a marker gene of particular interest. Next, we estimated the
hazard ratios (HRs) for the risk of disease progression and mortality associated with high
and low expression of TNFRSF4 in all cells and Tregs using the Cox proportional-hazards
model. The results from all cells and Tregs agreed with each other and showed that high
expression of TNFRSF4 is correlated with a significantly lower hazard of death (Table 4).
Taken together, these data suggest that TNFRSF4 is differentially expressed in the core Treg
subset and is correlated with significantly better survival, indicating that this gene could
play a key role in the mechanisms underlying the contribution of Treg in HNSCC outcomes.

Table 4. Cox proportional-hazard regression analysis for survival and TNFRSF4 expression estimated by bulk RNA-seq and

CIBERSORTXx (prop., proportion; HR, hazard ratio; CI, confidence interval; ref, reference).

Bulk RNAseq CIBERSORTX—Treg
Variables
HR 95% CI p HR 95% CI p

Cell type prop.

TNFRSF4 low (ref) 1.00 1.00

TNFRSF4 high 0.57 0.43-0.75 8 x 107> 0.59 0.46-0.75 2 x107°
Stage

Stage I (ref) 1.00 1.00

Stage II 2.31 0.88-6.02 0.088 2.03 0.88-4.70 0.097

Stage III 1.54 0.59-4.00 0.376 1.60 0.72-3.56 0.249

Stage IVA 1.78 0.69—-4.59 0.232 1.87 0.84-4.17 0.128

Stage IVB 2.65 1.08-6.52 0.033 2.64 1.23-5.65 0.013

Stage IVC 4.79 1.44-15.92 0.011 5.28 1.76-15.84 0.003

Not reported 16.43 1.80-150.11 0.013 22.36 2.59-193.19 0.005
Race

White (ref) 1.00 1.00

Black 1.55 0.96-2.49 0.073 1.55 1.00-2.41 0.05

Hispanic 1.55 0.88-2.74 0.128 1.64 0.98-2.73 0.058

Other 1.10 0.55-2.17 0.792 1.21 0.69-2.13 0.51
Smoke

Never (ref) 1.00 1.00

Ever 0.83 0.59-1.15 0.258 0.74 0.55-0.98 0.036
Age 1.02 1.00-1.03 0.009 1.02 1.01-1.03 0.002
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Figure 5. CIBERSORTx analysis of gene expression of regulatory T-cells (Treg). (A) Bar plot of the p-values calculated from
differential gene analysis of low and high group defined by Treg proportions, log-rank tests for survival outcomes of the low

and high fraction groups of Treg marker genes. In the first column, gene expression is obtained from bulk RNA-seq in TCGA.

In the second column, gene expression is from the Treg subpopulation estimated by CIBERSORTx. Genes marked in red

have imputed values noted. Gray lines represent the p-value threshold (p = 0.001). (B) Violin plot of TNFRSF4 expression in

low and high group defined by Treg proportions. (C) Association between TNFRSF4 expression and overall survival in

patients with HNSCC profiled by TCGA. Estimated cell proportions were stratified by a half-half split, and the separation

between survival curves was evaluated using a log-rank test. (D) Association between Tyeg-specific TNFRSF4 expression
estimated by CIBERSORTx and overall survival in patients with HNSCC profiled by TCGA. The same calculation method is

performed as in (C).

3. Discussion

In this study, we deconvoluted bulk RNA-seq data from >500 HNSCC samples pro-
filed by TCGA using scRNA-seq data to define cell-type proportions and determine their
association with survival. Heterogeneity among HNSCC patients appears highly relevant,
with the proportions of several cell types strongly associated with survival. Specifically, a
higher proportion of infiltrating Tregs is associated with improved outcomes, suggesting
Treg fraction may be an independent prognostic factor in HNSCC outcomes.

We have implemented two distinct but similar deconvolution algorithms, CIBER-
SORTx and MuSiC, to cross-validate the deconvolution results. Both methods allow the
integration of sorted bulk data or scRNA-seq to derive a signature matrix. Compared
with fluorescent-activated cell sorting (FACS)-purified or in vitro cell subsets, scRNA-seq
does not rely on predetermined cell-type specific genes based on a priori knowledge, and
therefore, enables unbiased transcriptional profiling of thousands of individual cells to
guide cell-type-specific gene signatures. Moreover, it is now known that even ‘sorted or
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purified” cells may still contain significant cellular heterogeneity [39]. The scRNA-seq-
derived signature matrix thus captures a more comprehensive picture of cell diversity
in heterogeneous HNSCC tissue. This approach represents a major advantage over past
deconvolution techniques, which primarily rely on using a sorted bulk expression profile
from one tissue type to analyze bulk data usually from an entirely different tissue type.
By contrast, we used scRNA-seq from HNSCC patients to deconvolute the bulk RNA-seq
data from an orthogonal cohort of HNSCC samples, providing consistency in the tissue
analyzed for both the reference matrix as well as the orthogonal, deconvoluted dataset,
and thereby avoiding errors from changes in expression profiles under different tumor
microenvironments (even for the same cell type) [32,40,41].

Since these two deconvolution methods are based on different algorithms (support
vector regression for CIBERSORTx and weighted non-negative least squares regression
for MuSiC), we might observe minor discrepancies in the estimated cell proportions. In
terms of the cell types that have a discrepancy between these two methods, we weighed
the results from CIBERSORTx higher than that from MuSiC because of its improved
performance in our benchmarking validation tests. Specifically, these two algorithms
were both compared to the ground truth of our single-cell HNSCC dataset. CIBERSORTx
showed a strong concordance between the deconvolution results and ground truth cell
proportions [32], while MuSiC also indicated a good alignment between estimated and
ground truth proportion (Figure 4 and Supplementary Figure S7). However, CIBERSORTx
slightly outperformed MuSIC with median values of 0.97 and 0.98 for correlation co-
efficiency in cell level and sample level validation tests respectively, compared to MuSiC,
which showed best median values of 0.95 versus 0.97 under the same conditions. These
evaluations suggest that CIBERSROTx outperforms MuSiC by a small margin, which
guided us to use CIBERSORTx as the main exploratory tool and MuSiC as a secondary
validation check. In addition, while MuSiC was unable to statistically separate CD8cony,
CD8¢xhaust and Treg populations in terms of their effect on survival, CIBERSORTx analyses
revealed a much more significant association of Treg proportion with survival compared
to these other T-cell subtypes. Thus, in toto, the combination of these two approaches
emphasized a focus on Tyeg for additional analyses.

The role of Tregs in HNSCC is somewhat controversial. Generally, Tregs are thought
to suppress the anti-tumor immunity of T-cells and natural killer (NK) cells in some solid
tumors and generally help to establish an immunosuppressive microenvironment [42—
44]. Thus, Treg infiltration is generally associated with a poor prognosis in many human
carcinomas. For example, studies have reported that a high proportion of tumor-infiltrating
Tregs Was significantly associated with worse outcomes in breast cancer [45], hepatocellular
carcinoma [46], lung cancer [42], gastric cancer [47], and ovarian cancer [48]. However,
contradicting conclusions have been drawn recently concerning the prognostic value of
Tregs in oncology, where it has been suggested that Treg infiltration may have a positive
effect on anti-tumor response. For example, high densities of tumor-infiltrating Tregs in
colorectal carcinoma, malignant melanoma, and lymphoma are reported to be associated
with improved outcomes [49-52]. In HNSCC, several studies have suggested that patients
with high Teg infiltration have significantly better overall survival [53-57]; however, these
analyses utilized immunohistochemistry in a limited cohort to reach this conclusion. In
addition, a few clinical correlative studies that used deconvolution methods in HNSCC
have uncovered a favorable association between increased levels of Treg infiltration and
prognosis [11,58,59]. These studies, however, utilized older versions of CIBERSORT, and
the signature matrix was based on sorted bulk data as opposed to single-cell sequencing
data. Thus, there is precedent to support the findings of our study and to suggest that
the effect of Treg infiltration on tumor biology may be quite complex and specific to the
disease context. Importantly, our findings offer a more rigorous approach to deconvolution,
allowing for greater sample size than histology-based studies while offering improved
precision over existing informatics approaches to date.
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A possible explanation for the paradoxical observation of Tregs favorably affecting
survival in HNSCC may relate to the potential translocation of microbial flora from the
upper aerodigestive tract to HNSCC tissues [57], similar to theories proposed by Ladoire
et al. for colorectal tumors [51]. It is possible that this microbiological hazard provokes
a T-cell-mediated anti-microbial inflammatory response that involves Th17 cells and can
thereby promote cancer growth. The Th17-cell-dependent pro-inflammatory and tumor-
enhancing response can be attenuated by Tregs, providing a possible explanation for the
favorable role of Tregs in HNSCC prognosis. Certainly, future studies must rigorously
examine the importance and relevance of Tregs and the oral microbiome using a well-
controlled animal model to further develop and test these hypotheses. However, our data,
which are validated using two orthogonal deconvolution approaches, seem to broadly
belie the notion of cancer-specific effects of infiltrating immune cells.

We observed a strong clinical association between high expression of TNFRSF4 and im-
proved survival. The TNF-receptor superfamily (TNFRSF) serves various key immunoreg-
ulatory functions and includes death receptors that trigger apoptosis in cancer cells and
receptors that provide co-stimulatory signals to anti-tumor T-cells [60]. Targeting the TN-
FRSF is somewhat of a recent development among tumor immunotherapy approaches and
shows promise for the treatment of cancer in preclinical studies when used in combination
with chemotherapy or irradiation, which can induce immunogenic cell death and stimulate
anti-tumor T-cell responses [61]. Indeed, various agonistic TNFRSF antibodies and recom-
binant forms of TNFSF ligands are under clinical evaluation [62-64]. With the success
of immune checkpoint blockade therapies and promise of programmed death pathway-
targeted agents, TNFRSF4 could represent a potential target for future therapeutics to
control tumor progression in HNSCC.

Although the results from our deconvolution are useful, some limitations are noted.
First, this study relies on scRNA-seq as well as bulk RNA-seq data acquired from represen-
tative biopsy specimens rather than entire tumors themselves. Thus, inherent heterogeneity
of HNSCC tumors may prevent a single biopsy from adequately representing the full
biological behavior of the tumor. However, it is noteworthy that despite this limitation,
we appreciated highly significant associations between certain cell-type proportions and
patient outcomes. Second, the deconvolution methods used herein do not take spatial
distributions of cells into consideration. Thus, subtle localization differences that are more
appreciable with immunohistochemistry approaches may be missed; yet, our approach
also offers a statistical power that is not feasible to obtain with histology slides. Third, our
approach provides relative proportions of cells rather than absolute cell counts, therefore
not capturing the total lymphocytic infiltration in any given tumor. With advances in
single-cell and genomic approaches [14], such as spatial transcriptomics, we expect these
limitations of our analyses to be overcome and provide yet more robust data.

4. Methods
4.1. Bulk RNA-Seq Data and Clinical Information of HNSCC Tumors from TCGA

Bulk RNA-sequencing data of HNSCC tumors was obtained from The Cancer Genome
Atlas (TCGA) database (https:/ /portal.gdc.cancer.gov/ (accessed on 1 March 2020)). A
total of 545 cases were selected using the following filtering criteria: Primary site = head and
neck, disease type = squamous cell neoplasms, sample type = primary tumor, experimental
strategy = RNA-seq, and workflow type = HTseq (High Throughput sequencing)counts
or FPKM (Fragments Per Kilobase Million). The HTseq-FPKM normalized expression
data was used as the input file for CIBERSORTx according to the published protocol [32],
while HTseq-Counts expression data was used as the input file for MuSiC according to the
previously described protocol [33]. Clinical information for HNSCC patients, including
gender, diagnosis, age, clinical stage, T stage, lymph node involvement, pathological
grade, smoking, survival status, and survival duration in months, were downloaded from
cBioPortal for Cancer Genomics (http://www.cbioportal.org/ (accessed on 1 March 2020)).
According to the publication guidelines, datasets may be used for publication without


https://portal.gdc.cancer.gov/
http://www.cbioportal.org/

Cancers 2021, 13, 1230

15 of 20

restriction or limitation, and accordingly, no IRB (Institutional Review Boards) approval
was required for use of these de-identified data.

4.2. Single-Cell RNA-seq Data of HNSCC Tumors

scRNA-seq data was obtained from our previous publication [8]. We excluded one
patient (MEEI5), which is one of the samples with matched primary and LN, in an effort
to have a more uniform set of single-cell samples to generate signature matrices because
the eventual pathology was determined to be a spindle cell carcinoma (SCC with spindle
cell features). Briefly, we profiled transcriptomes of ~5600 single cells by SMART-seq?2
method [34] from 21 HNSCC samples, including 4 matched pairs of primary tumors and
lymph node metastases [8]. Expression levels were quantified as Ei,j = log2(TPMi,j/10
+ 1), where TPMi,j refers to transcript-per-million for gene i in sample j, as calculated
by RSEM (RNA-Seq by Expectation-Maximization) [65]. Malignant cells were identified
by a set of potential epithelial markers consisting of all cytokeratins, EPCAM (Epithelial
Cellular Adhesion Molecule), and SEN (Stratifin), as well as the copy number variation
(CNV) analysis. t-SNE analysis of the remaining non-malignant cells identified eight major
clusters. Briefly, we defined the clusters by DBSCAN (Density-Based Spatial Clustering of
Applications with Noise: parameters Epsilon = 3 and MinPoints = 5) using the normalized
gene-count matrix. Clusters were assigned to cell types based on strong differentiation
expression of known marker genes. The T-cell cluster was further subdivided into four
subtypes, which were annotated based on the differential expression of T-cell markers to
represent the main patterns of variability: CCR7 and TCF7 for conventional CD4 (CD4cony),
GZMA /B/H/K and PRF1 for conventional CD8 (CD8¢ony), PD1, LAG3, TIGIT, and CTLA4
for exhausted CD8 (CD8¢ypaust), and FOXP3 and CD25 for T regulatory cells (Tregs).

4.3. CIBERSORTx Deconvolution Analysis

We utilized the CIBERSORTX online tool implementation. We used the single-cell refer-
ence matrix file as previously described [8] to create a custom signature matrix. We applied
two analysis modules to the bulk RNA-seq data, namely, cell fractions and gene expression.
For cell fractions, we enumerated the proportions of distinct cell subpopulations in TCGA
bulk tissue expression profiles. We imputed cell-type-specific expression profiles from bulk
tissue transcriptomes using the High-Resolution mode for gene expression. This analysis
provided estimates of sample-level gene expression variation among distinct cell types,
which allowed exploring gene expression changes among distinct cellular subpopulations.

4.4. MuSiC Deconvolution Analysis

We inputted HTseq counts of the bulk RNA-seq data from TCGA as well as the multi-
subject single-cell profiles from our scRNA-seq data in the MuSiC algorithm, implemented
in R. Cell types from scRNA-seq were based on prior categorizations [8]. Genes in bulk
data use Ensembl gene ID (Ensembl version 84) as their identifiers, whereas genes in the
single-cell profiles use gene symbols. To be consistent with the bulk data, the Ensembl gene
IDs of the genes in single-cell profiles were queried by using biomaRt package (version
2.42) [39,66]. The single-cell profiles were further filtered to keep the genes with a unique
Ensembl gene ID. The filtered profiles then served as reference for estimating cell-type
proportions of bulk data. By following the tutorial available on Github (https://xuranw.
github.io/MuSiC/articles/MuSiC.html (accessed on 1 January 2020)), we obtained the
estimated cell-type proportions for each sample by using the function music_prop. The
estimated proportions were normalized to sum to 1 across included cell types.

4.5. Single-Cell RNA-seq Data of HNSCC Tumors

Patients were split at the median for each estimated cell type. The prognosis of each
group of patients was examined by Kaplan—-Meier survival, and log-rank tests compared
the survival outcomes. Kaplan—-Meier plots are presented for all the cell-type proportions,
and the cell types with log-rank p-values less than 0.05 were defined as a prognostic cell


https://xuranw.github.io/MuSiC/articles/MuSiC.html
https://xuranw.github.io/MuSiC/articles/MuSiC.html

Cancers 2021, 13, 1230

16 of 20

type. Hazard ratios (HRs) and corresponding 95% confidence intervals (CIs) for risk of
disease progression and mortality associated with high and low percentage of cell types
were estimated using the Cox proportional-hazards model. Multivariable Cox model
was adjusted for tumor stage, race, smoking status, and age. All statistical analyses were
performed using R version 3.6.

5. Conclusions

In summary, we have shown through two distinct deconvolution methods of bulk
RNA-seq data from >500 TCGA samples that higher proportions of tumor-infiltrating
regulatory T-cells are associated with improved outcomes in HNSCC. Future studies may
investigate the possibility of further deconvolution of regulatory T-cell subtypes as well
as subtypes of other cells, such as dendritic cells, macrophages, and natural killer cells.
Additionally, a more substantial understanding of the implications of regulatory T-cells in
HNSCC may reveal unique prognostic approaches as well as potential therapeutic targets
for more precise and effective treatments.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/6/1230/s1, Figure S1: (A) Heatmap of the signature matrix of the 9 major cell types by
CIBERSORTXx. (B) Heatmap of the signature matrix of 12 cell types (8 major cell types and 4 T-cell
subtypes) by CIBERSORTx. Figure S2: Heatmaps of immune cell-type proportions estimated by
CIBERSORTX. The cell-type proportions are ordered from high (top) to low (bottom). The tumor
stage and tissue origin are annotated as side bars. The immune cells are (A) T cell, (B) B cell, (C)
Dendritic, and (D) Macrophage. Figure S3: Heatmaps of non-immune cell-type proportions estimated
by CIBERSORTX. The cell-type proportions are ordered from high (top) to low (bottom). The tumor
stage and tissue origin are annotated as side bars. The cell types are (A) Malignant cell, (B) Fibroblast,
(C) Endothelial, (D) Myocyte, and (E) Mast. Figure S4: Heatmaps of immune cell-type proportions
estimated by CIBERSORTx. The cell-type proportions are ordered from high (top) to low (bottom).
The tumor subtype is annotated as a side bar. The immune cells are (A) T cell, (B) B cell, (C) Dendritic,
and (D) Macrophage. Figure S5: Heatmaps of non-immune cell-type proportions estimated by
CIBERSORTX. The cell-type proportions are ordered from high (top) to low (bottom). The tumor
subtype is annotated as a side bar. The cell types are (A) Malignant cell, (B) Fibroblast, (C) Endothelial,
(D) Myocyte, and (E) Mast. Figure S6: Correlation plot of estimated T cell and B cell proportions
by CIBERSORTx. Both x- and y-axes are in log?2 scale. Figure S7: (A) Comparison of ground-truth
cell proportions with the estimated proportions by MuSiC for all HNSCC samples. The validation
run used a combination of 14 (reference) and 7 (validation). The ground-truth and estimated cell
proportions are paired for each sample and demarcated by black and red lines, respectively. The
sample tumor numbers shown with an asterisk indicate a metastatic sample. (B) Concordance
between cell-type proportions measured by scRNA-seq (ground truth) and MuSiC for all HNSCC
samples. The validation run used a combination of 14 (reference) and 7 (validation). The correlation
is calculated by Pearson method and samples have the same naming criteria as in (A). (C) and
(D) Bar plot of the Pearson correlation coefficient (r) between cell-type proportions measured by
scRNA-seq and MuSic deconvolution for nine cell types. The validation run uses a combination of
either 14 (reference) and 7 (validation) (C) or 18 (reference) and 3 (validation) (D). Figure S8: (A)
Heatmap of the relative cell fractions of the 9 major cell types for each patient estimated by MuSiC.
(B) Association between cell proportions and overall survival in patients with HNSCC profiled by
TCGA. Estimated cell proportions were stratified by a half-half split, and the separation between
survival curves was evaluated using a log-rank test. Figure S9: (A) Histogram of Pearson correlation
coefficient (r) between cell-type proportions estimated by CIBERSORTx and MuSiC for all samples
in the study. (B) Bar plot of the Pearson correlation coefficient (r) between cell-type proportions
estimated by CIBERSORTx and MuSiC for nine cell types. Figure S10: Association between gene
expression and overall survival in patients with HNSCC profiled by TCGA. The gene expression is
measured by bulk-RNA-seq and was stratified by a half-half split. The separation between survival
curves was evaluated using a log-rank test. File S1: Cell proportions of the nine major cell types
estimated by CIBERSORTXx. File S2: Cell proportions of the 12 cell types (eight major cell types and
four T-cell subtypes) estimated by CIBERSORTx. File S3: Cell proportions of the nine major cell
types estimated by MuSiC. File S4: Cell proportions of the 12 cell types (eight major cell types and


https://www.mdpi.com/2072-6694/13/6/1230/s1
https://www.mdpi.com/2072-6694/13/6/1230/s1

Cancers 2021, 13, 1230 17 of 20

four T-cell subtypes) estimated by MuSiC. File S5: Imputed gene expression for 33 marker genes by
CIBERSORTx high-resolution mode.
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