
plants

Article

A Mechanistic Weather-Driven Model for Ascochyta rabiei
Infection and Disease Development in Chickpea

Irene Salotti and Vittorio Rossi *

����������
�������

Citation: Salotti, I.; Rossi, V. A

Mechanistic Weather-Driven Model

for Ascochyta rabiei Infection and

Disease Development in Chickpea.

Plants 2021, 10, 464. https://doi.org/

10.3390/plants10030464

Academic Editor: Mukhtar Ahmed

Received: 4 January 2021

Accepted: 26 February 2021

Published: 1 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore,
Via E. Parmense 84, 29122 Piacenza, Italy; irene.salotti1@unicatt.it
* Correspondence: vittorio.rossi@unicatt.it

Abstract: Ascochyta blight caused by Ascochyta rabiei is an important disease of chickpea. By using
systems analysis, we retrieved and analyzed the published information on A. rabiei to develop a
mechanistic, weather-driven model for the prediction of Ascochyta blight epidemics. The ability of
the model to predict primary infections was evaluated using published data obtained from trials
conducted in Washington (USA) in 2004 and 2005, Israel in 1996 and 1998, and Spain from 1988
to 1992. The model showed good accuracy and specificity in predicting primary infections. The
probability of correctly predicting infections was 0.838 and the probability that there was no infection
when not predicted was 0.776. The model’s ability to predict disease progress during the growing
season was also evaluated by using data collected in Australia from 1996 to 1998 and in Southern Italy
in 2019; a high concordance correlation coefficient (CCC = 0.947) between predicted and observed
data was obtained, with an average distance between real and fitted data of root mean square
error (RMSE) = 0.103, indicating that the model was reliable, accurate, and robust in predicting
seasonal dynamics of Ascochyta blight epidemics. The model could help growers schedule fungicide
treatments to control Ascochyta blight on chickpea.

Keywords: epidemiology; disease modelling; Ascochyta rabiei; model evaluation

1. Introduction

Chickpea (Cicer arietinum L.) is the most important pulse crop in the world after
bean (Phaseolus vulgaris L.) and pea (Pisum sativum L.) [1]. It is a major source of high-
quality protein in human diets and provides high-quality crop residues for animal feed [2].
Furthermore, its nitrogen fixation capability helps maintain soil fertility and cropping
system sustainability in cereal-legume rotations [2].

Ascochyta blight, caused by the fungus Ascochyta rabiei (Pass.) Labrousse [syn. Phoma
rabiei (Pass.) Khune et Kapoor), teleomorph Didymella rabiei (Kovachevski) vs. Arx (syn.
Mycosphaerella rabiei Kovachevski)], is probably the most serious disease of chickpea world-
wide. In 1996, the disease was reported from 35 countries across five continents [3], and a
continuous spread into new areas was recorded in the following years [4–7].

The fungus affects all aboveground parts of the plant causing necrotic lesions on leaves,
petioles, stems, pods, and seeds [8], which result in both yield and quality losses [9–11].
Yield losses can occasionally reach 100% on susceptible cultivars under favorable environ-
mental conditions [11]. The regular seasonal occurrences of Ascochyta blight epidemics
suggest that the fungus has efficient mechanisms for overwintering from one season to
the next. The main sources of primary inoculum are infected seeds that cause seedling
infection [12,13] and air-borne ascospores produced in pseudothecia formed on chickpea
infected debris [14,15]. During the growing season, secondary spread of the disease is
driven by splash-borne pycnidiospores (conidia) produced in pycnidia that develop on
Ascochyta lesions [11].

Cultural practices may contribute to the control of Ascochyta blight; crop rotation
and burial of residue by tillage can reduce the inoculum [16]. The breakdown of infested
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chickpea residues and the loss of pathogen viability are greater at soil depths >5 cm than in
the soil surface [16,17]. Moreover, conidia and ascospores produced on buried residues are
not available for either wind or splash dispersal [16]. The cultivation of non-host crops be-
tween crops of chickpea and the use of blight-free seeds or fungicide-treated seeds reduces
inoculum pressure [16,18]. The exploitation of host-plant resistance is also a management
option [2,19,20]. Currently available resistant cultivars, however, show adequate levels of
resistance only at the seedling stage, i.e., older plants are susceptible [21–23].

Management of Ascochyta blight relies strongly on fungicides [2,18,24]; even for
cultivars with resistance to Ascochyta blight, one or two fungicide sprays are necessary
to achieve disease control [25–27]. With susceptible cultivars, up to 12 foliar fungicide
sprays are applied for season-long protection [28]. In Victoria, Australia, for example,
protective applications are performed every 12–15 days from the seedling stage, and
8–12 spays are typically applied by the end of the chickpea growing season [29]. Although
such regimes provide effective Ascochyta blight control, repeated fungicide applications
are often uneconomical, especially in areas where chickpea yields are low [2], and may
cause negative environmental impacts [30]. The timing of applications must also be
considered. Disease control is higher when sprays prevent primary infections by airborne
ascospores [31], and a delay of the first application until the late seedling or early flowering
stage can lead to poor disease control and yield losses [32]. Therefore, a model for Ascochyta
blight should help growers schedule fungicides sprays and thereby control the disease.

Simple empirical models for Ascochyta blight have been developed [33–36]. Empir-
ical models for pseudothecial maturation have also been conceptualized because of the
importance of preventing primary infections [9,31]. However, these models have some
limitations: most importantly, they fail to consider either the complexity of the A. rabiei life
cycle or the susceptibility of the host at different growth stages. As a result, the existing
models provide inaccurate estimates of infection risk [9,31,33].

Mechanistic, weather-driven models have been shown to be more accurate and robust
than empirical ones [37,38], and can be developed both conceptually and mathematically
by using systems analysis [39] and published data [40,41].

The overall goal of the current research was to develop a mechanistic model of
Ascochyta blight of chickpea. To achieve this goal, we retrieved the relevant information
via a systematic literature search and used this information to develop a conceptual model
of the A. rabiei life cycle based on systems analysis. After using published data to develop
mathematical equations that describe the system both quantitatively and dynamically, we
finally evaluated the capability of the model to represent the real system.

2. Results
2.1. Literature Search

A total of 146 papers were obtained by the literature search; among these, 77 papers
were selected based on their titles and abstracts, and 5 papers were added based on the
listed references. As a result, a total of 82 papers were considered in this study.

2.2. Systems Analysis of the A. rabiei Life Cycle

The relational diagram of the model is shown in Figure 1; variables, switches, and
rates of the relational diagram are described in Table 1. The first state variable of the
model consists of the mature ascospores in overwintered pseudothecia on chickpea debris
(named ASCMAT). Spring rains (R) trigger the release of mature ascospores into the air
and their deposition on chickpea plants surfaces; the ascospores that land on these plant
surfaces represent the second state variable of the model (ASCDOSE). These ascospores
cause infections on leaves, stems, petioles, and pods under favorable conditions through
an infection rate (ASCINF), or they survive under unfavorable conditions at a survival
rate (SUR). At the end of an incubation period (INC), Ascochyta blight infections become
visible as necrotic lesions (i.e., the fourth state variable VLES; Table 1). At the end of a
latency period (LAT), pycnidia bearing mature conidia are produced in lesions (i.e., the fifth
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state variable CONMAT). Rain splashes disperse the conidia that are then deposited on
plant tissues (i.e., the sixth state variable CONDOSE); these conidia either cause secondary
infections that enter into infection sites through an infection rate (CONINF) or they survive
at a survival rate (SUR).
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Figure 1. Relational diagram of the life cycle of Ascochyta rabiei. Legend: parameters (R, T, WD, GS);
boxes are state variables; solid arrows represent flux and direction of states; dotted arrows represent
flux and direction of information; circles symbolize intermediate variables; diamonds are switches;
“bow ties” are valves in flux (rates) (see Table 1 for acronym explanations).

The flow from one stage to the following stage is regulated by rates (valves) and
switches (diamonds) that are influenced by external variables and auxiliary variables, i.e.,
by weather variables (temperature, T in ◦C; wetness duration, WD in hours; and rainfall,
R in mm) or by chickpea plant growth stage (GS) (vegetative growth, flowering, and pod
formation).

The model makes the following assumptions: (i) the carrying capacity of plant tissues
is not a limiting factor so that plant growth, senescence and lesion expansion do not affect
the establishment of new infections; (ii) an infection period is a wet period initiated by a
rain event that scrubs ascospores from the air or causes the splash-dispersal of conidia; (iii)
as a consequence of (ii), wet periods due to dew deposition do not cause infection because
there are no ascospores or conidia on the plant surface. Some of these assumptions are
discussed later.

The model has a time step of 1 h to better account for the effect of fluctuating tempera-
ture and humidity conditions during the day, as well as the influence of interruptions in
leaf wetness [38,42].
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Table 1. List of variables, rates, and parameters used in the model, and their units.

Acronym Description Unit

ASCDOSE Dose of viable ascospores landing on plant surface 0/1
ASCINF Rate of ascospore infection 0 to 1
ASCINF(T) Rate of ascospore infection depending only on T 0 to 1
ASCINF(WD) Cumulative proportion of ascospores infection depending only on WD 0 to 1
ASCINF’(WD) Rate of ascospore infection depending only on WD 0 to 1
ASCMAT Mature ascospores generated in overwintering pseudothecia on chickpea debris 0/1
CONDOSE Dose of viable conidia landing on plant surface 0/1
CONINF Rate of conidia infection 0 to 1
CONINF(T) Rate of conidia infection depending only on T 0 to 1
CONINF(WD) Cumulative proportion of conidia infections depending only on WD 0 to 1
CONINF’(WD) Rate of conidia infection depending only on WD 0 to 1
CONMAT Mature conidia produced by pycnidia in lesions 0/1
f(T) Equation accounting for the influence of temperature in each ith hour during INC or LAT 0 to 1
GS Correction factor accounting for chickpea growth stage N
Hdry Consecutive hours of dryness N hours
INC Incubation period, i.e., the period from infection to VLES onset 0 to 1
INCmin Minimum number of hours required for symptoms appearance at any temperature N
LAT Latency period, i.e., the period from infection to CONMAT onset 0 to 1
LATmin Minimum number of hours required for pycnidia production at any temperature N
R Hourly rainfall mm
SEV1 Severity of the primary infection 0 to 1
SEV2 Severity of the secondary infection 0 to 1
SUR Survival rate of ascospores and conidia 0 to 1
T Hourly air temperature ◦C
Teq Equivalent of temperature calculated as (T – Tmin)/(Tmax – Tmin) 0 to 1
Tmax Maximum temperature for infection of ascospores or conidia, or incubation or latency progress ◦C
Tmin Minimum temperature for infection of ascospores or conidia, or incubation or latency progress ◦C
Topt Optimum temperature for infection of ascospores or conidia, or incubation or latency progress ◦C
VLES Visible lesions produced by ascospores or conidia infections 0/1
WD Wetness duration, i.e., duration of the wet period N hours

2.3. Model Description

The model has three main compartments: (i) primary infections caused by ascospores
produced within overwintered pseudothecia and released into the air following spring
rainfalls; (ii) lesion appearance and production of pycnidia carrying mature conidia; and
(iii) secondary infections caused by the conidia released from pycnidia on lesions. The
model begins to run at the emergence of chickpea plants (BBCH 09) and has a time step of
1 h.

2.3.1. Assumptions for the Primary Inoculum

Primary inoculum sources for A. rabiei are infected seeds [12,13] and infested chick-
pea debris from the previous growing season from which conidia produced by pycnidia
and/or ascospores produced by pseudothecia are splash- and air-dispersed to plants,
respectively [14,15]. Because the model assumes that farmers plant A. rabiei-free seeds
and rotate the crops so that no chickpea crop debris is present in the field, air-dispersed
ascospores from pseudothecia in the infested chickpea debris that overwintered in neigh-
boring fields are the only relevant source of primary inoculum [9,15,31].

The model compartment concerning primary inoculum begins at the emergence of
chickpea plants and ends at mid-June [14,15]. In this period, the model assumes that
ascospores are present in the chickpea-growing area, are airborne, and are deposited on
plant surfaces when a rain event occurs. Because no data were found in the literature on
the deposition of A. rabiei ascospores, the model assumes that deposition occurs whenever
rain exceeds 1 mm h−1, as is the case for ascospores of Venturia inaequalis, the apple
scab fungus [43]; V. inaequalis and A. rabiei belong to the same taxonomic group (order
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Pleosporales), and their ascospores are similar in shape and size, measuring 11–15 × 5–
7 µm [44], and 12–22 × 5–7 µm [45], respectively. The ascospore dose that is deposited
on the crop is not quantified and is assumed to be constant during the primary inoculum
season. Possible implications of the assumptions regarding the primary inoculum are
considered in the Discussion.

2.3.2. Primary Infections

The model begins a primary infection simulation whenever R ≥ 1 mm h−1, and
assumes that ASCDOSE = 1. There are as many primary infections as there are rains
between plant emergence and mid-June, and the model assumes that ASCDOSE = 1 for
each of them. Therefore, the further development of each infection process is calculated as
a proportion of this ascospore dose, in a 0 to 1 scale.

Ascospores on the plant surface cause infection according to an infection rate (ASCINF),
which depends on T, WD, and the chickpea GS, and is calculated by fitting the data of
Trapero-Casas and Kaiser [46]. The temperature-dependent equation for infection rate is
formulated as a Bete equation [47] in the following form:

ASCINF(T) = (4.929 (Teq1.360) (1 − Teq))4.663 (1)

where Teq = equivalent of temperature, calculated as Teq = (T-Tmin)/(Tmax-Tmin), with
Tmin = minimum temperature for infection by ascospores (0 ◦C) and Tmax = maximum
temperature for infection by ascospores (35 ◦C) [46]; when T > Tmax or T < Tmin, no
infection occurs; estimates and standard errors of equation parameters were 4.929 ± 0.200,
1.360 ± 0.068, and 4.663 ± 0.830, with R2 = 0.971 (see Supplementary material).

The effect of wetness duration on infection rate is calculated as follows:

ASCINF(WD) = 0.021 WD − 0.009 (2)

where WD = cumulative number of hours with leaf wetness. Equation (2) was devel-
oped and parametrized by fitting the data from Trapero-Casas and Kaiser [46]; estimates
and standard errors of equation parameters were 0.021 ± 0.001 and 0.009 ± 0.020, with
R2= 0.995 (see Supplementary material).

An infection period begins on the first wet hour following R ≥ 1, ends when a dry
period occurs, and continues if wetness is restored. During a dry period that interrupts the
leaf wetness period, the model considers ASCINF(WD) = 0 and calculates the survival rate
of ascospores as follows:

SUR = 1 − 0.017 Hdry (3)

where SUR = survival rate of ascospores, which ranges from 1 (all ascospores survive) to 0
(no ascospores survive); and Hdry = number of hours with no leaf wetness. Equation (3)
was developed and parametrized by fitting the data from Trapero-Casas and Kaiser [46];
the estimate of the equation parameter and its standard error were 0.017 ± 0.001, with
R2 = 0.937 (see Supplementary material).

The effect of crop growth stage on the infection rate is accounted for by an age-
related correction factor (GS), which considers that the susceptibility of chickpea plants to
Ascochyta blight differs among growth stages. Values of GS were derived from Sharma
et al. [21], Basandrai et al. [22], and Chongo and Gossen [23], as reported in Table 2.

Table 2. GS values for three chickpea growth stages.

Growth Stage GS

vegetative 0.857
flowering 0.942

pod formation 1.000
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In each ith hour, the infection rate of ascospores is therefore calculated as follows:

ASCINF = ASCINF(T) ASCINF’(WD) GS (4)

where ASCINF ranges from 0 (there is no infection) to 1 (all ascospores cause infection);
and ASCINF’ is the first-order derivative of Equation (2).

The primary infection severity, SEV1 (with 0 ≤ SEV1 ≤ 1), is finally calculated in each
ith hour as follows:

SEV1 = ASCDOSE ASCINF (5)

2.3.3. Lesion Appearance and Production of Secondary Inoculum

Ascochyta blight symptoms consist of brown lesions that are circular to elongate and
that have many black pycnidia arranged in concentric rings. Lesion appearance (at the
end of the incubation period) and subsequent production of pycnidia (at the end of the
latency period) are mainly regulated by temperature. In each ith hour, the model calculates
the hourly progress of both incubation (INC) and latency (LAT) by using the equations of
Magarey et al. [48] in the following forms:

INC = f(T) / INCmin (6)

LAT = f(T) / LATmin (7)

where INCmin and LATmin are the shortest duration of incubation and latency, respectively,
at Topt; and f(T) is the equation accounting for the influence of temperature, calculated
as follows:

f(T) = (T − Tmin) / (Topt − Tmin) ((Tmax − T) / (Tmax − Topt))(Tmax − Topt) / (Topt − Tmin) (8)

where Tmin = minimum temperature for incubation or latency progress; Topt =
optimum temperature for incubation or latency progress; Tmax = maximum temperature
for incubation or latency progress; when T < Tmin or T > Tmax, f(T) = 0, and incubation or
latency does not proceed. The best fit for incubation was obtained with INCmin = 150 h,
Tmin = 2 ◦C, Topt = 21 ◦C, and Tmax = 34 ◦C. The best fit for latency was obtained with
LATmin = 168, Tmin = 2 ◦C, Topt = 21 ◦C, and Tmax = 34 ◦C.

Data for fitting Equation (6) were derived from Basandrai et al. [22], Trapero-Casas
and Kaiser [49], and Chauhan and Sinha [50], and the fit had R2 = 0.887; for equation (7),
data were derived from Trapero-Casas and Kaiser [49], with R2 = 0.945 (see Supplementary
material).

The model accumulates the hourly progress of incubation and latency beginning with
the hour when a cohort of ascospores or conidia has established infection; when the sum of
hourly progress is ≥1, lesion appearance and pycnidia formation are predicted to occur.

2.3.4. Assumptions for Secondary Inoculum

Conidia (pycnidiospores) produced by pycnidia on lesions are responsible for the
secondary spread of the disease through rain splashes [11]. The model assumes that
fertile Ascochyta blight lesions (i.e., lesions that overcame the latency period) continue
to produce conidia for the entire epidemic, so that mature conidia are always present
during the epidemic. There are no data concerning the dynamics of pycnidia and conidia
production over time on A. rabiei lesions; however, the model assumption is supported by
studies conducted with other pathogens that form pycnidia, including Septoria nodorum [51]
and Septoria tritici [52] on wheat, Guignardia bidwellii on grapevines [53], Botryosphaeria
dothidea on pistachio [54], and Diplodia natalensis on citrus [55]. Based on these studies, the
model considers that, during the Ascochyta blight epidemic, repeated infections occur and
numerous mature pycnidia develop on lesions and produce conidia, which are dispersed
by rain splashes and cause new infections under suitable environmental conditions. At
the end of the latency period, these lesions produce new pycnidia and conidia. At the
same time, additional conidia are produced in older fruiting bodies, which undergo several



Plants 2021, 10, 464 7 of 22

sporulation cycles. In dry periods, conidia may survive within the fruiting bodies for a
long time and may be dispersed by future rain events.

The model then assumes that conidia are dispersed by any rain, irrespective of rain
amount. As before, this assumption is supported by studies for different species belonging
to the same class (Dothideomycetes) or order (Pleosporales) as A. rabiei, i.e., Leptosphaeria
maculans [56], Septoria nodorum [57], and Botryosphaeria dothidea [58]. The conidia of these
species are extruded from pycnidia in mucilage and are dispersed by the first falling
raindrops. As was the case for primary inoculum, the dose of conidia that are deposited on
the crop with rain splashes is not quantified and is then kept constant. Possible implications
of the assumptions regarding the secondary inoculum are considered in the Discussion.

2.3.5. Secondary Infections

The model begins a secondary infection simulation whenever there are mature coni-
dia (CONMAT) and R ≥ 0 mm h−1, and it maintains CONDOSE = 1. Therefore, the
development of the infection is calculated as a proportion of this dose of conidia.

Conidia develop infections depending on temperature, wetness duration, and the chick-
pea growth stage, and the infection rate (CONINF) is calculated using Equations (9)–(11):

CONINF(T) = (5.200 (Teq 1.560) (1 − Teq)) 1.057 (9)

where Teq is as before, with Tmin = 0 ◦C and Tmax = 35 ◦C [55], and estimates and
standard errors of equation parameters are 5.200 ± 0.386, 1.560 ± 0.124, and 1.057 ± 0.185.
The equation was developed and parametrized using the data of Trapero-Casas and
Kaiser [46,49], Khan [59], and Weltzien and Kaack [60], with R2 = 0.978 (see Supplementary
material).

CONINF(WD) = 1 − 1.0 exp (−0.034 WD) (10)

where WD is as before, and estimates and standard errors of equation parameters are 1.0
± 0.042 and 0.034 ± 0.004. The equation was developed and parameterized by fitting the
data of Trapero-Casas and Kaiser [46,49], Armstrong-Cho et al. [61], Khan [59], and Jhorar
et al. [62], with R2 = 0.944 (see Supplementary material).

The survival rate (SUR) of conidia during dry periods is calculated as for ascospores
(i.e., Equation (3)).

Finally,
CONINF = CONINF(T) CONINF’(WD) GS (11)

where CONINF ranges from 0 (there is no infection) to 1 (all conidia cause infection);
CONINF’ is the first-order derivative of Equation (10); and GS is as in Table 2.

The severity of the secondary infection, SEV2 (with 0≤ SEV2 ≤1), is calculated in each
ith hour as follows:

SEV2 = CONDOSE CONINF (12)

2.4. Model Validation
2.4.1. Validation of Primary Infections

Model predictions concerning the occurrence of infection (P +) or no infection (P−)
and observation of Ascochyta blight appearance (O +) or no appearance (O−) on chickpea
bait plants for each year and location are summarized in Table 3. Altogether, 232 cases
(groups of bait plants) were considered; 128 of them showed infection and 104 did not. The
Bayesian analysis showed that true positive proportion (TPP, i.e., sensitivity) = 0.77, with
98 of 128 real infections correctly predicted by the model, and that true negative proportion
(TNP, i.e., specificity) = 0.82, with 85 of 104 cases with no infection correctly predicted
(Table 4). In 30 cases, the model failed to predict a real infection resulting in false negative
proportion (FNP) = 0.23. In 19 cases, the model predicted infections that did not occur,
resulting in false positive proportion (FPP) = 0.18.
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Table 3. Experimental sites (acronyms for locations and years) used to validate model predictions of primary infection.
Periods of bait plant exposure were classified as follows: TPP = true positive proportion (sensitivity), TNP = true negative
proportion (specificity), FNP = false negative proportion, and FPP = false positive proportion.

Experimental Sites
Total Number of Cases 232

TPP TNP FNP FPP P + O+ Disease Range d P – O + Disease Range e

COR88 8 1 0 3 2–43 a

COR89 7 4 1 0 0.3–41 a 0.3 a

COR90 5 3 3 1 19–39 a 0.2–5 a

COR91 8 2 0 2 0.3–34 a

COR92 3 6 1 2 11–43 a 0.3 a

BET96 14 7 5 4 2–84 b 4–31 b

BET98 5 11 3 1 4–98 b 4–9 b

SPIL04 12 9 2 0 0.2–6.3 c 0.04–2.3 c

PUL04 9 10 1 3 0.02–1.8 c 0.04 c

SPIL05 14 13 9 2 0.1–2.8 c 0.01–1.1 c

PUL05 13 17 5 3 0.04–1.4 c 0.02–0.4 c

a Disease severity (%). b Disease incidence (%). c Lesion per plant per day. d Range of disease assessed when infection was predicted by the
model. e Range of disease assessed when infection was not predicted by the model.

Table 4. Comparison between Ascochyta rabiei primary infections predicted by the model and observed on bait plants, and
corresponding properties of the model.

Predicted Infection
Prior

Probability
(P)

Posterior Probability (P)

Yes (P + ) No (P−) Total

Observed infection
Yes (O + ) 98 TPP a = 0.77 30 FNP b = 0.23 128 P(O + ) = 0.55 P(O + P + ) = 0.838 P(O + P−) = 0.162
No (O −) 19 FPP c = 0.18 85 TNP d = 0.82 104 P(O − ) = 0.45 P(O−P + ) = 0.224 P(O−P−) = 0. 776

Total 117 115 232

Likelihood ratio (LR) LR( + ) = TPP / FPP = 4.19
LR(−) = FNP / TNP = 0.29

Youden index J = TPP – FPP = 0.58
Overall accuracye 0.79

a True positive proportion (sensitivity). b False negative proportion. c False positive proportion. d True negative proportion (specificity).
e Calculated by dividing the number of correct predictions by the total number of predictions.

Overall model accuracy was 0.79, and the Youden index was J = TPP – FPP = 0.58
(Table 4). The effectiveness of the model as a predictor was also expressed using likelihood
ratios: the likelihood ratio of a positive prediction was likelihood ratio LR( + ) = TPP /
FPP = 4.19, while the likelihood ratio of a negative prediction was LR(–) = FNP / TNP =
0.29. A large LR( + ) value (larger than 1) and a small LR(–) value (close to 0) indicate that
the posterior probabilities are greater than the prior probabilities, meaning that the model
provides useful information about the chance of an infection to occur or not to occur. The
prior probability of an infection to occur was P(O + ) = 128 / 232 = 0.55, and not to occur
was P(O−) = 104 / 232 = 0.45 (Table 4), while the posterior probabilities that there was
an infection when predicted by the model was P(P + O + ) = 0.838 and that there was no
infection when not predicted was P(P − O −) = 0.776.

As noted in a previous paragraph, there were 30 cases (of 128) in which the model did
not predict a real infection. These missed infections occurred in 9 of 11 locations (Table 3) and
accounted for only 8.1% of the total rescaled disease found in bait plants; the average rescaled
disease value was 0.37 (with a 95% confidence interval of 0.30 to 0.43) for P + O + and was
0.10 (0.08 to 0.13) for P−O+, with only 1 (specifically at SPIL05) of 30 cases showing a high
rescaled disease value (shown as an outlier in Figure 2). At SPIL05 (Table 3), there was an
average of 1.1 lesions per plant in bait plants exposed for 48 h between May 19 and 20; that
corresponds to a relative disease value of 0.39, and 2.8 was the highest number of lesions per
plant found on plants exposed for 72 h between May 14 and 16 (Figure 3). During the May
19 and 20 exposure period, there was no rain and only 4 h of wetness, and average T and



Plants 2021, 10, 464 9 of 22

RH were 11.1 ◦C and 72.6%, respectively, at the Pullman Airport, which was 6 km from the
SPIL experimental site. Because the model assumes that airborne ascospores of A. rabiei are
scrubbed from the air and deposited on the plant surface by a minimum of 1 mm of rain, the
model did not calculate infection in all cases in which there was no rain or <1 mm of rain.
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Figure 2. Box plot for rescaled primary infection values (i.e., rescaled relative to the maximum for each
year and location) recorded on bait plants for true positive cases (P + O +; left) and false negative cases
(P−O+; right) predicted by the model. Observed values were from the 11 experiments listed in Table 3.
Boxes include 50% of the data, the horizontal line is the median, the black cross represents the average,
whiskers extend to minimum and maximum values, and the empty dot represents an outlier.
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seasonal disease severity predicted by the model; only 3 further infections were predicted 
until late October (Figure 4b). The disease was first observed on 14 August and then in-
creased almost linearly over time, with a final disease severity of 71% of affected leaf and 
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model showed a tendency toward overestimation (coefficient of residual mass (CRM) = 
−0.059). 

Figure 3. Predicted primary infections and observed primary Ascochyta blight lesions on bait plants
(cv. Burpee) exposed to chickpea debris affected by A. rabiei at Washington State University’s Spillman
Research Farm, US, in 2005. (a) Weather variables: air temperature (T, ◦C, solid line), rainfall (Rain,
mm, black bars), and leaf wetness duration (WD, hours, grey area). (b) Black bars represent the
number of lesions per plant per day observed at the end of the exposure period; grey vertical lines
divide different bait plant exposure periods; black points represent days on which infection was
predicted by the model; and empty points represent days on which the model predicted no infection.
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2.4.2. Validation of Disease Progress

As noted earlier, predicted and observed disease progress were compared at ADE96,
ADE97, ADE98, and POG19. At ADE96, the daily temperature ranged from 7 to 24 ◦C, and
rainfall was regularly distributed but was reduced in the last month (Figure 4a). The model
predicted repeated infections until early October, which accounted for 77% of the seasonal
disease severity predicted by the model; only 3 further infections were predicted until
late October (Figure 4b). The disease was first observed on 14 August and then increased
almost linearly over time, with a final disease severity of 71% of affected leaf and stem
area (Figure 4c). For the goodness-of-fit of predicted versus observed data, concordance
correlation coefficient (CCC) = 0.957 and root mean square error (RMSE) = 0.087. The model
showed a tendency toward overestimation (coefficient of residual mass (CRM) = −0.059).
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overestimation (CRM = −0.001). 

Figure 4. Predicted and observed disease progress (Ascochyta blight) on cv. Kaniva at the experimen-
tal field at the University of Adelaide’s Waite Campus, Australia, in 1996. (a) Weather variables: air
temperature (T, ◦C, solid line), rainfall (Rain, mm, black bars), and leaf wetness duration (WD, hours,
grey area). (b) Bars represent the infection severity predicted by the model. (c) Solid line represents
the accumulated infection severity predicted by the model and rescaled to the final value of the year;
the dotted line represents the observed Ascochyta blight severity rescaled to the final value of the
year (71%).

At ADE97, temperatures were quite similar to those at ADE96, but the rain distri-
bution was different; frequent rain events in the first 7 weeks were followed by a dry
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period that lasted until the last week, when heavy rains were recorded (Figure 5a). The
model predicted repeated infection periods between 16 August and 10 September, which
caused a rapid increase of the predicted disease progress curve; at the beginning of October,
accumulated severity of predicted infections accounted for about 90% of the predicted
seasonal disease severity (Figure 5b). Disease symptoms were first observed on 20 August,
and disease severity increased progressively until the last day of assessment, reaching
80% of affected plants area (Figure 5c). For the goodness-of-fit of predicted versus ob-
served data, CCC = 0.972 and RMSE = 0.087. The model showed a slight tendency toward
overestimation (CRM = −0.001).
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Figure 5. Predicted and observed disease progress (Ascochyta blight) on cv. Kaniva at the University
of Adelaide’s Waite Campus, Australia, in 1997. (a) Weather variables: air temperature (T, ◦C, solid
line), rainfall (Rain, mm, black bars), leaf wetness duration and (WD, hours, grey area). (b) Bars
represent the infection severity predicted by the model. (c) Solid line represents the accumulated
infection severity predicted by the model and rescaled to the final value of the year. Dotted line
represents the accumulated value of Ascochyta blight severity rescaled final value of the year (80%).

At ADE98, temperatures were similar to those recorded in previous years. During the
trial, the weekly amount of rain was < 1 mm, except that 5 mm of rain fell during one week
in September (Figure 6a). The model predicted 22 infection periods distributed throughout
the period, predicting a regular progress of the disease (Figure 6b,c). Disease assessment



Plants 2021, 10, 464 12 of 22

began on 21 August, but Ascochyta blight symptoms were not observed until September 4;
afterwards, the disease increased gradually (Figure 6c) to a final observed disease severity
of about 40% of affected plant area, which was lower than in the two previous years. For
the goodness-of-fit of predicted versus observed data, CCC = 0.949 and RMSE = 0.098. The
model showed a slight tendency toward underestimation (CRM = 0.020).
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Figure 6. Predicted and observed disease progress (Ascochyta blight) on cv. Kaniva at the University
of Adelaide’s Waite Campus, Australia, in 1998. (a) Weather variables: air temperature (T, ◦C, solid
line), rainfall (Rain, mm, black bars), leaf wetness duration and (WD, hours, grey area). (b) Bars
represent the infection severity predicted by the model. (c) Solid line represents the accumulated
infection severity predicted by the model and rescaled to the final value of the year. Dotted line
represents the accumulated value of Ascochyta blight severity rescaled final value of the year (40%).

At POG19, which has a Mediterranean climate, spring was mild (average daily tem-
perature of 16–18 ◦C) and summer was hot (average daily temperature of 24–28 ◦C), with a
total of 202.4 mm of rain occurring mainly in May and mid-July (Figure 7a). Model calcula-
tions began on 20 April, and the model predicted infection on 59 days, 42 of which were
between May and early June and accounted for about 60% of the total predicted disease
severity (Figure 7b). Ascochyta blight lesions on chickpea plants were first observed on
2 May (Figure 7c). The disease increased rapidly until about 10 June and at lower rates
afterwards; final observed disease severity was 93% of affected leaf and stem area. For the
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goodness-of-fit of predicted versus observed data, CCC = 0.893 and RMSE = 0.129. The
model showed a slight tendency toward underestimation (CRM = 0.159).
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the model can be considered reliable. The model showed a slight tendency toward under-
estimation (CRM = 0.041). 

Figure 7. Predicted and observed disease progress (Ascochyta blight) on cv. Sierra at Poggiorsini,
Southern Italy, in 2019. (a) Weather variables: air temperature (T, ◦C, solid line), rainfall (Rain, mm,
black bars), leaf wetness duration and (WD, hours, grey area). (b) Bars represent the infection severity
predicted by the model. (c) Solid line represents the accumulated infection severity predicted by the
model and rescaled to the final value of the year. Dotted line represents the observed accumulated
value of Ascochyta blight severity rescaled final value of the year (93%).

For disease progress, an overall comparison of predicted versus observed values
at ADE96, ADE97, ADE98, and POG19 (Figure 8) gave CCC = 0.947, with little average
distance between the observed data and the fitted line, i.e., RMSE = 0.103. This indicated
that the model can be considered reliable. The model showed a slight tendency toward
underestimation (CRM = 0.041).
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Figure 8. Plots of predicted versus observed values of Ascochyta blight severity for four monitoring
locations and years: Poggiorsini, Southern Italy, in 2019 (•); University of Adelaide’s Waite Campus,
Australia, in 1996 (�); University of Adelaide’s Waite Campus, Australia, in 1997 (�); and University
of Adelaide’s Waite Campus, Australia, in 1998 (N). Predicted refers to the predicted disease infection
severity through the growing season and rescaled to the final value of the year. Observed refers to
the observed disease severity rescaled to the final value of the year.

3. Discussion

In this study, we developed a mechanistic model for Ascochyta blight of chickpea by
using the available knowledge on the pathogen and disease. According to Rossi et al. [41],
application of systems analysis to the literature is useful for conceptualizing pathosystems
and developing plant disease models; the case study of black-rot of grapes showed how
published information and data can be used to develop mechanistic, dynamic, weather-
driven models [41]. Unlike previous models for Ascochyta blight [9,31,33–36], the model
developed in the current research considers the entire life cycle of A. rabiei and accounts for
the susceptibility of the host plant at different growth stages. Changes in plant susceptibility
during the season have substantial effects on polycyclic diseases, and the susceptibility of
chickpea to A. rabiei is known to increase with host stage and to be highest at pod formation
stage [21–23,49].

Using a systematic literature search, we obtained detailed information on the A. rabiei
life cycle and data on the effect of weather conditions (i.e., air temperature, rain, and
leaf wetness duration) on infection from 82 papers. Our literature search also revealed
some incomplete knowledge about important biological and epidemiological aspects of
the pathogen and the disease. In developing a model, we dealt with these knowledge gaps
by making explicit assumptions and/or by using data for plant pathogens that belong to
the same taxonomic group as A. rabiei. The model was validated against independent data,
and this enabled an indirect evaluation of the validity of model assumptions: the accurate
predictions of Ascochyta blight epidemics suggest that either the assumptions were correct
or if incorrect, did not greatly reduce the ability of the model to make correct predictions.

For the primary inoculum, the model makes four assumptions: (i) ascospores from
pseudothecia that had overwintered in infested chickpea debris in neighboring fields are
the sole relevant source of primary inoculum; (ii) the ascospores are airborne during the
primary inoculum season; (iii) the ascospores are scrubbed from the air by rain and are
deposited on the crop surface; and (iv) this ascospore dose cannot be quantified and is
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therefore assumed to be constant and equal to 1, so that the further development of the
infection is expressed as a proportion of this ascospore dose. These assumptions could
result in false positive predictions of infection if no ascospores are deposited on the crop
when predicted by the model, or in false negative predictions if ascospores are deposited on
the crop when not predicted. Of the 232 total cases used to validate the primary infection
compartment of the model, there were 19 cases (5.2%) in which the model predicted
infections that were not observed (FPP = 0.18) and 30 cases (11.9%) in which the model
failed to predict infections that were observed (FNP = 0.23).

The first kind of error (FPP) does not affect crop health but can lead to needless
fungicide applications. Reducing this error requires a better estimate of the presence of
ascospores. If spore traps were used to detect the presence of A. rabiei ascospores, a model
run would begin only when inoculum was present and ASCMAT had been assessed. The
use of spore traps for the monitoring of airborne inoculum for supporting epidemiolog-
ical models has been suggested for other pathosystems [63,64]. As an alternative to the
use of spore traps, an additional model compartment could be developed that predicts
the dynamics of pseudothecia formation and ascospore maturation, as has been done
for V. inaequalis [65], Gibberella zeae [66], L. maculans [67], and Guignardia citricarpa [68].
Unfortunately, the data currently available in the literature are inadequate for developing
such a model compartment for A. rabiei, i.e., studies are needed on A. rabiei pseudothecia
formation and ascospore maturation.

The second type of error (FNP) leads to real infections being missed and reduces the
model’s usefulness, because growers would fail to protect crops when necessary. To reduce
this error, researchers should assess the deposition of ascospores on the crop during weak
rain events or in the absence of rain. To avoid this error, we also considered reducing
the rainfall threshold used by the model to predict ascospore deposition (by using ≥0.2
or 0.6 mm h−1), but this reduction led to an increase of FPP that significantly decreased
the overall accuracy of the model (not shown). In addition, the rain data used for model
validation were measured in airport weather stations that were located up to 17 km from
experimental sites; it is possible that rain fell on the bait plants but not at the airports. The
problem does not seem to be serious, however, in that the disease corresponding to FNP
accounted for only 8.1% of the total disease found on bait plants, i.e., when the model
failed to predict an infection that occurred, the infection only resulted in light disease.

In addition to making assumptions about the primary inoculum, we also made the
following three assumptions about the secondary inoculum: i) Ascochyta blight lesions
continue to produce conidia for the entire epidemic; ii) these conidia are dispersed by rain
splashes whenever there is rain; and iii) this dose of conidia cannot be quantified and is,
therefore, kept constant and = 1, so that the further development of the disease is expressed
as a proportion of this dose of conidia. These assumptions could result in an overestimation
of the presence of secondary inoculum and, ultimately, an overestimation of the epidemic.
The model, however, slightly underestimated real disease severity, i.e., the overall CRM
value for the four validation data sets was + 0.041.

Despite the errors, the model provided a reliable representation of Ascochyta blight
epidemics, with overall accuracy = 0.79 for primary infections and CCC = 0.947 for disease
progress. Considering that the model was validated by using independent data that were
collected in multiple years in sites with different climates (i.e., Pacific Northwest climate
at Washington, and Mediterranean climate in Israel, Spain, Australia, and South Italy),
and that involved a wide range of disease severity, the model may be considered to be
accurate (i.e., it provided predictions close to reality) and robust (i.e., it provided accurate
predictions in a range of environments and epidemiological conditions) [40]. Nevertheless,
gaps that affected model accuracy were identified in our current knowledge of the biology
and epidemiology of A. rabiei. For example, the model could be improved by further
studies of pseudothecia formation and ascospore maturation. We are currently evaluating
the use of the model for scheduling fungicide applications and for supporting farmers in
their decision-making about disease control.
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4. Materials and Methods
4.1. Literature Search

A literature search was conducted to collect original data on the biology, ecology, and
epidemiology of A. rabiei as well as the data on the interaction between the pathogen and
chickpea. The search was carried out in the World Wide Web and in the following databases:
CAB Abstract (http://www.cabdirect.org accessed on 14 May 2019), Google Scholar (https:
//scholar.google.it accessed on 22 May 2019), Scopus (https://www.scopus.com accessed
on 16 May 2019), and Web of Science (https://apps.webofknowledge.com accessed on 17
May 2019). The following combinations of keywords were used: (i) Ascochyta rabiei OR
Didymella rabiei OR synonyms; (ii) Ascochyta blight OR other common names; and (iii) life
cycle OR inoculation OR germination OR penetration OR appressoria OR infection OR
survival OR incubation OR latent period OR pycnidia OR conidia OR pycnidiospores OR
pseudothecia OR ascospores OR overwintering OR model OR prediction. Papers were first
examined and selected on the basis of the information in the title and abstract. The full text
of each selected paper was then read and reviewed. Additional papers were selected from
the References of the selected papers; these papers were also retrieved and reviewed.

4.2. Systems Analysis and Model Development

The information retrieved in the selected papers was used to conceptualize the model,
as indicated by Rossi et al. [40], and a relational diagram was drawn, representing the
system structure and dynamics. The relational diagram included state variables, flows,
rate variables, driving variables, and switches. The life cycle of A. rabiei was divided into
state variables, i.e., variables that represent the state of the system (e.g., mature ascospores
generated in overwintering pseudothecia on chickpea debris, dose of viable ascospores and
conidia landing on plant surfaces, infection sites, and lesions). The flows from one state to
the following one were governed by rate variables depending on external, driving variables
(e.g., environmental conditions and chickpea growth stage) or switches accounting for
logical operators with the syntax if ‘condition’ then ‘go to’, else ‘go to’.

The dynamics of the system were regulated by mathematical equations relating exter-
nal, influencing variables (i.e., weather data and chickpea growth stage) to rates. Mathemat-
ical equations linking the weather variables to rate variables were developed from the liter-
ature. Data on the pathogen or the disease were obtained directly from the text, tables, or
graphs in the papers; the GetData Graph Digitizer 2.24 (http://getdata-graph-digitizer.com
accessed on 3 July 2019) was used to obtain precise data from graphs. Data were then fit
with proper mathematical equations, which were selected based on the shape of the data
and the Akaike information criterion [69]; equations that provided the smallest AIC values
were considered the most likely to be correct. Equation parameters were estimated using
the non-linear regression procedure of SPSS (IBM SPSS Statistics 25, IBM Corp, Armonk,
NY, USA), which uses the Levenberg–Marquardt algorithm to minimize the residual sums
of squares. The goodness-of-fit was then evaluated by means of the standard errors of
parameters, the distribution of residuals of predicted versus observed values, and adjusted
R2. Further information on the development of mathematical equations is provided in the
Supplementary material.

4.3. Model Validation
4.3.1. Primary Infections

Data used for validation of Ascochyta blight primary infections were retrieved from
Chilvers et al. [70], Gamliel-Atinsky et al. [71], and Trapero-Casas et al. [72].

Chilvers et al. [70] exposed bait plants of the susceptible chickpea cv. Burpee to the
pathogen at two sites, Washington State University’s Spillman Research Farm, US (46◦41′

N, 177◦08′ W) and the Washington State University campus at Pullman, US (46◦43′ N,
117◦09′ W), both of which were under a Pacific Northwest climate. At each site for two
consecutive years (2004 and 2005), bait plants grown in isolation in a greenhouse were
placed within 1 m of overwintered chickpea debris affected by A. rabiei for 2 or 3 days,

http://www.cabdirect.org
https://scholar.google.it
https://scholar.google.it
https://www.scopus.com
https://apps.webofknowledge.com
http://getdata-graph-digitizer.com
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and were then returned to the greenhouse and replaced with new plants; Ascochyta blight
lesions were counted on each plant 2 weeks after exposure. Experiments were conducted
between 5 April and 26 May in 2004, and between 28 February and 25 May in 2005. Bait
plants that were exposed after these periods were not considered because, according to the
authors, the depletion of inoculum reservoir and irrigation probably affected the infection
occurrence. Weather data were obtained from the Pullman Airport weather station (KPUW,
46◦44′ N, 117◦06′ W), which was located about 6.0 km from the Spillman Research Farm
and about 3.5 km from the University campus. The combination of locations and years are
hereafter referred to as acronyms with three letters for the location and two numbers for
the year, i.e., SPIL04 and SPIL05 for the Spillman Research Farm and PUL04 and PUL05 for
the campus at Pullman.

Gamliel-Atinsky et al. [71] exposed bait plants of the susceptible chickpea cv. Sfaradit
to the pathogen at the Central Experimental Station of the Agricultural Research Organi-
zation, Bet Dagan, Israel (31◦59′ N, 34◦49′ E), under a Mediterranean climate. Bait plans
grown in isolation were placed outdoors close to A. rabiei-affected overwintered chickpea
debris from 20 January to 30 April in 1996, and from 22 February to 29 April in 1998
(acronyms BET96 and BET98). After being exposed for 3 or 4 days, bait plants were moved
to a greenhouse, and Ascochyta blight lesions were assessed after 14 to 18 days. Weather
data were obtained from the Ben Gurion Airport (LLBG, 32◦00′ N, 34◦53′ E), which was
located about 17 km from the experimental site.

Trapero-Casas et al. [72] exposed chickpea bait plants cv. Blanco Lechoso to the
pathogen at the Alameda del Obispo research farm, Cordoba, Spain (37◦51′ N, 4◦47′ W),
under a Mediterranean climate. Bait plants were placed near A. rabiei-affected overwintered
chickpea debris at weekly intervals from early January to the end of March for a 5-year
period (1988 to 1992) (acronyms COR88 to COR92). After exposure, plants were transferred
to a greenhouse and were assessed for disease 2 weeks later. Bait plants exposed after the
end of March were not considered because, according to the authors, the exhaustion of
primary inoculum in debris meant that reliable data could not be obtained. Weather data
were retrieved from the Cordoba airport (LEBA, 37◦50′ N, 4◦50′ W), which was located
about 3 km from the experimental site.

Because the disease data collected in these three papers were expressed in different
units of measure (i.e., average number of lesions per plant per day, disease severity, or
disease incidence), disease records of each experiment were rescaled to their maximum to
obtain relative disease data expressed on a scale from 0 to 1. This transformation made the
comparison of the disease among years and locations possible.

For validation purposes, the model was run using weather data in each year and
location starting from the first day in which bait plants were exposed. The correspondence
between model predictions and real Ascochyta blight infections during the periods of plant
exposure was evaluated through a Bayesian analysis [73,74]. Periods in which infections
were predicted by the model were considered as positive outcomes (i.e., P+; an infection
is predicted); similarly, periods in which no infection was predicted were considered
as negative outcomes (i.e., P−). Real infections were considered to occur when disease
symptoms were observed on bait plants (i.e., O +; an infection was observed), or were
assumed not to occur when disease symptoms did not appear on bait plants (i.e., O−).
Therefore, any period in which bait plants have been exposed (case) was classified as
follows: (i) true positive, i.e., P + O +; (ii) true negative, i.e., P−O−; (iii) false positive, i.e.,
P + O−; or (iv) false negative, i.e., P−O + . A 2 × 2 contingency table was then organized
showing the true positive proportion (TPP or sensitivity), the true negative proportion
(TNP or specificity), the false positive proportion (FPP), and the false negative proportion
(FNP).

Prior probabilities for the disease to occur, P(O + ), or not to occur, P(O−), were
calculated and compared with the following posterior probabilities: (i) there was infection
when predicted by the model, P(P + O + ); (ii) there was no infection when not predicted,
P(P−O−); (iii) there was no infection when predicted (i.e., unjustified alarms), P(P + O−);
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and (iv) there was infection when not predicted (i.e., missed real infections), P(P−O + ).
Positive and negative likelihood ratios (LR+ and LR−, respectively) were calculated by
dividing TPP by FPP and FNP by TNP, respectively. The Youden index (J) was used to
evaluate the model performance in avoiding wrong predictions. Finally, the ratio between
right and total predictions was calculated as an indicator of overall model accuracy.

4.3.2. Disease Progress

To validate the ability of the model to predict epidemic development through the
season caused by the concatenation of infection cycles, we used disease progress curves
reported by Khan [59] and disease assessments carried out by Meriggi et al. (see Acknowl-
edgements) in a field located at Poggiorsini, Southern Italy, in 2019.

Khan [59] conducted field assessments in 3 years, 1996 to 1998, at the University of
Adelaide’s Waite Campus (34◦58′ S, 138◦38′ E) (acronyms ADE96 to ADE98). Disease
severity (%) was assessed weekly on cv. Kaniva (moderately susceptible) from 14 August
to 30 October 1996, 20 August to 5 November 1997, and 4 September to 6 November 1998.
In each year, disease on 30 plants was assessed as described by Gowen et al. [75], who
rated disease severity on a scale from 0 to 100% in 10% steps, with 0 to 10% indicating “no
infection–small lesions” and 100% indicating “completely dead plants”. Weather data were
obtained from the Adelaide Airport (YPAD, 34◦56′ S, 138◦32′ E), which was located about
13 km from the Waite Campus.

In a chickpea field at Poggiorsini (40◦54′ N 16◦15′ E) (acronym POG19), Meriggi et al.
assessed disease severity (%) on the susceptible cv. Sierra weekly from 10 May to 26 July
2019. Ten groups of 4 plants were designated to assess the change in disease level on
the same individuals during the growing season. The percentage of disease severity was
assessed using the following scale: 0: no lesions; 1: few lesions, affected area <5%; 2:
several lesions, affected area 5−20%; 3: affected area 21–40%; 4: affected area 41–60%; 5:
affected area 61–80%; and 6: affected area >80%. The weather data were recorded by a
station (PESSL iMetos 3.3) located 3.5 km from the experimental field.

The model was operated starting from the day of the last assessment in which no
disease was observed. Both predicted infection severity and observed disease severity
were accumulated during each disease assessment period and were rescaled to their final
value; values were rescaled from 0 to 1 to make the data collected in different experiments
comparable [76,77]. For the evaluation of model performance, the root mean square error
(RMSE), the coefficient of residual mass (CRM), and the concordance correlation coefficient
(CCC) were calculated [78,79]. RMSE is the measure of the average distance occurring
between the real data and the fitted line [79]. CRM represents the tendency of the model
toward over or underestimation; a negative CRM indicates that the model overestimates,
and a positive CRM indicates that the model underestimates [79]. CCC estimates the
difference between the fitted line and the perfect agreement line; a CCC value of 1 indicates
perfect agreement [78].

Supplementary Materials: The following are available online at https://www.mdpi.com/2223-774
7/10/3/464/s1, Figure S1. Relationship between relative infection severity of Ascochyta rabiei and
temperature (◦C). Dots show the data of Trapero-Casas and Kaiser [46], and the dotted line shows
the fit of data using the bete equation (1) [47], with R2 = 0.971. Figure S2. Relationship between
relative infection severity of Ascochyta rabiei and wetness duration (hours). Dots show the data
of Trapero-Casas and Kaiser [46], and the dotted line shows the fit of data with equation (2), with
R2 = 0.995. Figure S3. Dynamic of Ascochyta rabiei survival of ascospores and conidia. Dots show
the data of Trapero-Casas and Kaiser [46], and the dotted line shows the fit of data with equation
(3), with R2 = 0.937. Figure S4. Effect of temperature on length of (a) incubation and (b) latency
periods, expressed in hours after infection by Ascochyta rabiei. In (a) symbols show data of Basandrai
et al. [22] (N), Trapero-Casas and Kaiser [49] (•), and Chauhan and Sinha [50] (�); the dotted line
shows the length of incubation as predicted by the equation of Magarey et al. [48] (6), with R2 = 0.887.
In (b) dots show the average number of hours required for pycnidia formation as calculated using
data of Trapero-Casas and Kaiser [49]; the dotted line shows the length of the incubation as predicted
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by the equation of Magarey et al. [48] (7), with R2 = 0.945. Figure S5. Relationship between relative
infection severity of Ascochyta rabiei and temperature (◦C). Symbols show the data of Trapero-Casas
and Kaiser [46,49] (•), Khan [59] (N), and Weltzien and Kaack [60] (�); the dotted line shows the fit of
data using a bete equation (9) [47], with R2 = 0.978. Figure S6. Relationship between relative infection
severity of Ascochyta rabiei and wetness duration (hours). Symbols show the data of Trapero-Casas
and Kaiser [46,49] (•), Armstrong-Cho et al. [61] (�), Khan [59] (N), and Jhorar et al. [62] (�); the
dotted line shows the fit of data with equation (10), with R2 = 0.944.
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