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ABSTRACT

Identifying early indicators of toxicant-induced organ damage is critical to provide effective treatment. To discover such
indicators and the underlying mechanisms of toxicity, we used gentamicin as an exemplar kidney toxicant and performed
systematic perturbation studies in Sprague Dawley rats. We obtained high-throughput data 7 and 13 h after administration
of a single dose of gentamicin (0.5 g/kg) and identified global changes in genes in the liver and kidneys, metabolites in the
plasma and urine, and absolute fluxes in central carbon metabolism. We used these measured changes in genes in the liver
and kidney as constraints to a rat multitissue genome-scale metabolic network model to investigate the mechanism of
gentamicin-induced kidney toxicity and identify metabolites associated with changes in tissue gene expression. Our
experimental analysis revealed that gentamicin-induced metabolic perturbations could be detected as early as 7
h postexposure. Our integrated systems-level analyses suggest that changes in kidney gene expression drive most of the
significant metabolite alterations in the urine. The analyses thus allowed us to identify several significantly enriched
injury-specific pathways in the kidney underlying gentamicin-induced toxicity, as well as metabolites in these pathways
that could serve as potential early indicators of kidney damage.
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Exposure to toxic agents, such as drugs, industrial chemicals,
and environmental pollutants, in both natural and occupational

environments, can result in life-threatening and potentially
long-term adverse health effects. Given the active role of the
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liver and kidneys in drug metabolism and toxicant clearance,
tissues from these organs often suffer the most damage after an
exposure event (Remmer, 1970; Vree et al., 1992). If the degree of
exposure to a toxicant exceeds the capacity of the existing de-
toxification mechanisms to safely respond to and handle the
chemical stress, injuries to these organs may cause irreversible
damage, eventual functional failure, and death if left untreated
(Lee, 2013; Soderland et al., 2010). In fact, hepatotoxicity and
nephrotoxicity are the 2 most common reasons why
commercialized drugs are later withdrawn from the market
(Kaplowitz, 2005; Onakpoya et al., 2016). Hence, a major concern
in both drug development efforts and for establishing safety
limits in regulatory guidance is to evaluate chemicals for their
potential to cause liver and kidney damage (Lin and Will, 2012).
Extensive in vitro and in vivo animal screening studies have
established chemical toxicity for a broad range of chemicals, yet
current clinical standards for assessing toxicity rely on detect-
ing the presence of already-damaged tissues or organ function.
Thus, elevated aspartate aminotransferase (AST) and alanine
aminotransferase (ALT) levels indicate liver damage and dys-
function (Karmen et al., 1955), whereas elevated creatinine and
blood urea nitrogen levels indicate kidney damage (Ferguson
and Waikar, 2012). Improving these standards would allow for
earlier detection and treatment well before critical damage
occurs. In particular, an improved clinical marker should flag
potential toxicity at time points that precede the appearance of,
or at doses below those that cause, overt tissue damage, toxic-
ity, or disease initiation.

Recent advances in genomic, proteomic, and metabolomic
techniques provide promising opportunities to re-examine the
mechanisms of liver and kidney toxicity, as well as identify and
propose proteins and metabolites as improved indicators of tox-
icity (Bandara et al., 2003; Collings and Vaidya, 2008; Igarashi
et al., 2015; Ramirez et al., 2013; Robertson et al., 2011; Tugwood
et al., 2003). These large-scale high-throughput studies can de-
tect subtle disturbances of biochemical pathways (ie, changes
in genes, proteins, and metabolites) caused by even mild to
low levels of a toxicant. These changes reflect early perturba-
tions in the vital cellular pathways that ultimately undergo
toxicant-specific damage in the absence of any treatment and,
hence, they may be predictive of emerging toxicity. Global
mRNA levels (transcriptomes) are commonly measured to in-
vestigate toxicant-induced disturbances at the tissue level, as
they are considered the best surrogates of protein levels given
the limited throughput of current protein quantification tech-
niques (Chandramouli and Qian, 2009). More recently, global
changes in metabolites (metabolomes) are being measured for
their potential to serve as organ-injury indicators (Araujo
et al., 2017; Boudonck et al., 2009b; Buness et al., 2014;
Iruzubieta et al., 2015; Zhang et al., 2012). In the canonical
DNA-mRNA-protein function schema, metabolites, which are
substrates and products of protein (enzyme) function, reflect
the phenotypic changes driven by changes at the genotype
level. Yet, few studies to date have concomitantly measured
the global toxicant-induced changes of mRNA in tissues and of
metabolites in accessible biofluids, such as blood and urine
(Fannin et al., 2010; Sun et al., 2013). Moreover, it remains to be
seen whether we can link the changes in mRNA to tissue-
specific metabolite alterations that are detectable in these
biofluids.

Toxicants cause injuries to excretory organs through a wide
variety of mechanisms, which complicates the process of iden-
tifying indicators common to the detection and progression of
injury. Moreover, given that these mechanisms remain

unknown for most toxicants, relying on metabolites specific to
each toxicant may not be a suitable approach to detect common
indicators. Alternatively, we could potentially gain insights into
toxicity mechanisms by identifying toxicant-induced perturba-
tions in normal cellular metabolism (as measured by alterations
in the transcriptome and metabolome) that predict the impend-
ing organ injury. However, this presents us with the daunting
challenge of how to integrate such data into a comprehensive,
mechanistic framework that accurately characterizes the state
of a cell, tissue, or organism in terms of the underlying biologi-
cal processes. A promising approach is to use genome-scale
metabolic models (GSMs), which (1) represent collections of
biochemical reactions known to occur in particular cells/tis-
sues, (2) account for gene-protein-reaction-metabolite rela-
tionships, and (3) offer a way to mechanistically link and
interpret changes in transcriptomic data to changes in metab-
olism. Indeed, recent studies indicate that GSMs can integrate
large-scale high-throughput data, elucidate genotype-pheno-
type relationships, and identify various biological processes
associated with disease states (Agren et al., 2012; Blais et al.,
2017; Duarte et al., 2007; Jerby and Ruppin, 2012; Mardinoglu
et al., 2014; Pannala et al., 2018, 2019; Shlomi et al., 2009). Thus,
GSMs enable the prediction of changes in endogenous metabo-
lites and their subsequent secretion into plasma and urine,
where they can be detected. In addition, they can be used to
glean further insights on the molecular mechanisms involved,
providing an opportunity to distinguish the changes in bio-
fluid metabolites strongly associated with tissue-specific
gene-expression changes from all other metabolite alterations
(Pannala et al., 2018, 2019).

Here, we used gentamicin, an aminoglycoside antibiotic
widely used against infections caused by Gram-negative micro-
organisms and which selectively affects the kidneys, as an ex-
emplar toxicant to generate global changes in mRNA,
metabolites, and absolute fluxes (of central carbon metabolism)
in Sprague Dawley rats. Gentamicin-induced nephrotoxicity
occurs in 10%–20% of therapeutic regimens; the cellular damage
that accumulates in the renal cortex is typically characterized
by tubular damage arising from epithelial cell cytotoxicity
(Edwards et al., 2007; Li et al., 2009). Using classical indicators of
liver and kidney injuries, we determined the minimum dose
(0.50 g/kg) that causes kidney injury in Sprague Dawley rats. We
then used this dose to evaluate the gene perturbations in the
liver and kidney using RNA sequencing (RNA-seq), changes in
plasma and urine metabolites (metabolomics), and absolute
changes in central carbon metabolism using 2H/13C metabolic
flux analysis (MFA).

Building on a previously developed rat GSM (Blais et al., 2017;
Pannala et al., 2019), we added new transport and exchange
reactions to improve coverage of exchange metabolites and
compartmentalized the modified GSM into a multitissue meta-
bolic model in which the liver and kidneys could exchange
metabolites via blood and urine compartments. Using this
model, we investigated the metabolic differences between con-
trol and gentamicin-treated groups and evaluated changes in
blood and urine metabolites directly linked to and driven by
changes in gene expression in the liver and kidney. Of all the
significantly altered metabolites that mapped onto the model,
77% and 70% from the plasma and urine, respectively, were as-
sociated with gene-expression changes in the kidneys alone.
Conversely, changes originating in the liver were negligible and
did not contribute to the alterations in the metabolite profile.
Furthermore, our analysis revealed that, compared with blood
metabolites, urine metabolites have greater potential to serve
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as kidney-injury indicators, as several metabolites in the amino
acid (AA), carbohydrate, and lipid metabolism pathways in-
creased significantly as early as 7 h after gentamicin exposure.
Using the multitissue model, we elucidated potential mecha-
nisms underlying gentamicin toxicity and identified a list of
plausible metabolites to be further targeted and clinically
assessed for their potential to serve as early indicators of kidney
damage. The results show how our platform can be broadly ap-
plied to analyze and mechanistically interpret large-scale high-
throughput data.

MATERIALS AND METHODS

Animals and study design. We carried out the experiments in ac-
cordance with the Guide for the Care and Use of Laboratory Animals
of the U.S. Department of Agriculture and the National
Institutes of Health, after obtaining protocol approval from the
Vanderbilt University Institutional Animal Care and Use
Committee and the U.S. Army Medical Research and
Development Command Animal Care and Use Review Office.
We purchased male Sprague Dawley rats at 10 weeks of age
(weighing approximately 250–300 g) from Charles River
Laboratories (Wilmington, Massachusetts) and housed them
under environmentally controlled conditions (12:12-h light-dark
cycle at 23�C). We gave the rats free access to water and a com-
mercially available rodent diet, Formulab Diet 5001 (Purina
LabDiet; Purina Miles, Richmond, Indiana) and allowed them to
acclimatize to the housing conditions for a week.

Seven days before each experiment, we performed a cathe-
ter implantation surgery, as previously described in Shiota
(2012). Each surgery involved anesthetizing a rat with isoflur-
ane, followed by 1 of 2 procedures depending on the type of ex-
periment. For experiments to determine the appropriate
gentamicin dose and time points of assessment after exposure,
as well as those to measure changes in gene expression and
plasma metabolite profiles, we cannulated the right external
jugular vein with sterile silicone catheters (0.51 mm in inner di-
ameter/0.94 mm in outer diameter). Alternatively, for studies to
measure metabolic flux, we cannulated the carotid artery and
the right external jugular vein with sterile silicone catheters of
the same dimensions. We passed the free end of each catheter
subcutaneously to the back of the neck, where it was fixed.
Finally, we occluded the catheter with a metal plug following a
flush of heparinized saline (200 U heparin/ml). Following the
surgery, we housed each rat individually.

Preliminary studies for determining appropriate dose and exposure
time of gentamicin. Two days before each study, we moved the
rats from their regular housing cages to metabolic cages
(Harvard Apparatus, Holliston, Massachusetts). To determine
the appropriate dose of gentamicin and the time points of as-
sessment after exposure, we gave rats IP injections of either ve-
hicle (2 ml/kg of saline, n ¼ 6), 0.25 g/kg of gentamicin sulfate (n
¼ 6), or 0.5 g/kg of gentamicin sulfate (n ¼ 6) at 8 AM.
Subsequently, we collected blood and accumulated urine sam-
ples at 8 AM and 5 PM daily for 3 days.

Studies for measuring changes in gene expression and plasma metabo-
lite profiles. We selected 0.5 g/kg as the appropriate gentamicin
dose and 2 time points after exposure, 1 short (7 h, n ¼ 8) and the
other long (13 h, n ¼ 8), based on the results of the dose-response
study. Following blood collection, we gave animals IP injections
of either vehicle or gentamicin at 7 AM, and then moved them to

new housing cages where they could access water ad libitum but
not food. After collecting blood from each group at 2 PM (7-h group)
or 8 PM (13-h group), we anesthetized the animals with an intrave-
nous injection of sodium pentobarbital through the jugular vein
catheter, and then immediately performed a laparotomy. We col-
lected urine directly from the bladder. After dissecting the liver
and kidneys, we froze them using Wollenberger tongs precooled
in liquid nitrogen. Prior to analyses, we kept the collected plasma,
urine, and organs frozen in a �80�C freezer.

Measurement of tissue-injury indicators in blood and urine. To evalu-
ate liver injuries, we measured the plasma levels of ALT and
AST using ALT and AST activity assay kits (Sigma-Aldrich, St.
Louis, Missouri), respectively. Similarly, to evaluate kidney inju-
ries, we measured the kidney-injury molecule-1 (KIM-1) using
the KIM-1 Rat ELISA kit (Abcam, Inc, Cambridge,
Massachusetts).

Studies for measuring metabolite flux. For flux measurements, we
gave rats an IP injection of either gentamicin (0.5 g/kg, n ¼ 8) or
vehicle (saline, 2 ml/kg, n ¼ 8) at 7 AM on the day of the study,
and subsequently removed the food and provided water ad libi-
tum. At 3:50 PM, we anesthetized the animals with isoflurane,
and after collecting 200 ml of arterial blood through the carotid
artery catheter to determine the natural isotopic abundance of
circulating glucose, we injected a bolus of [2H2] water (99.9%)
subcutaneously to enrich total body water to 4.5%. At 4 PM (ie, 9
h after dosing), after the rats had recovered from anesthesia, we
placed them in bedded containers without food or water and
connected them to sampling and infusion lines. Subsequently,
we administered a prime-constant infusion of [6,6-2H2] glucose
(80 mg/kg prime þ 0.8 mg/kg/min infusion) into the systemic
circulation through the jugular vein catheter for the duration of
the study. Starting 120 min after the [2H2] water bolus, we deliv-
ered sodium [13C3] propionate (99%) as a prime-constant infu-
sion (110 mg/kg þ 5.5 mg/kg/min infusion). We prepared all
infusates in a 4.5% [2H2] water-saline solution unless otherwise
specified, and obtained stable isotopes from Cambridge Isotope
Laboratories (Tewksbury, Massachusetts).

We monitored blood glucose (AccuCheck, Roche Diagnostics,
Indianapolis, Indiana) and infused donor erythrocytes to main-
tain hematocrit throughout the study. Following a 100-min in-
fusion of [13C3] propionate, we collected 3 blood samples (300
ll each) over a 20-min period. We centrifuged the arterial blood
samples in EDTA-coated tubes to yield 3 plasma samples of 100
ll each, which we stored at �80�C prior to glucose derivatization
and gas chromatography-mass spectrometry (GC-MS) analysis.
Immediately after collecting the final steady-state sample, we
quickly euthanized the rats by injecting sodium pentobarbital
through the carotid artery catheter.

Preparation of glucose derivatives. We divided the plasma samples
into 3 aliquots, and derivatized each separately to obtain di-O-
isopropylidene propionate, aldonitrile pentapropionate, and
methyloxime pentapropionate derivatives of glucose. To pre-
pare di-O-isopropylidene propionate, we precipitated proteins
from 20 ml of plasma using 300 ml of cold acetone, and then evap-
orated the protein-free supernatant to dryness in screw-cap cul-
ture tubes. Derivatization proceeded as previously described in
Antoniewicz et al. (2011) to produce glucose 1,2,5,6-di-isopropy-
lidene propionate. For aldonitrile and methyloxime derivatiza-
tion, we precipitated proteins from 10 ml of plasma using 300 ml
of cold acetone and evaporated the protein-free supernatants to
dryness in microcentrifuge tubes. Derivatizations then

PANNALA ET AL. | 295



proceeded as previously described in Antoniewicz et al. (2011) to
produce glucose aldonitrile pentapropionate and glucose meth-
yloxime pentapropionate. We evaporated all derivatives to dry-
ness, dissolved them in 100 ml of ethyl acetate, and transferred
them to GC injection vials with 250-ml glass inserts for GC-MS
analysis.

GC-MS analysis. GC-MS analysis involved the use of an Agilent
7890A GC system with an HP-5 MS capillary column (30 m �
0.25 mm � 0.25 lm; Agilent J&W Scientific) interfaced with an
Agilent 5975C Mass Spectrometer. We injected the samples into
a 270�C injection port in splitless mode, while maintaining he-
lium flow at 0.88 ml/min�1. For analysis of di-O-isopropylidene
and aldonitrile derivatives, we held the column temperature at
80�C for 1 min, ramped it up at 20�C/min�1 to 280�C and held it
there for 4 min, then ramped it up further at 40�C/min�1 to
325�C. The program for methyloxime derivatives was the same
except for the rate of ramp-up to 280�C, which we set to 10�C/
min�1. After a 5-min solvent delay, the mass spectrometer col-
lected data in scan mode from m/z 300 to 320 for di-O-isopropy-
lidene derivatives, m/z 100 to 500 for aldonitrile derivatives, and
m/z 144 to 260 for methyloxime derivatives. We used a custom
MATLAB function (Antoniewicz et al., 2007) to integrate each de-
rivative peak and obtain mass isotopomer distributions (MIDs)
for 6 specific ion ranges: aldonitrile, m/z 173–178, 259–265, 284–
289, 370–376; methyloxime, m/z 145–149; and di-O-isopropyli-
dene, m/z 301–308. To assess uncertainty, we calculated the root
mean squared error by comparing the baseline MID of unlabeled
glucose samples with the theoretical MID computed from the
known abundances of naturally occurring isotopes.

2H/13C MFA. We employed the in vivo MFA methodology previ-
ously described in Hasenour et al. (2015). Briefly, we constructed
a reaction network using the INCA software package (Young,
2014) (http://mfa.vueinnovations.com/mfa; Accessed November
19, 2019). This network defined the carbon and hydrogen transi-
tions for biochemical reactions linking hepatic glucose produc-
tion and associated intermediary metabolic reactions. We
estimated the flux through each reaction relative to citrate syn-
thase (fixed at 100) by minimizing the sum of squared residuals
(SSRs) between the simulated and experimentally determined
MIDs of the 6 fragment ions previously described, and repeating
this process 25 times from random initial values. We used the
chi-square test to assess goodness-of-fit, and computed 95%
confidence intervals (CIs) by evaluating the sensitivity of the
SSRs to variations in flux values (Antoniewicz et al., 2006). The
average SSR of each experimental group (Control SSR: 22.69 6

1.83; gentamicin SSR: 27.73 6 2.17) fell within the 95% CI [13.8–
41.9] of the corresponding chi-square distribution with 26
degrees of freedom (ie, the regressions were overdetermined by
26 measurements). We converted the relative fluxes to absolute
values using the known [6,6-2H2] glucose infusion rate and rat
weights, and then averaged the flux estimates for the steady-
state samples to obtain a representative set of values for each
rat.

Metabolomics analysis. We sent the samples to Metabolon, Inc
(Durham, North Carolina), which performed the metabolomic
analyses in a manner similar to a previous study (Hatano et al.,
2016). Briefly, individual samples were subjected to methanol
extraction and then split into aliquots for analysis by ultrahigh
performance liquid chromatography/MS (UHPLC/MS). The
global biochemical profiling analysis comprised 4 unique arms:
a reverse-phase chromatography positive ionization method

optimized for hydrophilic compounds (LC/MS Pos Polar), a cor-
responding method for hydrophobic compounds (LC/MS Pos
Lipid), reverse-phase chromatography with negative ionization
conditions (LC/MS Neg), and a hydrophilic interaction liquid
chromatography (HILIC) method coupled to negative ionization
(LC/MS Polar) (Evans et al., 2014). All methods alternated be-
tween full scan MS and data-dependent MSn scans. The scan
range varied slightly between methods but generally covered
m/z 70–1000.

The identification of metabolites involved automated com-
parison of the ion features in the experimental samples to a ref-
erence library of chemical standard entries, which included
retention time, molecular weight (m/z), preferred adducts, in-
source fragments, and associated MS spectra, followed by cura-
tion via visual inspection for quality control using software de-
veloped at Metabolon. Identification of known chemical entities
was based on comparison with metabolomic library entries of
purified standards (Dehaven et al., 2010).

We performed 2 types of statistical analyses: (1) significance
tests and (2) classification analyses. For standard and nonstan-
dard statistical analyses on log-transformed data, we used
ArrayStudio and the R program (http://cran.r-project.org;
Accessed November 19, 2019), respectively. Following log trans-
formation and imputation of missing values (if any) with the
minimum observed value for each compound, we used Welch’s
2-sample t test to identify biochemicals that differed signifi-
cantly (p < .05) between experimental groups. We estimated the
false discovery rate (FDR) (q value) to account for the multiple
comparisons that are typically made in metabolomics-based
studies.

RNA isolation and sequencing. Because kidneys are histologically
heterogeneous, we powdered frozen whole kidney samples in
liquid nitrogen. We isolated total RNA from the liver and pow-
dered kidneys using TRIzol Reagent (Thermo Fisher Scientific,
Waltham, Massachusetts) and the direct-zol RNA MiniPrep kit
(Zymo Research, Irvine, California). Subsequently, we submitted
the isolated RNA samples to the Vanderbilt University Medical
Center VANTAGE Core (Nashville, Tennessee) for RNA quality
determination and sequencing. Following total RNA quality as-
sessment using a 2100 Bioanalyzer (Agilent, Santa Clara,
California), we used at least 200 ng of DNase-treated total RNA
of high RNA integrity to generate poly-A-enriched mRNA librar-
ies using KAPA Stranded mRNA sample kits with indexed adap-
tors (Roche, Indianapolis, Indiana). We then assessed the library
quality and quantitated them using 2100 Bioanalyzer (Agilent)
and KAPA library Quantification kits (Roche), respectively. We
subjected the pooled libraries to 75-bp paired-end sequencing
according to the manufacturer’s protocol (Illumina HiSeq3000,
San Diego, California). We used Bcl2fastq2 Conversion Software
(Illumina) to generate demultiplexed Fastq files.

Analysis of RNA-seq data. We used the RNA-seq data analysis
tool Kallisto for read alignment and quantification (Bray et al.,
2016). Kallisto pseudo-aligns the reads to a reference, producing
a list of transcripts that are compatible with each read while
avoiding alignment of individual bases. In this study, we
pseudo-aligned the reads to the Rattus norvegicus transcriptome
(Rnor_6.0) downloaded from the Ensembl website (Cunningham
et al., 2019). Kallisto achieves a level of accuracy similar to that
of other competing methods, but is orders of magnitude faster.
Its speed allows for the use of a bootstrapping technique to cal-
culate uncertainties of transcript abundance estimates by re-
peating the analyses after resampling with replacement. Here,
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we employed this technique to repeat the analysis 100 times. To
identify differentially expressed genes (DEGs) from transcript
abundance data, we used Kallisto’s companion analysis tool
Sleuth, which uses the results of the bootstrap analysis during
transcript quantification to directly estimate the technical gene
variance for each sample (Pimentel et al., 2017).

Development of a multitissue rat metabolic model. To contextualize
the high-throughput data generated from multiple tissues, we
converted the rat GSM (iRno model) (Blais et al., 2017) into a mul-
titissue GSM. First, we updated the most recent versions of the
rat GSM (Pannala et al., 2018, 2019) to improve the coverage of
metabolites exchangeable with the external space based on the
evidence of gentamicin-induced global metabolite changes in
the plasma and urine in the current study (Supplementary
Tables 2 and 3). Specifically, by comparing the predicted and ob-
served changes in metabolites, we identified metabolites that
were present in the iRno model but lacked specific transport
reactions that would allow their transport into the external
space. Furthermore, we corrected the proton imbalance in the
molecular formulas for 235 metabolites; these had originally
been reported as charged instead of neutral species in the origi-
nal iRno model (Supplementary Table 9).

We integrated the tissue-specific reconstructions for the
liver and kidney into the updated rat GSM to create a multitis-
sue model. First, we renamed the reactions and metabolites in
each reconstruction for proper compartmentalization. Then,
we constructed new blood and urine compartments that con-
nected the liver to the kidney as well as the kidney to the
urine compartment. We removed the exchange reactions in
the tissue-specific reconstructions, allowing only gene-
associated transporters and free diffusion for intracellular me-
tabolite transport. We then added exchange reactions to allow
the blood compartment to exchange metabolites with the ex-
ternal space (ie, to represent the exchange of blood metabo-
lites with other organs of the body). We constructed the
kidney exchange reactions with the urine compartment based
on the metabolites identified in the global metabolomics data
obtained as part of this study (Supplementary Table 3). We
allowed metabolite exchange (ie, both uptake and secretion)
between the blood compartment and the external system, but
only metabolite secretion from the urine compartment to the
external system. Overall, the resulting multitissue model,
which contained 2324 unique genes and 17 881 reactions con-
nected by 11 543 metabolites, satisfied the biological con-
straints regarding the connectivity between the liver and
kidneys, and successfully reproduced all known functional
tasks of these organs. We provide the complete model in
SBML format in the Supplementary Information
(RMTmodel_SBML).

We tested the consistency of the multitissue model by evalu-
ating 3 functional tasks at the systems level: excretion of urea
and creatinine in the urine, and production of glucose in the
blood. We evaluated these tasks by keeping the secretion of the
respective metabolite under consideration as the objective func-
tion in the model for a given input constraint. For example, to
simulate the excretion of urea in urine, we set the urea ex-
change reaction in urine as the objective function and allowed
one of the AAs to vary as input to the liver compartment while
keeping all other carbon sources zero. A positive flux value for
the objective function indicated successful capture of the func-
tionality. We refer the reader to details of this procedure in a re-
cent publication (Pannala et al., 2019).

Algorithm for high-throughput data integration and metabolite predic-
tions. We used the transcriptionally inferred metabolic bio-
marker response (TIMBR) algorithm (Blais et al., 2017) to
integrate the observed gene-expression changes in the liver and
kidneys into the multitissue model and make predictions for
metabolite alterations in the blood and urine. Briefly, the TIMBR
algorithm uses the gene-protein-reaction (GPR) relationships in
the model to convert the log2 fold changes of all liver- and
kidney-specific alterations in gene expression into reaction
weights. It then calculates the global network demand required
for producing a metabolite in the blood and urine. The objective
function minimizes the weighted sum of fluxes across all reac-
tions for each condition and metabolite, so as to satisfy the as-
sociated mass balance and an optimal fraction of the maximum
network capability to produce a metabolite. Based on values
reported in the literature, we used appropriate uptake and se-
cretion rates for the exchange reactions of the liver and kidney
under fed or short-term fasting conditions (Supplementary
Table 8). Specifically, we did not find consensus values for up-
take and secretion rates of the kidney under short-term fasting
conditions and approximated them with the fed-state condi-
tions. Thus, using the gene-expression changes together with
the uptake and secretion rates, TIMBR provides a production
score (z-score) representing an increase or decrease for each
metabolite in the plasma and urine.

We used the experimental log2 fold changes of significantly
altered (FDR < 0.10) plasma and urine metabolites from the
global metabolic profiling data (Supplementary Tables 2 and 3)
and then compared the corresponding TIMBR production scores
from the multitissue GSM at 7 or 13 h after gentamicin treat-
ment (Supplementary Table 5). Here, we considered the metab-
olite levels as having increased or decreased based on TIMBR
production score cutoff values of greater than 0.1 and less than
�0.1, respectively. We considered metabolites with scores be-
tween �0.1 and 0.1 as unchanged. To test the robustness of the
multitissue model results, we randomized the original gene-
expression data by randomly sorting the gene names and using
the resulting data as the input.

KEGG pathway analysis. To understand the biological significance
of the alterations in gene-expression levels induced by gentami-
cin, we used the DEGs derived from Kallisto-Sleuth analyses
and identified significantly altered DEGs that were mapped to
the rat GSM as input, and used KEGG pathways to identify mo-
lecular pathways that were significantly enriched. We used the
online tool Database for Annotation, Visualization, and
Integrated Discovery (DAVID) (Huang et al., 2009) to perform this
task. In addition, we used the aggregated fold change (AFC)
method (Yu et al., 2017), which calculates significantly enriched
KEGG pathways together with their direction of change, to as-
certain that the results were independent of the pathway detec-
tion method. Briefly, the AFC method calculates the mean fold
change for each gene and defines the KEGG pathway score as
the average mean fold change of all genes in the pathway. The
sign of the pathway score represents the direction of regulation,
with positive values indicating upregulation and negative val-
ues indicating downregulation. Similarly, to understand the bio-
logical significance of metabolites, we identified those
metabolites whose levels were altered by gentamicin exposure
and which mapped to the rat GSM as input, and used KEGG
pathways to identify molecular pathways that were signifi-
cantly enriched. We used the pathway analysis functionality in
MetaboAnalyst 4.0 (Chong et al., 2018) to perform this task.
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RESULTS

Conventional Kidney-Injury Indicators Are Limited in Early Detection
of Gentamicin-Induced Kidney Injury
To determine the optimal dose for inducing kidney injury and
the time points for injury assessment after initial exposure, we
gave a single acute IP injection of either vehicle (2 ml/kg of sa-
line; n ¼ 6) or gentamicin (0.25 or 0.50 g/kg; n ¼ 6 per group) to
Sprague Dawley rats and examined the time course of injury in
the liver and kidneys for 57 h (Fig. 1 and Supplementary Fig. 1).
The classical indicators of liver injury, ALT and AST, did not
change significantly in either exposure group relative to the
control group (Supplementary Figs. 1A and 1B). Similarly, the
classical kidney-injury marker, creatinine, showed no signifi-
cant change in either the serum or urine, even at 57 h postgenta-
micin exposure (Supplementary Figs. 1C and 1D). However,

levels of urinary kidney-injury molecule 1 (KIM-1), significantly
differed between the control and treatment groups as early as
13–16 h after exposure. We observed the maximum levels of
KIM-1 between 24 and 33 h postexposure at the high dose (0.50
g/kg; Figs. 1A and 1B). As expected from previous studies
(Hoffmann et al., 2010; Luo et al., 2016; Piron et al., 1998), subse-
quent histopathological observations of liver and kidney tissues
57 h after exposure showed marked kidney injury but no liver
injury (results not shown). These results demonstrated that se-
rum creatinine could not detect early-stage gentamicin-induced
kidney injury, even though histopathological analysis con-
firmed injury progression. In contrast, KIM-1, which is currently
in the preclinical stage of development (Han et al., 2002; Parikh
et al., 2013), differentiated the control group from the treatment
groups, indicating the early progression of gentamicin-induced
toxic effects on the kidneys.
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Figure 1. Experimental design to measure early perturbations in rat endogenous metabolism, and preliminary studies to determine the dose of gentamicin and time

points after exposure to assess injury. Levels of kidney-injury molecule 1 (KIM-1) in urine samples collected at different time windows for rats treated with vehicle

(control) or gentamicin (0.50 g/kg) (A) and for rats treated with 0.25 or 0.50 g/kg of gentamicin (B). * Indicates statistically significant differences based on a p value

of less than .05. Schematic showing the design of the study, using Sprague Dawley rats exposed to a single dose of 0.50 g/kg of gentamicin under fasting conditions

(C). Animals were catheterized 1 week before each experiment and allowed to recover. In Study 1, we administered either gentamicin or vehicle to rats (n ¼
8 each), and after 13 h, infused them with a combination of 2H/13C tracers to obtain isotope labeling measurements required for metabolic flux analysis. In Studies

2 and 3, we administered gentamicin to rats and observed them for 7 or 13 h (n ¼ 8 in each group with corresponding controls), respectively. We collected samples

of liver/kidney tissues and blood/urine after gentamicin exposure (at 7 or 13 h), which we subjected to RNA-sequencing and global metabolic profiling analysis,

respectively.
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Gentamicin Exposure Leads to Significant Early Changes in Kidney
Gene Expression and Metabolites in Urine
To determine the early perturbations in kidney metabolism that
occur before KIM-1 levels change significantly, we selected a
gentamicin dose of 0.50 g/kg and 7 and 13 h as the early time
points for collecting liver and kidney tissue samples to investi-
gate changes in global mRNA abundance, and blood and urine
samples to perform global metabolic profiling (Figure 1C). We
also monitored a separate group of rats for 13 h after gentamicin
exposure (Study 1) and performed isotope tracer infusions to de-
termine the absolute fluxes in the glucose production and TCA
cycle pathways of central carbon metabolism under fasting con-
ditions (Figure 1C; see Materials and Methods section). RNA-
sequencing analysis revealed DEGs in the kidney as early as 7 h
(Figure 2A), many of which remained differentially expressed 13
h after exposure (Figure 2B). Based on a FDR cutoff value of 0.1,
gentamicin significantly changed the expression of 3126 and
1918 kidney genes at 7 and 13 h, respectively (Supplementary
Table 1) and consistently altered expression of 1326 genes at
both time points. This result suggests that the number of DEGs
decreases over time as gentamicin is cleared from the kidneys.
In contrast, we observed only 54 and 2 DEGs in the liver at 7
h (Figure 2C) and 13 h (Figure 2D), respectively (see
Supplementary Table 1 for a complete list of DEGs). This result
is commensurate with the notion that gentamicin acts primar-
ily as a nephrotoxicant and rarely induces liver injury (Faa et al.,
2012; Khan et al., 2011).

Global metabolic profiling analysis revealed significant
changes in urine metabolites at both 7 and 13 h after gentami-
cin exposure (Figs. 2E and 2F). Using a FDR cutoff value of 0.1,
approximately 400 urine metabolites changed significantly at
both time points. Interestingly, at 7 h, the number of metabo-
lites that significantly increased was higher than the number
that decreased (Figure 2E). However, at 13 h, the numbers were
comparable for both increased and decreased metabolites
(Figure 2F). In contrast, we observed fewer plasma metabolite
changes at both time points (Figs. 2G and 2H). Specifically, only
12 metabolites met the significance criteria for the later time

point (Figure 2H). These results suggest better detection capabil-
ity in the urine due to the concentrating effects of metabolites
by the kidneys compared with plasma metabolite changes (see
Supplementary Tables 2 and 3).

Under fasting conditions, the liver and kidneys maintain
plasma glucose levels, with the liver contributing predomi-
nantly during short-term fasting while the kidneys contribute
increasingly as the fasting duration increases (Gerich et al., 2001;
Kaneko et al., 2018). To determine the effect of gentamicin on
glucose production in central carbon metabolism, we performed
2H/13C tracer labeling and assessed the major metabolic fluxes
in the glucose production pathway 13 h after administering gen-
tamicin (0.50 g/kg) under short-term fasting conditions. These
flux estimates represent whole-body contributions to glucose
production although the liver is considered as the predominant
source. Using the tracer enrichment data and MFA, we calcu-
lated the absolute fluxes for the enzymes in the glucose produc-
tion pathway (Supplementary Table 4). Enzymes in this
pathway did not significantly differ between the treatment and
control groups (Supplementary Figure 2), consistent with our
earlier observation that only 2 DEGs in the liver changed signifi-
cantly at 13 h (Figure 2D). This result suggests that under short-
term fasting, most of the glucose flux is derived from the liver,
and that the contribution of the kidneys to glucose production
remains either negligible or unaffected by gentamicin, at least
for 13 h.

Multitissue Rat GSM Enables High-Throughput Data Integration
and Analysis
To elucidate the mechanism underlying gentamicin-induced
kidney toxicity, we adopted a constraint-based modeling ap-
proach to identify major renal metabolic alterations between
control and treatment groups. We updated a previously
developed rat GSM (Blais et al., 2017; Pannala et al. 2018, 2019) to
improve our coverage of exchange metabolites and compart-
mentalized the modified GSM into a multitissue model in which
the liver and kidneys could exchange metabolites via blood and
urine compartments (Figure 3A, Materials and Methods section).
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Figure 2. Volcano plots for global changes in genes and metabolites induced by gentamicin. Log2 fold changes in gene expression induced by gentamicin compared

with those induced by vehicle are plotted against the false discovery rates (FDRs), in kidney tissue after 7 (A) or 13 h (B) or in liver tissue after 7 (C) or 13 h (D). Red and

green circles indicate significantly (FDR < 0.1) upregulated and downregulated genes, respectively. Black circles represent genes that did not change significantly. Log2
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(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The uptake rates of AAs, fatty acids, glycerol, lactate, and
glucose were approximated for fed conditions, using various
sources in the literature (Elhamri et al., 1993; Yamamoto
et al., 1974). We assumed that the metabolites in the blood
compartment were common to both the liver and kidneys for
uptake, whereas the metabolites in the kidney compartment
could be exchanged between the blood and urine. We tested
whether the multitissue GSM could model 3 physiologically
important states of rat metabolism that encompass both the
liver and kidney compartments. For the given input condi-
tions, the model accurately captured the excretion of urea in
urine, excretion of creatinine in urine, and production of glu-
cose in the blood, suggesting the functional integrity of the
developed multitissue model.

RNA-sequencing analysis provides information on DEGs that
produce various protein products, including signaling proteins,
transcription factors, and enzymes. We used the global gene-
expression data as inputs to the multitissue GSM to identify
genes that drive the metabolic reactions in the liver and kid-
neys. For the kidneys, we identified approximately 1800 DEGs
that mapped onto the model for both time points. From among
these DEGs, we identified 425 and 267 that significantly changed
at 7 and 13 h, respectively (FDR cutoff value of 0.1). For the liver,
we identified approximately 1700 DEGs that mapped onto the
model. However, only 9 and 1 DEGs satisfied the significance
criteria at 7 and 13 h, respectively.

Similarly, global metabolic profiling analysis identified 633
and 654 metabolites in the plasma and urine, respectively.
However, the coverage of measurements remains sparse for
many pathways of interest. Specifically, a comprehensive map-
ping of all of these metabolites onto the rat multitissue GSM,

using both KEGG ID annotations and metabolite names, indi-
cated a coverage of only approximately 40%, suggesting the lack
of functional annotation for several identified metabolites in
the data set. Figure 3B shows a network visualization map of
significant DEGs in the kidneys and significantly altered metab-
olites in urine at 7 h after gentamicin exposure. The map shows
that the majority of the significantly changed genes and metab-
olites could be grouped into 4 major metabolic super-pathways:
those of nucleotides, lipids, carbohydrates, and AAs.

Of all the measured metabolites that mapped onto the
model, we identified 37 and 4 in plasma (Figs. 4A and 4B), and
121 and 139 in urine (Figs. 4C and 4D) at 7 and 13 h, respectively,
after gentamicin exposure. We consistently detected changes in
urea, pipecolate, and cytosine in the plasma samples at both 7
and 13 h (Figs. 4A and 4B, respectively). Although we also
detected an increase in the level of plasma creatinine, a classi-
cal kidney-injury marker, at 7 h, the magnitude of change was
smaller than that in other metabolites and was not significant
at 13 h. In contrast, many urine metabolites that mapped onto
the model changed significantly (Figs. 4C and 4D). At both time
points, many metabolites involved in AA metabolism (eg, citrul-
line, alanine, glutamine, tryptophan, lysine, valine, and isoleu-
cine) consistently increased whereas many involved in
nucleotide metabolism (eg, orotate, guanidinoacetate, and
cGMP) consistently decreased, indicating their potential to serve
as indicators of kidney injury.

Multitissue Model Predicts Metabolite Alterations Based on Gene-
Expression Changes
Metabolites in the plasma and urine change due to several fac-
tors, including contributions from all organs involved in their

BA
Nucleotide metabolism

Lipid metabolism
Carbohydrate 
metabolism

Amino-acid metabolism

Figure 3. A rat multitissue metabolic model that captures interorgan connectivity. A, A schematic representation of the rat multitissue model comprised of liver and

kidney tissues connected via a blood compartment, with the kidneys connected to the urine compartment. Solid, dashed, and dashed bidirectional arrows denote

physiological uptake, secretion, and mutual exchange, respectively, of a molecule between compartments. These relationships served as constraints for the kidney

and liver to simulate the metabolite alterations. Abbreviations: AAs, amino acids; FAs, fatty acids; GAA, guanidinoacetic acid. B, Network visualization map of differen-

tially expressed genes (DEGs; FDR < 0.1) in the kidneys and significantly altered metabolites in urine 7 h after gentamicin exposure, mapped onto the kidney-specific

metabolic network. Circles, triangles, and line denote genes, metabolites, and interconnections, respectively. Blue circles represent DEGs that were significantly upre-

gulated (large) or downregulated (small). Green triangles represent metabolites that significantly increased (large) or decreased (small). Triangles and circles in gray

color represent for metabolites and genes that are unchanged. (For interpretation of the references to color in this figure legend, the reader is referred to the web ver-

sion of this article.)
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systemic circulation. To determine the tissue of origin for the
observed changes in a biofluid metabolite, we used the TIMBR
algorithm—a recently developed computational method for in-
tegrating high-throughput data—and simulated the changes in
plasma and urine metabolites based on concomitantly mea-
sured gene-expression changes in liver and kidney tissues.
Briefly, TIMBR first summarizes the gene-expression changes as
a set of reaction weights that represent the relative cost of car-
rying flux through each reaction, and then calculates the global
network demand required for biomarker production by mini-
mizing the weighted sum of all fluxes across all reactions for
each condition (Blais et al., 2017). In this way, for all exchange-
able metabolites, it predicts the relative propensity for a metab-
olite to be elevated or reduced in the plasma or urine, based on
the gene-expression changes in the exposure condition relative
to those in the control condition. Thus, using the boundary con-
straints on the uptake and secretion of exchange metabolites
for the liver and kidney (see Materials and Methods section) and
the TIMBR algorithm, we integrated the gene-expression data to
predict the changes in plasma and urine metabolites following
exposure to gentamicin. We then compared the log2 fold
changes of the metabolites identified from the global metabolic
profiling analysis (Supplementary Tables 2 and 3) with the
model predictions, and assessed how accurate the model was in

evaluating the direction of gentamicin-induced changes in me-
tabolite levels.

The multitissue model correctly evaluated the direction of
change (an increase or decrease) for 77% and 70% of the metabo-
lites that significantly changed in the plasma and urine, respec-
tively, at 7 h after gentamicin exposure (Table 1; Supplementary
Table 5). In contrast, when we provided the model with random
gene-expression changes as the inputs, the corresponding per-
formance levels were 17% and 13%. At 13 h, the model predicted
the direction of change for 50% and 48% of the metabolites that
significantly changed in the plasma and urine, respectively,
showing little difference from the performance of the model
(approximately 36%) where we used random gene-expression
changes as inputs. The reduced correspondence between me-
tabolite changes and gene-expression changes at 13 h is likely
due in part to the reduction in the number of significant DEGs at
this time point (Figure 2) and to other factors altering metabolite
levels. These results indicate that many of the metabolite
changes were correlated with gene-expression changes in the
kidney for the early time point (7 h) where the number of genes
and their magnitude of change was significant. Furthermore,
our model assessments were similar with or without the inclu-
sion of changes in liver gene expression, suggesting that most
of the observed metabolite changes were due to gentamicin-
induced changes in kidney metabolism.
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To further ascertain whether the gene-expression changes
in the kidney were causally related to the metabolite changes in
biofluids, we performed pathway enrichment analysis, using
the online tool DAVID and the AFC method, by selecting signifi-
cant (FDR < 0.1) DEGs from the kidney and metabolites in urine
as the inputs (see Materials and Methods section). Our analysis
revealed that many genes involved in the metabolism of
nucleotides—lipids, carbohydrates, AAs, and glycans—signifi-
cantly changed as early as 7 h after gentamicin exposure
(Figure 5A; Supplementary Table 6). Several metabolites in a
subset of these pathways also changed significantly, showing
good correlations with the observed gene-expression changes
(Figure 5B; Supplementary Table 7). Specifically, genes and
metabolites involved in arginine and proline metabolism, as
well as in valine, leucine, and isoleucine metabolism, were
strongly correlated at the early time point (7 h), whereas those
involved in pyrimidine metabolism were strongly correlated at
the later time point (13 h).

Gentamicin Downregulates Arginine and Proline Metabolism and
Leucine, Isoleucine, and Valine Degradation
Gentamicin exposure can lead to aminoaciduria, a condition
that involves increased excretion of AAs in urine (Gartland et al.,
1989; Macpherson et al., 1991). Proximal tubular transport pro-
cesses have been implicated in the aminoglycoside toxicity that
leads to aminoaciduria and tubular proteinuria (Humes et al.,
1982). However, the underlying molecular mechanisms leading
to aminoaciduria remain unclear. Using the GPR relationships
in the multitissue model, together with pathway enrichment
analysis, we further investigated the alterations in genes and
metabolites involved in the metabolism of arginine and proline
(Figure 6A). None of the transporter genes involved in reabsorp-
tion of arginine and proline showed significant changes in ex-
pression in the kidneys. We observed increased expression of
Asl, the gene responsible for the production of argininosucci-
nate lyase (the enzyme that converts argininosuccinate to argi-
nine), but downregulation of Nos1, the subsequent gene
responsible for the conversion of arginine to nitric oxide.
Similarly, we observed increased expression of genes responsi-
ble for the production of putrescine, N-acetylputrescine, and
spermine from ornithine, but downregulation of the genes that
convert them to their respective downstream metabolites
(Figure 6A). These changes suggest a major dysregulation in the
metabolism of arginine and proline, leading to their accumula-
tion in urine. The multitissue model, which accounts for the en-
tire network demand to calculate the propensity of a metabolite
to increase or decrease based on gene-expression changes, ac-
curately predicted the changes for all of these metabolites, most
of which were elevated in urine as early as 7 h after gentamicin
exposure (Figure 6A, stars).

Branched-chain amino acids (BCAAs), ie, valine, leucine, and
isoleucine, are essential AAs that play a key role in the biosyn-
thesis of peptides, sterols, ketone bodies, and glucose. The first

Table 1. Summary of the Metabolites Mapped, and Percentage of
Mapped Metabolites Predicted Accurately, by the Multitissue Model
Using Randomized or Actual Gentamicin-induced Gene-expression
Data

Sample

Time
(h)

Metabolites
Mapped to
the Model

Significantly
Changed

Metabolites

Model Predictions
Based on Gene-
Expression Data

Random (%) Actual (%)

Plasma 7 234 31 17 77
13 234 2 0 50

Urine 7 222 113 13 70
13 222 127 36 48

Figure 5. Pathway enrichment analysis of significantly altered metabolic genes in the kidney and metabolites in urine. Bar graphs showing the number of metabolic

genes (A) and metabolites (B) involved in the significantly enriched pathways, based on genes from the kidney and metabolites from urine, respectively. We used the

most significantly altered (FDR < 0.1) differentially expressed genes and metabolites represented in the multitissue model to perform gene and metabolite enrichment

analysis.
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step in BCAA catabolism involves catalysis by the branched-
chain aminotransferase (Bcat) isozymes. The distribution of
BCAA transamination capacity in rat tissues suggests that the
level of activity of Bcat enzymes in the kidneys is second only to
that in skeletal muscle (Suryawan et al., 1998). Gentamicin

exposure did not significantly alter the expression levels of the
first 2 enzymes involved in BCAA catabolism (Figure 6B).
However, it significantly downregulated the genes responsible
for subsequent BCAA degradation, leading to impaired catabo-
lism resulting in inefficient conversion of BCAAs to precursor
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molecules necessary for the TCA cycle. Consequently, this sig-
nificantly elevated BCAAs in urine at both time points after gen-
tamicin exposure (Figure 6B, white text on orange background).
Our model simulations further showed that these metabolite
changes were correlated with the observed impairments in
gene-expression changes in BCAA catabolism (Figure 6B, stars).

Gentamicin Upregulates Genes Involved in Glycerophospholipid
Metabolism and Downregulates Genes Involved in Sphingolipid
Metabolism
Gentamicin binds to membrane phospholipids, alters their
turnover and metabolism, and thereby causes phospholipidosis
(Giuliano et al., 1984; Nonclercq et al., 1992). Diacylglycerols,
which are the basic components of tissue membranes and
key intermediates in the formation of many glycerolipids,
function as second messengers in many cellular processes.
Genes responsible for the production of diacylglycerol in glycer-
ophospholipid metabolism significantly increased (Figure 7A,

red), indicating alterations in lipid metabolism due to
gentamicin-induced toxicity. As a result, several metabolites in
this pathway significantly increased in urine (Figure 7A, white
text on orange background). Consistent with the model predic-
tions based on gene-expression changes, urine levels of choline
significantly increased whereas those of glycerol-3-
phosphate and phosphoethanolamine significantly
decreased. However, the observed increases in urine levels of
phosphocholine, glycerol-3-phosphocholine, and glycerol-3-
phosphoethanolamine were inconsistent with the changes in
gene expression, suggesting the involvement of other factors
that govern these metabolite changes.

In contrast to the genes involved in glycerophospholipid me-
tabolism, gentamicin exposure significantly downregulated
most genes involved in sphingolipid metabolism (Figure 7B).
Specifically, although levels of Sptcl2, the gene responsible for
the initial rate-limiting step in sphingolipid biosynthesis, signif-
icantly increased, subsequent downstream genes responsible
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for the synthesis of ceramides significantly decreased at both
time points after gentamicin exposure. Correspondingly, the
urine levels of many precursor metabolites involved in sphingo-
lipid metabolism significantly increased. However, the global
network demand calculated for these metabolites using the
multitissue model predicted increased urine levels only for ser-
ine and phosphoethanolamine (Figure 7B, stars).

Metabolites in Highly Enriched Pathways Proposed as Indicators of
Gentamicin-Induced Kidney Toxicity
Although global metabolic profiling revealed significantly al-
tered metabolites in various biochemical pathways, their rele-
vance to gentamicin toxicity was unclear. By using the
multitissue model together with pathway enrichment analysis,
however, we were able to determine highly enriched pathways
in the kidneys and compile a plausible panel of significantly al-
tered plasma and urine metabolites strongly correlated with
changes in gene expression. Tables 2 and 3 show lists of these
metabolites in the plasma and urine, respectively, which the
model correctly predicted in the highly enriched pathways, ar-
ranged according to their main and subordinate pathways.
Specifically, our analysis revealed that gentamicin exposure sig-
nificantly increased urine metabolites involved in AA metabo-
lism as early as 7 h after exposure and that many of them
remained elevated at 13 h after exposure (Table 3). These
metabolites could potentially serve as early indicators of
gentamicin-induced kidney toxicity. Overall, our GSM-based
analyses of gene-expression changes in tissues and the corre-
sponding metabolite alterations in biofluids provide a mecha-
nistic interpretation of the observed changes. Thus, they
increase our confidence that the identified putative indicators
are causally related to the changes induced by exposure to
gentamicin.

DISCUSSION

Unlike inference-based methods of analysis, genome-scale met-
abolic modeling provides the ability to integrate high-
throughput data, enabling increased understanding of
genotype-phenotype relationships. Metabolites, the substrates
and products of cellular metabolism, are regulated at various
levels by genetic makeup, feedback mechanisms, and environ-
mental factors. Moreover, given that most metabolites in the
systemic circulation are present in all organs of the body,
changes in any particular metabolite will reflect the summed
contributions from all organs. Therefore, we need to consider
perturbations of metabolites in peripheral compartments (ie,
blood and urine) within this context to gain a comprehensive
understanding of the causal relationships between genes,
metabolites, and toxicity endpoints, and thereby address their
potential to serve as indicators of organ injury. Nonetheless, the
genes and their protein products that drive the metabolic reac-
tions are one of the major drivers of metabolite perturbations.
Hence, using gentamicin as an exemplar toxicant, here we sys-
tematically characterized its effects on endogenous cellular me-
tabolism by capturing alterations of genes in rat liver and
kidney tissues and of metabolites in the blood and urine.

To address the current lack of early indicators of
gentamicin-induced kidney injury, we analyzed global changes
in gene expression and metabolite levels and identified signifi-
cant changes induced by gentamicin as early as 7 h postexpo-
sure. Using an updated rat multitissue GSM, we assessed the
changes in metabolites in blood and urine that are directly
linked to the observed changes in gene expression in liver and
kidney metabolism. This systems-level analysis indicated that
the gene-expression changes in the kidney primarily drive the
metabolite changes in the blood and urine. Finally, using path-
way enrichment analysis together with GSMs, we identified
pathways in the kidney that significantly changed due to

Table 2. List of Significantly Altered Metabolites in the Plasma Based on Model Predictions at 7 and 13 h Postgentamicin Exposure

Main Pathway Subordinate Pathway Metabolite

Log2 (Fold Change)

7 h 13 h

Metabolism of cofactors Nicotinate and nicotinamide Quinolinate 0.92
N1-methyl-4-pyridone-5-carboxamide 0.58
N1-methyl-2-pyridone-5-carboxamide 0.58

Thiamine Thiamine monophosphate 0.63
Carbohydrate metabolism Ascorbate and aldarate Inositol 0.57

Pentose and glucuronate Glucuronate 0.74
Xylitol 0.59
Ribitol 0.45

Amino sugar and nucleotide sugar Neu5Ac 0.72
Neu5Gc 1.08

AA metabolism Arginine and proline Argininosuccinate 0.81
Urea 1.39 1.10
4-Acetamidobutanoate 0.77

Lysine degradation L-Pipecolate 0.57 0.54
Cysteine and methionine 5-Methylthioadenosine 0.54
Phenylalanine 2-Hydroxyphenylacetate 1.38
Tryptophan 2,5-Dihydroxybenzoate 1.36

Indoleacetate 0.91
Xanthurenate 1.05
Anthranilate 0.64

Nucleotide metabolism Pyrimidine Orotidine-5-phosphate 0.74
Cytidine �0.45
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Table 3. List of Significantly Altered Metabolites in the Urine Based on Model Predictions at 7 and 13 h Postgentamicin Exposure

Main Pathway Subordinate Pathway Metabolite

Log2 (Fold Change)

7 h 13 h

AA metabolism Arginine and proline Proline 3.50 2.45
Citrulline 4.15 3.30
Arginine 2.80 2.10
Ornithine 2.97 2.34
trans-4-Hydroxyproline 1.83 1.10
Creatine 2.19 1.03
Guanidinoacetate �1.31 �1.25
5-Oxoproline 0.80 0.35
Spermidine 2.34
Spermine 6.36
4-Acetamidobutanoate 0.58
N-Acetylputrescine 0.41

Glycine, serine, and threonine Glycine 2.28 1.50
Dimethylglycine �0.81 �1.01
Serine 3.03 2.13
Threonine 2.54 1.46
Glycerate 0.29
Pyruvate 1.90 1.13

Cysteine and methionine Methionine 3.20 2.06
Cystine 4.60 3.05
Cysteine 0.90

Valine, leucine, and isoleucine Leucine 3.44 2.15
Isoleucine 3.23 2.12
Valine 3.66 2.88
4-Methyl-2-oxopentanoate 1.70 1.78
2-Oxo-3-methylvalerate 1.19 1.57
3-Methyl-2-oxobutyrate 2.75 2.77
3-Hydroxyisobutyrate 1.63

Histidine Histidine 2.45 1.41
N-Methylhistamine 0.46
Histamine 1.42 1.32
Carnosine 0.91

Alanine, aspartate, and glutamate Alanine 3.51 2.43
Glutamate 1.56 0.97
1-Pyrroline-5-carboxylate 1.08
Asparagine 2.40 1.21
Glutamine 3.34 2.64

Phenylalanine and tyrosine Phenylalanine 2.92 2.11
Tyrosine 3.15 2.20
4-Hydroxyphenylacetate 0.92
3-Methoxytyramine 0.53
Vanillylmandelate 0.90
2-Hydroxyphenylacetate 0.60
4-Hydroxyphenyllactate 0.57

Tryptophan Tryptophan 3.50 2.68
5-Hydroxyindoleacetate 1.00
3-Hydroxyanthranilate 0.86
Kynurenine 2.26 1.90
Anthranilate 1.42

Lysine Lysine 3.41 2.17
L-2-Aminoadipate 2.35

Carbohydrate metabolism Glycolysis Glucose 3.84 3.22
Lactate 3.32 3.51

Pentose and fructose Xylitol 0.45
Mannose 2.56

Amino sugar Glucuronate 0.70

Continued
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gentamicin exposure and identified metabolites in these path-
ways as potential early injury indicators.

Several studies using a variety of nephrotoxicants have in-
vestigated the potential of various proteins and microRNAs in
biofluids to serve as indicators that are more sensitive than
established ones, and which are indicative of prerenal damage
(Barnett and Cummings, 2018; Fuchs et al., 2014; Ichii and
Horino, 2018; Luo et al., 2016; Shin et al., 2014). However, these
indicators have yet to be incorporated into clinical practice.
Other studies have focused on the identification of metabolites
as potential alternatives, which can be sampled readily and
detected noninvasively in accessible biofluids earlier than the
cellular proteins (Abbiss et al., 2019; Boudonck et al., 2009a;
Hanna et al., 2013; Noto et al., 2013; Sun et al., 2012; Uehara et al.,
2014). One advantage of global metabolic profiling analysis is its
power to observe patterns of metabolites that increase or de-
crease as a result of exposure to a toxicant. Yet, most studies
have examined only a limited number of metabolites, without
establishing the causality between their changes in response to
toxicant exposure and the ensuing injury in the organ of inter-
est—a necessary step to fully explore the capability of early
indicators of organ injury.

Consistent with the known gentamicin nephrotoxicity, our
analysis of the global changes at the tissue level, together with
the corresponding alterations in biofluids, indicated that genta-
micin primarily affected the kidneys without affecting the liver.
The lack of impact on the liver is further confirmed by the MFA,
where the absolute fluxes for reactions in the glucose produc-
tion pathway did not change significantly. Furthermore, we ob-
served many significantly changed metabolites that were more
readily apparent in urine than in plasma (Figure 2). This result
is not surprising, given that gentamicin causes damage to renal
proximal tubular epithelial cells, which are primarily involved
in the solute reabsorption process, and, hence, any impairment
in their function would be apparent in urine but not in plasma.
Furthermore, metabolite patterns in blood are more tightly con-
trolled homeostatically compared with urinary changes.
Interestingly, most of these changes in urine occurred earlier (at
7 h) than KIM-1, whose levels did not significantly change until
13 h after gentamicin exposure (Figure 1), revealing the poten-
tial of global metabolic profiling for early detection of organ
injury.

Existing evidence on the mechanism of gentamicin-induced
nephrotoxicity suggests that, after being ingested, the drug
accumulates in renal tubular cells through a process called
receptor-mediated endocytosis (Lopez-Novoa et al., 2011).
Excess accumulation of gentamicin within endosomes leads to

their disruption and leakage of their contents into the cytosol
(Regec et al., 1989). Cytosolic gentamicin then acts on mitochon-
dria directly or indirectly, leading to impairment of ATP synthe-
sis, production of reactive oxygen species, and apoptosis. Our
integrated analysis revealed that gentamicin accumulation
leads to significant downregulation of most lysosomal genes,
indicating the disruption of lysosomal function (Supplementary
Table 6). We found significant changes in lipid metabolism
reflecting this phenomenon, with upregulation of many genes
involved in glycerophospholipid metabolism and downregula-
tion of those involved in sphingolipid metabolism (Figure 8).
Similarly, our results indicated mitochondrial damage, with
downregulation of most TCA cycle genes, impairment of BCAA
degradation, and reduction of arginine and proline metabolism,
which provide the precursors (eg, acetyl-CoA and succinyl-CoA)
required for energy metabolism. Interestingly, several of the
changes in gene expression observed here are in good agree-
ment with toxicogenomic studies in the literature (Amin et al.,
2004; Ozaki et al., 2010). For example, using microarray technol-
ogy, Ozaki et al. evaluated gene-expression changes in the kid-
neys of rats exposed to a daily dose of 80 mg/kg of gentamicin
for 1 week. Their observation that many genes involved in AA
metabolism were downregulated is consistent with our study,
where we gave rats a single dose of 0.50 g/kg of gentamicin and
measured changes in gene expression at 7 h postexposure.
These findings reveal the mechanistic basis of the changes in
gentamicin-induced kidney damage, and suggest that a tar-
geted measurement of alterations in these pathways could
identify novel indicators.

We identified many metabolites that significantly increased
or decreased in the plasma and urine, and whose alterations
were driven by gene-expression changes (Tables 2 and 3).
Specifically, most urine metabolites associated with arginine
and proline metabolism (as well as with leucine, isoleucine, and
valine degradation) significantly increased in concordance with
the gene-expression changes. Notably, we found evidence in-
dicative of aminoaciduria, in the form of significant (> 5 fold)
increases in proline, citrulline, arginine, and ornithine as early
as 7 h, whose levels were maintained at 13 h postgentamicin ex-
posure. Importantly, arginine, which is primarily synthesized in
the kidneys and is the precursor of nitric oxide, guanidinoace-
tate, creatine, agmatine, and other polyamines, serves multiple
functions in addition to its role in protein synthesis (Barbul,
1986). Downregulation of genes responsible for the synthesis of
nitric oxide and guanidinoacetate indicated impaired arginine
metabolism, as reflected in the consistent elevation of arginine,
creatine, ornithine, and proline, and the reduction of

Table 3. (continued)

Main Pathway Subordinate Pathway Metabolite

Log2 (Fold Change)

7 h 13 h

Lipid metabolism Ketone (R)-3-hydroxybutanoate 4.00 3.78
Inositol Inositol 2.12 1.05
Phospholipid Choline �0.48

Ethanolamine phosphate 3.22 2.00
Glycerolipid Glycerol-3-phosphate 1.25

Nucleotide metabolism Pyrimidine 3-Ureidopropionate �0.51
Thymine 0.71

Purine cGMP �0.76
2-Deoxyadenosine �1.19
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guanidinoacetate in urine (Figure 6A). Altered arginine metabo-
lism has been implicated in end-stage renal disease patients
(Lau et al., 2000), with several studies showing a protective effect
of arginine on gentamicin-induced nephrotoxicity (Bashan et al.,
2014; Miri et al., 2018).

The early changes of AA metabolism observed in our study
are consistent with several previous studies under different ex-
perimental conditions. For example, newborn rats repeatedly
given gentamicin at a dose of 10 or 20 mg/kg for 3 or 7 days
showed significant increases in urine levels of tryptophan,
kynurenine, glutamine, glycine, and alanine at both 3 and 7
days (Hanna et al., 2013). Similarly, in a urinary metabolite
study, Sprague Dawley rats given gentamicin daily at a dose of
40 mg/kg for 1, 5, or 28 days exhibited aminoaciduria, with sig-
nificant increases in several metabolites (including BCAAs) as
observed in our study, suggesting their potential to serve as
early indicators of kidney damage (Boudonck et al., 2009b).
Furthermore, in a preclinical study (Sun et al., 2012), urinary me-
tabolite changes in rats observed at 11 different time points (1–
44 days) revealed an initial increase and a later decrease in
metabolites involved in AA metabolism, reflecting the histo-
pathologic changes in the development of, and recovery from,
kidney damage, suggesting injury-specific changes in AA me-
tabolism. In addition to metabolites involved in AA metabolism,

we identified several others involved in the metabolism of car-
bohydrates, lipids, and nucleotides (Table 3), which are pre-
dicted by the multitissue GSM using the gene-expression
changes in the kidney, and which could thereby serve as a po-
tential panel of metabolite indicators. More interestingly, sev-
eral metabolites identified in our study were also reported to be
significantly changed after exposure to cisplatin, a representa-
tive of another class of classic nephrotoxicants, indicating a
similar mechanism of action in the kidney (Portilla et al., 2006;
Xu et al., 2008). Therefore, our analysis suggests that early kid-
ney damage induced by gentamicin may be identified as early
as 7 h postexposure by a targeted monitoring of AA-related
metabolites in urine among a plausible list of other metabolites.

Using the rat multitissue GSM, we provided a context to in-
terpret the observed metabolite changes by linking them to the
changes in gene expression in the liver and kidney. However,
our model predicted several metabolites that increase or de-
crease in biofluids for which experimental data did not show
significant changes. Our underlying assumption of a linear rela-
tionship between changes in gene expression and metabolite
fluxes does not account for metabolite alterations regulated by
other biological processes. Therefore, although gene expression
is one of the major drivers of changes in metabolites, to reduce
false positives, we need further information on the role of other
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regulatory factors, such as posttranslational modification, gene
regulation, and allosteric feedback mechanisms, which take
part in the penultimate phenotypic response. Furthermore, cur-
rently, our model predictions are restricted only to a subset of
metabolites detected in the data (approximately 40%) due to a
lack of a more comprehensive reaction network coverage.
Despite the aforementioned limitations, our results show nota-
ble agreement between model predictions and experimental
data and provide opportunities for further curation of GSMs
with the addition of more information, on the physiological
conditions under which the metabolite modifications occur, to
improve the model predictions.

In conclusion, we systematically evaluated toxicant-induced
perturbations in the endogenous metabolism of rats and identi-
fied global changes in genes in the liver and kidney, metabolites
in the plasma and urine, and absolute fluxes in central carbon
metabolism. We developed a new multitissue rat metabolic
model, used it to elucidate the mechanisms involved in
gentamicin-induced kidney damage using transcriptome data,
and predicted metabolites in accessible biofluids that were cor-
related with the gene-expression changes. Our integrated anal-
yses suggest that metabolites involved in the metabolism of
AAs, carbohydrates, lipids, and nucleotides are highly corre-
lated with gene-expression changes and could serve as poten-
tial early indicators of toxicant-induced kidney damage. Thus,
GSMs provide a useful tool to elucidate the underlying mecha-
nisms of chemical-induced toxicity, as well as a potential strat-
egy to identify early indicators of organ injuries.

SUPPLEMENTARY DATA

Supplementary data are available at Toxicological Sciences
online.

DECLARATION OF CONFLICTING INTERESTS

The author/authors declared no potential conflicts of interest
with respect to the research, authorship, and/or publication of
this article.

ACKNOWLEDGMENTS

The Vanderbilt University Medical Center VANTAGE Core pro-
vided the genome-wide RNA-seq data; Metabolon, Inc provided
the global metabolic profiling data and some technical assis-
tance for this work. The opinions and assertions contained
herein are the private views of the authors and are not to be
construed as official or as reflecting the views of the U.S. Army
or of the U.S. Department of Defense, or The Henry M. Jackson
Foundation for Advancement of Military Medicine, Inc This pa-
per has been approved for public release with unlimited
distribution.

FUNDING

The authors were supported by the U.S. Army Medical
Research and Development Command, Ft. Detrick, MD, as
part of the U.S. Army’s Network Science Initiative. Dr Jamey
Young was supported under Contract No. W81XWH-14-C-
0058. VANTAGE is supported in part by a Clinical and
Translational Science Awards (CSTA) (5UL1 RR024975-03),
the Vanderbilt Ingram Cancer Center (P30 CA68485), the

Vanderbilt Vision Center (P30 EY08126), and NIH/NCRR (G20
RR030956).

AUTHOR CONTRIBUTIONS

V.R.P. carried out the RNA-seq analysis, high-throughput data
integration, and computational model development and analy-
sis, and wrote the initial draft of the manuscript. K.C.V. contrib-
uted to the collection of physiological uptake and secretion
rates for the liver and kidney, performed statistical analysis of
metabolomics data, and helped edit the manuscript. S.K.E. per-
formed all of the animal studies, including catheterization sur-
geries. I.T. performed mass spectrometry analysis of plasma
samples obtained from stable isotope infusions. T.P.O. per-
formed all of the blood and urine collection and analysis. R.L.P.
contributed to RNA extraction from tissue and purifications.
J.A.P. supervised and helped to edit the manuscript. J.R. con-
ceived and supervised the study, and helped edit the manu-
script. T.O. helped to edit the manuscript. M.S. conceived the
study, supervised and carried out the experiments on rats to
generate the raw data, and helped write the manuscript. J.D.Y.
conceived the study, supervised, performed metabolic flux anal-
ysis, and helped write the manuscript. A.W. conceived and su-
pervised the study, analyzed the data, and helped edit and write
the final manuscript.

REFERENCES
Abbiss, H., Maker, G. L., and Trengove, R. D. (2019). Metabolomics

approaches for the diagnosis and understanding of kidney
diseases. Metabolites 9, 34.

Agren, R., Bordel, S., Mardinoglu, A., Pornputtapong, N.,
Nookaew, I., and Nielsen, J. (2012). Reconstruction of
genome-scale active metabolic networks for 69 human cell
types and 16 cancer types using INIT. PLoS Comput. Biol. 8,
e1002518.

Amin, R. P., Vickers, A. E., Sistare, F., Thompson, K. L., Roman, R.
J., Lawton, M., Kramer, J., Hamadeh, H. K., Collins, J., and
Grissom, S. (2004). Identification of putative gene based
markers of renal toxicity. Environ. Health Perspect. 112,
465–479.

Antoniewicz, M. R., Kelleher, J. K., and Stephanopoulos, G. (2006).
Determination of confidence intervals of metabolic fluxes es-
timated from stable isotope measurements. Metab. Eng. 8,
324–337.

Antoniewicz, M. R., Kelleher, J. K., and Stephanopoulos, G. (2007).
Accurate assessment of amino acid mass isotopomer distribu-
tions for metabolic flux analysis. Anal. Chem. 79, 7554–7559.

Antoniewicz, M. R., Kelleher, J. K., and Stephanopoulos, G. (2011).
Measuring deuterium enrichment of glucose hydrogen
atoms by gas chromatography/mass spectrometry. Anal.
Chem. 83, 3211–3216.

Araujo, A. M., Carvalho, M., Carvalho, F., Bastos, M. L., and
Guedes de Pinho, P. (2017). Metabolomic approaches in the
discovery of potential urinary biomarkers of drug-induced
liver injury (DILI). Crit. Rev. Toxicol. 47, 633–649.

Bandara, L. R., Kelly, M. D., Lock, E. A., and Kennedy, S. (2003). A
correlation between a proteomic evaluation and conven-
tional measurements in the assessment of renal proximal
tubular toxicity. Toxicol. Sci. 73, 195–206.

Barbul, A. (1986). Arginine: Biochemistry, physiology, and thera-
peutic implications. J. Parenter. Enteral Nutr. 10, 227–238.

PANNALA ET AL. | 309

https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfz228#supplementary-data


Barnett, L. M. A., and Cummings, B. S. (2018). Nephrotoxicity and
renal pathophysiology: A contemporary perspective. Toxicol.
Sci. 164, 379–390.

Bashan, I., Bashan, P., Secilmis, M. A., and Singirik, E. (2014).
Protective effect of L-arginine on gentamicin-induced neph-
rotoxicity in rats. Indian J. Pharmacol. 46, 608–612.

Blais, E. M., Rawls, K. D., Dougherty, B. V., Li, Z. I., Kolling, G. L.,
Ye, P., Wallqvist, A., and Papin, J. A. (2017). Reconciled rat and
human metabolic networks for comparative toxicogenomics
and biomarker predictions. Nat. Commun. 8, 14250.

Boudonck, K. J., Mitchell, M. W., N�emet, L., Keresztes, L., Nyska,
A., Shinar, D., and Rosenstock, M. (2009a). Discovery of
metabolomics biomarkers for early detection of nephrotoxi-
city. Toxicol. Pathol. 37, 280–292.

Boudonck, K. J., Rose, D. J., Karoly, E. D., Lee, D. P., Lawton, K. A.,
and Lapinskas, P. J. (2009b). Metabolomics for early detection
of drug-induced kidney injury: Review of the current status.
Bioanalysis 1, 1645–1663.

Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-
optimal probabilistic RNA-seq quantification. Nat. Biotechnol.
34, 525–527.

Buness, A., Roth, A., Herrmann, A., Schmitz, O., Kamp, H., Busch,
K., and Suter, L. (2014). Identification of metabolites, clinical
chemistry markers and transcripts associated with hepato-
toxicity. PLoS One 9, e97249.

Chandramouli, K., and Qian, P. Y. (2009). Proteomics: Challenges,
techniques and possibilities to overcome biological sample
complexity. Hum. Genomics Proteomics 1, 239204.

Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart,
D. S., and Xia, J. (2018). MetaboAnalyst 4.0: Towards more
transparent and integrative metabolomics analysis. Nucleic
Acids Res. 46, W486–494.

Collings, F. B., and Vaidya, V. S. (2008). Novel technologies for the
discovery and quantitation of biomarkers of toxicity.
Toxicology 245, 167–174.

Cunningham, F., Achuthan, P., Akanni, W., Allen, J., Amode, M.
R., Armean, I. M., Bennett, R., Bhai, J., Billis, K., Boddu, S., et al.
(2019). Ensembl 2019. Nucleic Acids Res. 47, D745–751.

Dehaven, C. D., Evans, A. M., Dai, H., and Lawton, K. A. (2010).
Organization of GC/MS and LC/MS metabolomics data into
chemical libraries. J. Cheminform. 2, 9.

Duarte, N. C., Becker, S. A., Jamshidi, N., Thiele, I., Mo, M. L.,
Vo, T. D., Srivas, R., and Palsson, B. O. (2007). Global recon-
struction of the human metabolic network based on geno-
mic and bibliomic data. Proc. Natl. Acad. Sci. U.S.A. 104,
1777–1782.

Edwards, J. R., Diamantakos, E. A., Peuler, J. D., Lamar, P. C., and
Prozialeck, W. C. (2007). A novel method for the evaluation of
proximal tubule epithelial cellular necrosis in the intact rat
kidney using ethidium homodimer. BMC Physiol. 7, 1.

Elhamri, M., Martin, M., Ferrier, B., and Baverel, G. (1993).
Substrate uptake and utilization by the kidney of fed and
starved rats in vivo. Ren. Physiol. Biochem. 16, 311–324.

Evans, A. M., Bridgewater, B. R., Liu, Q., Mitchell, M. W.,
Robinson, R. J., Dai, H., Stewart, S. J., DeHaven, C. D., and
Miller, L. A. D. (2014). High resolution mass spectrometry
improves data quantity and quality as compared to unit
mass resolution mass spectrometry in high-throughput pro-
filing metabolomics. Metabolomics 4, 1.

Faa, G., Ekstrom, J., Castagnola, M., Gibo, Y., Ottonello, G., and
Fanos, V. (2012). A developmental approach to drug-induced
liver injury in newborns and children. Curr. Med. Chem. 19,
4581–4594.

Fannin, R. D., Russo, M., O’Connell, T. M., Gerrish, K., Winnike, J.
H., Macdonald, J., Newton, J., Malik, S., Sieber, S. O., Parker, J.,
et al. (2010). Acetaminophen dosing of humans results in
blood transcriptome and metabolome changes consistent
with impaired oxidative phosphorylation. Hepatology 51,
227–236.

Ferguson, M. A., and Waikar, S. S. (2012). Established and emerg-
ing markers of kidney function. Clin. Chem. 58, 680–689.

Fuchs, T. C., Mally, A., Wool, A., Beiman, M., and Hewitt, P. (2014).
An exploratory evaluation of the utility of transcriptional
and urinary kidney injury biomarkers for the prediction of
aristolochic acid-induced renal injury in male rats. Vet.
Pathol. 51, 680–694.

Gartland, K. P., Bonner, F. W., and Nicholson, J. K. (1989).
Investigations into the biochemical effects of region-specific
nephrotoxins. Mol. Pharmacol. 35, 242–250.

Gerich, J. E., Meyer, C., Woerle, H. J., and Stumvoll, M. (2001).
Renal gluconeogenesis: Its importance in human glucose ho-
meostasis. Diabetes Care 24, 382–391.

Giuliano, R. A., Paulus, G. J., Verpooten, G. A., Pattyn, V. M., Pollet,
D. E., Nouwen, E. J., Laurent, G., Carlier, M.-B., Maldague, P.,
Tulkens, P. M., et al. (1984). Recovery of cortical phospholipi-
dosis and necrosis after acute gentamicin loading in rats.
Kidney Int. 26, 838–847.

Han, W. K., Bailly, V., Abichandani, R., Thadhani, R., and
Bonventre, J. V. (2002). Kidney injury molecule-1 (KIM-1): A
novel biomarker for human renal proximal tubule injury.
Kidney Int. 62, 237–244.

Hanna, M. H., Segar, J. L., Teesch, L. M., Kasper, D. C., Schaefer, F.
S., and Brophy, P. D. (2013). Urinary metabolomic markers of
aminoglycoside nephrotoxicity in newborn rats. Pediatr. Res.
73, 585–591.

Hasenour, C. M., Wall, M. L., Ridley, D. E., Hughey, C. C., James, F.
D., Wasserman, D. H., and Young, J. D. (2015). Mass
spectrometry-based microassay of 2H and 13C plasma glu-
cose labeling to quantify liver metabolic fluxes in vivo. Am. J.
Physiol. Endocrinol. Metab. 309, E191–203.

Hatano, T., Saiki, S., Okuzumi, A., Mohney, R. P., and Hattori, N.
(2016). Identification of novel biomarkers for Parkinson’s dis-
ease by metabolomic technologies. J. Neurol. Neurosurg.
Psychiatry 87, 295–301.

Hoffmann, D., Adler, M., Vaidya, V. S., Rached, E., Mulrane, L.,
Gallagher, W. M., Callanan, J. J., Gautier, J. C., Matheis, K.,
Staedtler, F., et al. (2010). Performance of novel kidney bio-
markers in preclinical toxicity studies. Toxicol. Sci. 116, 8–22.

Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009).
Systematic and integrative analysis of large gene lists using
DAVID bioinformatics resources. Nat. Protoc. 4, 44–57.

Humes, H. D., Weinberg, J. M., and Knauss, T. C. (1982). Clinical
and pathophysiologic aspects of aminoglycoside nephrotoxi-
city. Am. J. Kidney Dis. 2, 5–29.

Ichii, O., and Horino, T. (2018). MicroRNAs associated with the
development of kidney diseases in humans and animals. J.
Toxicol. Pathol. 31, 23–34.

Igarashi, Y., Nakatsu, N., Yamashita, T., Ono, A., Ohno, Y.,
Urushidani, T., and Yamada, H. (2015). Open TG-GATEs: A
large-scale toxicogenomics database. Nucleic Acids Res.
43(Database issue), D921–927.

Iruzubieta, P., Arias-Loste, M. T., Barbier-Torres, L., Martinez-
Chantar, M. L., and Crespo, J. (2015). The need for biomarkers
in diagnosis and prognosis of drug-induced liver disease:
Does metabolomics have any role? Biomed. Res. Int. 2015, 1.

310 | METABOLITE INDICATORS OF KIDNEY TOXICITY



Jerby, L., and Ruppin, E. (2012). Predicting drug targets and bio-
markers of cancer via genome-scale metabolic modeling.
Clin. Cancer Res. 18, 5572–5584.

Kaneko, K., Soty, M., Zitoun, C., Duchampt, A., Silva, M., Philippe,
E., Gautier-Stein, A., Rajas, F., and Mithieux, G. (2018). The
role of kidney in the inter-organ coordination of endogenous
glucose production during fasting. Mol. Metab. 16, 203–212.

Kaplowitz, N. (2005). Idiosyncratic drug hepatotoxicity. Nat. Rev.
Drug Discov. 4, 489–499.

Karmen, A., Wroblewski, F., and Ladue, J. S. (1955).
Transaminase activity in human blood. J. Clin. Invest. 34,
126–131.

Khan, M. R., Badar, I., and Siddiquah, A. (2011). Prevention of
hepatorenal toxicity with Sonchus asper in gentamicin treated
rats. BMC Complement. Altern. Med. 11, 113.

Lau, T., Owen, W., Yu, Y. M., Noviski, N., Lyons, J., Zurakowski,
D., Tsay, R., Ajami, A., Young, V. R., Castillo, L., et al. (2000).
Arginine, citrulline, and nitric oxide metabolism in end-
stage renal disease patients. J. Clin. Invest. 105, 1217–1225.

Lee, W. M. (2013). Drug-induced acute liver failure. Clin. Liver Dis.
17, 575–586.

Li, J., Li, Q. X., Xie, X. F., Ao, Y., Tie, C. R., and Song, R. J. (2009).
Differential roles of dihydropyridine calcium antagonist ni-
fedipine, nitrendipine and amlodipine on gentamicin-
induced renal tubular toxicity in rats. Eur. J. Pharmacol. 620,
97–104.

Lin, Z., and Will, Y. (2012). Evaluation of drugs with specific organ
toxicities in organ-specific cell lines. Toxicol. Sci. 126, 114–127.

Lopez-Novoa, J. M., Quiros, Y., Vicente, L., Morales, A. I., and
Lopez-Hernandez, F. J. (2011). New insights into the mecha-
nism of aminoglycoside nephrotoxicity: An integrative point
of view. Kidney Int. 79, 33–45.

Luo, Q.-H., Chen, M.-L., Chen, Z.-L., Huang, C., Cheng, A.-C., Fang,
J., Tang, L., and Geng, Y. (2016). Evaluation of KIM-1 and
NGAL as early indicators for assessment of gentamycin-
induced nephrotoxicity in vivo and in vitro. Kidney Blood Press.
Res. 41, 911–918.

Macpherson, N. A., Moscarello, M. A., and Goldberg, D. M. (1991).
Aminoaciduria is an earlier index of renal tubular damage
than conventional renal disease markers in the gentamicin-
rat model of acute renal failure. Clin. Invest. Med. 14, 101–110.

Mardinoglu, A., Agren, R., Kampf, C., Asplund, A., Uhlen, M., and
Nielsen, J. (2014). Genome-scale metabolic modelling of hep-
atocytes reveals serine deficiency in patients with non-
alcoholic fatty liver disease. Nat. Commun. 5, 3083.

Miri, S., Safari, T., Komeili, G. R., Nematbakhsh, M., Niazi, A. A.,
Jahantigh, M., Bagheri, H., and Maghool, F. (2018). Sex differ-
ence in gentamicin-induced nephrotoxicity: Influence of L-
arginine in rat model. Int. J. Prev. Med. 9, 108.

Nonclercq, D., Wrona, S., Toubeau, G., Zanen, J., Heuson-
Stiennon, J.-A., Schaudies, R. P., and Laurent, G. (1992).
Tubular injury and regeneration in the rat kidney following
acute exposure to gentamicin: A time-course study. Ren. Fail.
14, 507–521.

Noto, A., Cibecchini, F., Fanos, V., and Mussap, M. (2013). NGAL
and metabolomics: The single biomarker to reveal the
metabolome alterations in kidney injury. Biomed Res. Int.
2013, 1.

Onakpoya, I. J., Heneghan, C. J., and Aronson, J. K. (2016). Post-
marketing withdrawal of 462 medicinal products because of
adverse drug reactions: A systematic review of the world lit-
erature. BMC Med. 14, 10.

Ozaki, N., Matheis, K. A., Gamber, M., Feidl, T., Nolte, T., Kalkuhl,
A., and Deschl, U. (2010). Identification of genes involved in

gentamicin-induced nephrotoxicity in rats–a toxicogenomic
investigation. Exp. Toxicol. Pathol. 62, 555–566.

Pannala, V. R., Vinnakota, K. C., Rawls, K. D., Estes, S. K., O’Brien,
T. P., Printz, R. L., Papin, J. A., Reifman, J., Shiota, M., Young, J.
D., et al. (2019). Mechanistic identification of biofluid metabo-
lite changes as markers of acetaminophen-induced liver tox-
icity in rats. Toxicol. Appl. Pharmacol. 372, 19–32.

Pannala, V. R., Wall, M. L., Estes, S. K., Trenary, I., O’Brien, T. P.,
Printz, R. L., Vinnakota, K. C., Reifman, J., Shiota, M., Young, J.
D., et al. (2018). Metabolic network-based predictions of
toxicant-induced metabolite changes in the laboratory rat.
Sci. Rep. 8, 11678.

Parikh, C. R., Thiessen-Philbrook, H., Garg, A. X., Kadiyala, D.,
Shlipak, M. G., Koyner, J. L., Edelstein, C. L., Devarajan, P.,
Patel, U. D., Zappitelli, M., et al. (2013). Performance of kidney
injury molecule-1 and liver fatty acid-binding protein and
combined biomarkers of AKI after cardiac surgery. Clin. J. Am.
Soc. Nephrol. 8, 1079–1088.

Pimentel, H., Bray, N. L., Puente, S., Melsted, P., and Pachter, L.
(2017). Differential analysis of RNA-seq incorporating quanti-
fication uncertainty. Nat. Methods 14, 687–690.

Piron, A., Leonard, I., Nonclercq, D., Toubeau, G., Falmagne, P.,
Heuson-Stiennon, J. A., and Laurent, G. (1998). In vitro
demonstration of a mitogenic activity in renal tissue
extracts during regenerative hyperplasia. Am. J. Physiol.
274, F348–F357.

Portilla, D., Li, S., Nagothu, K. K., Megyesi, J., Kaissling, B.,
Schnackenberg, L., Safirstein, R. L., and Beger, R. D. (2006).
Metabolomic study of cisplatin-induced nephrotoxicity.
Kidney Int. 69, 2194–2204.

Ramirez, T., Daneshian, M., Kamp, H., Bois, F. Y., Clench, M. R.,
Coen, M., Donley, B., Fischer, S. M., Ekman, D. R., Fabian, E.,
et al. (2013). Metabolomics in toxicology and preclinical re-
search. ALTEX 30, 209–225.

Regec, A. L., Trump, B. F., and Trifilis, A. L. (1989). Effect of genta-
micin on the lysosomal system of cultured human proximal
tubular cells. Endocytotic activity, lysosomal pH and mem-
brane fragility. Biochem. Pharmacol. 38, 2527–2534.

Remmer, H. (1970). The role of the liver in drug metabolism. Am.
J. Med. 49, 617–629.

Robertson, D. G., Watkins, P. B., and Reily, M. D. (2011).
Metabolomics in toxicology: Preclinical and clinical applica-
tions. Toxicol. Sci. 120(Suppl. 1), S146–170.

Shin, Y. J., Kim, T. H., Won, A. J., Jung, J. Y., Kwack, S. J., Kacew, S.,
Chung, K. H., Lee, B. M., and Kim, H. S. (2014). Age-related dif-
ferences in kidney injury biomarkers induced by cisplatin.
Environ. Toxicol. Pharmacol. 37, 1028–1039.

Shiota, M. (2012). Measurement of glucose homeostasis in vivo:
Combination of tracers and clamp techniques. Methods Mol.
Biol. 933, 229–253.

Shlomi, T., Cabili, M. N., and Ruppin, E. (2009). Predicting meta-
bolic biomarkers of human inborn errors of metabolism. Mol.
Syst. Biol. 5, 263.

Soderland, P., Lovekar, S., Weiner, D. E., Brooks, D. R., and
Kaufman, J. S. (2010). Chronic kidney disease associated with
environmental toxins and exposures. Adv. Chronic Kidney Dis.
17, 254–264.

Sun, J., Ando, Y., Ahlbory-Dieker, D., Schnackenberg, L., and Xea,
Y. (2013). Systems biology investigation to discover meta-
bolic biomarkers of acetaminophen-induced hepatic injury
using integrated transcriptomics and metabolomics. J. Mol.
Biomark. Diagn. S1, 002.

Sun, J., Bhattacharyya, S., Schnackenberg, L. K., Pence, L., Ando,
Y., Zhang, J., Stewart, S., Rosenzweig, B., Rouse, R., Portilla,

PANNALA ET AL. | 311



D., et al. (2012). Discovery of early urinary biomarkers in pre-
clinical study of gentamicin-induced kidney injury and re-
covery in rats. Metabolomics 8, 1181–1193.

Suryawan, A., Hawes, J. W., Harris, R. A., Shimomura, Y., Jenkins,
A. E., and Hutson, S. M. (1998). A molecular model of human
branched-chain amino acid metabolism. Am. J. Clin. Nutr. 68,
72–81.

Tugwood, J. D., Hollins, L. E., and Cockerill, M. J. (2003). Genomics
and the search for novel biomarkers in toxicology. Biomarkers
8, 79–92.

Uehara, T., Horinouchi, A., Morikawa, Y., Tonomura, Y., Minami,
K., Ono, A., Yamate, J., Yamada, H., Ohno, Y., Urushidani, T.,
et al. (2014). Identification of metabolomic biomarkers for
drug-induced acute kidney injury in rats. J. Appl. Toxicol. 34,
1087–1095.

Vree, T. B., Hekster, Y. A., and Anderson, P. G. (1992).
Contribution of the human kidney to the metabolic clearance
of drugs. Ann. Pharmacother. 26, 1421–1428.

Xu, E. Y., Perlina, A., Vu, H., Troth, S. P., Brennan, R. J.,
Aslamkhan, A. G., and Xu, Q. (2008). Integrated pathway
analysis of rat urine metabolic profiles and kidney transcrip-
tomic profiles to elucidate the systems toxicology of model
nephrotoxicants. Chem. Res. Toxicol. 21, 1548–1561.

Yamamoto, H., Aikawa, T., Matsutaka, H., Okuda, T., and
Ishikawa, E. (1974). Interorganal relationships of amino acid
metabolism in fed rats. Am. J. Physiol. 226, 1428–1433.

Young, J. D. (2014). INCA: A computational platform for isotopi-
cally non-stationary metabolic flux analysis. Bioinformatics
30, 1333–1335.

Yu, C., Woo, H. J., Yu, X., Oyama, T., Wallqvist, A., and Reifman, J.
(2017). A strategy for evaluating pathway analysis methods.
BMC Bioinform. 18, 453.

Zhang, A., Sun, H., Wang, P., Han, Y., and Wang, X. (2012).
Metabonomics for discovering biomarkers of hepatotoxicity
and nephrotoxicity. Pharmazie 67, 99–105.

312 | METABOLITE INDICATORS OF KIDNEY TOXICITY


