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Abstract: The success on the design of new oral nanocarriers greatly depends on the identification
of the best physicochemical properties that would allow their diffusion across the mucus layer
that protects the intestinal epithelium. In this context, particle tracking (PT) has arisen in the
pharmaceutical field as an excellent tool to evaluate the diffusion of individual particles across the
intestinal mucus. In PT, the trajectories of individual particles are characterized by the mean square
displacement (MSD), which is used to calculate the coefficient of diffusion (D) and the anomalous
diffusion parameter (α) as MSD = 4Dτα. Unfortunately, there is no stablished criteria to evaluate
the goodness-of-fit of the experimental data to the mathematical model. This work shows that
the commonly used R2 parameter may lead to an overestimation of the diffusion capacity of oral
nanocarriers. We propose a screening approach based on a combination of R2 with further statistical
parameters. We have analyzed the effect of this approach to study the intestinal mucodiffusion of
lipid oral nanocarriers, compared to the conventional screening approach. Last, we have developed
software able to perform the whole PT analysis in a time-saving, user-friendly, and rational fashion.

Keywords: particle tracking; diffusion; oral lipid nanocarriers; data processing; R software; screening
of trajectories

1. Introduction

Lipid nanocarriers have shown a great potential as oral drug delivery systems [1,2].
These nanocarriers can be formulated either as digestible or non-digestible, depending on
the cargo molecule and the target of the formulation. In any case, there are components of
the gastrointestinal tract such as electrolytes and macromolecules that may modify the outer
composition of the lipid droplets [3,4]. This may result in a heterogeneous-shell system that
must overcome the mucus barrier to reach its target, i.e., the intestinal epithelium. Under
this scenario, it is mandatory to work with experimental tools that properly analyze the
mucodiffusion capacity of each individual particle. Those particles would be the ones that
reach the intestinal epithelial cells, an additional biological barrier for the local treatment
or for achieving systemic drug levels [5].

Particle tracking (PT) is a powerful microscopy technique that enables the quantifi-
cation of single particle diffusion in non-diluted and complex biological media [6–10].
The use of PT in oral drug delivery determines the diffusion of nanocarriers across the
intestinal mucus and assesses those factors like size, hydrophobicity, or charge that affect
mucodiffusion [3,11–13]. Consequently, PT may help to understand the biological behavior
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of oral nanocarriers and be a useful tool for researchers in the rational design and fine
tune-up of these formulations. In brief, PT experiments uses fluorescence microscopy with
high-sensitivity cameras to record time-lapse videos of fluorescently-labeled nanocarriers
incubated with intestinal mucus or mucin reconstituted gels. Then, each particle is located
throughout the different frames of the videos and these positions are linked to obtain
plausible trajectories. A deeper vision on how to perform these experiments and further
technical details are excellently reviewed elsewhere [6,9,10].

One of the main strengths of PT relies on its capacity to track individual particles.
This makes it feasible to identify and characterize heterogeneity in the behavior of the
different particles that constitute the sample, which is particularly relevant when designing
novel nanocarriers [5,14,15]. The oil/water interface composition of each particle will
determine its individual interaction with the intestinal mucus, being possible to classify
them into the different populations that form a batch [3,6,9,10]. This is especially relevant
in pharmaceutical technology as it allows a more accurate estimation of the fraction of the
oral administered dose that could reach the intestinal epithelium at a certain time point.

Individual trajectories are characterized by the mean square displacement (MSD),
given the x and y position data of each particle. In viscous fluids, such as intestinal mucus,
MSD is proportional to the coefficient of diffusion (D). A typical situation that happens
in biological media is when particles encounter obstacles that hamper their free diffusion,
i.e., intestinal mucus, then their movements suffer a deviation from free Brownian motion.
This process is called anomalous diffusion and can be represented by the dimensionless pa-
rameter α (anomalous diffusion coefficient) [8,9,16,17]. In these cases, the two-dimensional
diffusion MSD can be calculated using the following Equation (1) [6,8,14,16,18]:

MSD = 4Dτα, (1)

where τ is the lag time. This fitting is applied to every single particle, generally thousands of
them within a sample. In this sense, it is mandatory to follow or develop a decision-making
tool to evaluate the goodness-of-fit of the raw experimental data to the theoretical model.
Currently, there is a lack of well-established protocols to filter and analyze the trajectories
as well as of information about the data processing criteria followed in the specialized
literature [19]. Within this scenario, the coefficient of determination of each particle (R2)
is commonly used as screening parameter, dismissing the particles for which the R2 from
Equation (1) fitting is lower than certain threshold (0.9, 0.8, 0.7, etc., . . . ) [20–24]. From a
mathematical point of view (Equation (2), R2 is expressed as:

R2 = 1− RSS
TSS

, (2)

where RSS is the residuals sum of squares and TSS is the total sum of squares. The term
R2 is probably the most accepted expression to determine the goodness-of-fit in statistical
models. However, it is important to highlight that for close to horizontal lines, that is when
the MSD of a particle presents a minimal dependence on τ, RSS/TSS→ 1 . Under this
scenario, even if the regression analysis of the MSD vs. τ experimental data with respect to
the theoretical model shows a good fitting, R2 → 0 . This mathematical issue is especially
relevant for the study of the interaction of nanocarriers with the intestinal mucus.

The study of the mucodiffusion capacity of nanocarriers can bring three main scenarios,
illustrated in Figure 1. Bearing this mind, using R2 as the unique screening parameter of
raw MSD vs. τ set of data may result in the consideration of those particles with a limited
capacity to overcome the intestinal mucus as experimental artifacts or erratic trajectories
(as R2 → 0). It is important to highlight that the exclusion of this non-diffusing population
of particles from the final data analysis may result in the overestimation of the therapeutic
capacity of a nanocarrier. This inaccurate screening issue would lead to the following
chain reaction:

• Underestimation of the fraction of the nanocarrier retained in the mucus layer.
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• Overestimation of the potential therapeutic effect of the nanocarrier after their
oral administration.

• Difficulties in stablishing a clear relationship between the physicochemical properties
of the nanocarrier and its capacity to overcome the intestinal mucus.

• Amplified in vitro–in vivo divergence.
• Misuse of test animals in the subsequent in vivo assays.
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Figure 1. Three possible scenarios in the regression analysis of experimental Mean Square Dis-
placement (MSD) vs. lag time (τ) data (dots) to the MSD = 4Dτα theoretical model (dashed
line). (a) Erratic trajectories due to uncontrollable experimental artifacts ( MSD = MSD(τ); R2 → 0 ).
(b) Nanoparticles unable to diffuse across the intestinal mucus (MSD 6= MSD(τ); R2 → 0 ).
(c) Nanoparticles able to diffuse across the intestinal mucus ( MSD = MSD(τ); R2 → 1 ).

This work aims to determine the reliability of using R2 as the unique statistic parameter
to determine the goodness-of-fit of the MSD vs. τ curves obtained in PT experiments. Then,
we have evaluated the limitations of this conventional approach using model polystyrene
nanoparticles as control (PSNPs) as well as oral lipid nanocarriers (case study). The acquired
knowledge is gathered into a free and user-friendly software for PT analysis that aims to
contribute to the rational design and development of nanocarriers in drug delivery.

2. Materials and Methods
2.1. Polystyrene Nanoparticles

Fluorescent carboxylic polystyrene nanoparticles (PSNPs) (λex = 576 nm, λem = 596 nm)
were formulated and characterized by Ikerlat S.A. Laboratories (Gipuzkoa, Spain). Their
size and polydispersity index were 123 ± 1 nm and 1.008, respectively. Plain PSNPs were
used as mucoadhesive control [25,26]. The same PSNPs coated with Pluronic® F127 (PF127)
were used as mucodiffusive model nanoparticles [6,11,25,27].

2.2. Formulation of Lipid Nanocarriers (Case-Study)

A formulation of o/w nanoemulsions was selected as representative lipid nanocarriers
and obtained using the solvent displacement technique as recently described [3]. The
organic phase, constituted by 5 mL of acetone, 38 mg of α-tocopherol (Sigma, Madrid,
Spain) and 17 mg of ascorbyl-dipalmitate (CombiBlocks, San Diego, CA, USA) was added
to 10 mL of ultrapure water. Then, solvents were rota-evaporated to yield a final volume
of 5 mL. The obtaining of partially digested nanoemulsions was achieved by incubating
the particles with a mixture containing pancreatin, porcine bile salts (5 mg/mL), and
CaCl2·2H2O (0.3 mg/mL) (Sigma, Spain) diluted in simulated intestinal fluid (USP XXIX
guidelines) for 24 h at 37 ◦C [3,28]. Partially digested nanoemulsions were recovered after
centrifugation at 5000 rpm for 10 min.

2.3. Intestinal Mucus Extraction

Porcine intestinal mucus is a well stablished model of human intestinal mucus [3,11,12,29].
For that purpose, adult-porcine small intestines were obtained from a local slaughterhouse
and washed with 2 mM phosphate-buffer saline (PBS) The intestinal mucus was scraped from
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the intestine. Finally, 1–2 mL aliquots of mucus were obtained and stored at −20 ◦C until
their use.

2.4. PT Videos Recording and Data Collection

Mucoadhesive or mucodiffusive PSNPs were diluted in 2 mM PBS. Then, particles
and mucus samples were heated up to 37 ◦C to simulate the body temperature. After that,
10 µL of the diluted PSNPs were gently mixed with 100 µL of mucus, and 10–15 µL of this
sample was placed on a microscope slide with a double-adhesive sticker (120 µm thickness)
(Sigma, Portland, OR, USA) before being covered with a cover glass. The PT experiments
were performed using a Nikon microscope with a PLAN APO 100 × 1.4 oil-immersion
objective placed on an anti-vibration table (Vision station, Newport). The microscope was
equipped with a thermostatic platen (Tokai hit) to maintain the samples at 37 ◦C during the
experiments. The Brownian motion of the particles was recorded with an Andor Zyla 4.2
camera (pixel resolution of 70 nm). All the movies were recorded at a minimum focal plane
of 8–12 µm from the cover glass to avoid erratic trajectories affected by the interaction of
the P-NPs with the cover slip [30]. For each sample, we recorded 20 movies at 100 fps,
obtaining a minimum of 100 trajectories per movie.

2.5. PT Data Processing

Nd2 Nikon video files were analyzed with the tracking module of the NIS elements
software (Nikon Corp., Melville, NY, USA). This software correlates the position of a particle
along the sequence of frames with the algorithm developed by Jaqaman et al. [31]. Under
the linear assignment problem (LAP) mathematical framework [32], this algorithm faces
some of the inherent problems of PT, such as particle concentration, motion heterogeneity,
particles merging/splitting trajectories or particles disappearance from the focal plane.
Standard deviation multiplication factor was set to 2.

This approximation to the multiple-hypothesis tracking (MHT), one of the most
accurate solutions to PT [33], was used for the determination of the evolution of the
MSDijk as a function of the time in each i movie (i = 1, . . . , 20) for each one of the j
trajectories (j = 1, . . . mi, where mi is the number of trajectories in video i); k is the segment
id (k = 1, . . . , nij, being nij the number of segments in trajectory j in video i). To minimize
experimental artifacts, data processing only considered those trajectories with at least
10 segments (nij ≥ 10) [34].

2.6. Analysis of the Trajectories

Once MSD vs. lag time curve was trimmed at the selected lag time (up to 1 s, detailed
information is described in Section 3.1), it was necessary to determine the goodness-of-fit
for each trajectory to the mathematical model, not considering those with a poor fitting for
the final D and α estimation. First, we estimate D and α, i.e., D̂ij and α̂ij, respectively, for
each particle. We use the two main methods for estimating the model parameters (Equation
(3), namely: (1) a non-linear fit of Equation (1), for which several algorithms are available;
and (2) a linear fit of the log transformation of Equation (1):

log(MSD) = log(4D) + α· log(τ) + ε. (3)

In the former approach, we directly get estimations and confidence intervals for the
parameters D and α. In the latter, least squares estimates are obtained for the regression
line in Equation (3), i.e., y = β0 + β1x + ε. The estimated slope of a given particle, β̂1, is
directly α̂ij, the estimate of the α parameter, whereas D̂ij must be computed through the
estimated intercept, β̂0, as follows (Equation (4):

D̂ij =
eβ̂0

4
. (4)
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Then, for each fitted model, i.e., particle trajectory, and for both methods (non-linear,
and linear transformation), different error measurements can be computed, including the
coefficient of determination, R2. In the PT screening, it is common to select the trajectories
whose linear model R2 surpasses a given threshold, say 0.9, or any other criteria selected
by the researcher [20–24]. This may result in misleading decisions, as discussed previously
and in Section 3. Our approach is to combine further error measures, compare between
fitting methods, and use combined thresholds to get a more realistic awareness of the
particle diffusion behavior.

2.6.1. Software Implementation

It is frequent that PT analysts invest much time arranging the results from diverse
scientific software into spreadsheets, as well as manually screening the trajectories and
figuring out the diffusion properties of their samples. Despite there being some open-
source software available for PT users, none of them includes the combination approach
for the screening and assessment of the goodness-of-fit that is proposed in this work. In
this sense, we have developed a PT software that implements our methodology, optimizing
the analysis while keeping the reliability of the results.

For the development of PT software, we relied on the most recent version of the R
Statistical Software and Programming Language (currently R 4.0.2) (Vienna, Austria) [35].
The R scripts are implemented in a Shiny application [36], which are web applications that
run locally or in a web server, and allow user interactivity, reactive programming, and
responsive design. A detailed overview of the application and its potential is included in
Section 3.4.

2.6.2. Modular Implementation

We have developed a dedicated module to get a better insight on the interaction of
nanocarriers with the intestinal mucus barrier using the advantages offered by R scripts
and Shiny applications. This module gives quantitative information about different key
parameters used to understand the interaction of each individual particle of a formulation
with the mucus [13,26,37]:

• Dm/Dr: Although some authors use raw D in mucus (Dm), derived from MSD analysis,
for the evaluation of the mobility of particles, others tend to compare Dm of the sample
with a reference (Dr). More concretely, it is common to express Dm compared to D
measured in a simple reference media, such as saline (Dsaline) or water (Dw). In this way,
Dm/Dw is calculated and particles are considered diffusive at Dm/Dw ~ 1 [10,13]. As an
alternative, Dm might also be compared to Dm of a mucodiffusive control (Dm control),
obtaining Dm/Dm control value. The Dm/Dm control ratio gains relevance when different
samples of intestinal mucus are used to perform a PT experiment, since it enables to
correct the variability occuring due to the intra- and inter-heterogeneity of the mucus
porcine samples, e.g., different viscosity [3,38,39].

• Dlong/Dshort: An interesting option to determine whether the particles are able or not
to diffuse across the mucus is to determine the diffusivity factor for each individual
particle (DF = Dlong/Dshort) [3,14,40]. As for Dm/Dr, it is possible to calculate D for
the same trajectory at two different temporal scales, namely the lag time threshold and
an additional shorter lag time (e.g., 1 and 0.2 s); referring Dlong to D. Free diffusing
particles may display a similar diffusion pattern at long (1 s) and short (0.2 s) lag times,
i.e., DF ≥ 0.9. However, those particles that interact with the mucus display an MSD
vs. τ curve which slopes decrease with the time, that is DF < 0.9 [11,14,25].

• α: As commented above, while free-diffusing particles display an α ≈ 1, mucus-
retained particles present α < 1. Depending on the mucins-particle strength of in-
teraction, the transport mode of each individual particle can be sorted as follows:
(i) immobile (α < 0.2); (ii) hindered (0.2 < α < 0.4); (iii) subdiffusive (0.4 < α < 0.9); and
(iv) diffusive (0.9 < α) [3,11,13,37,41]. On the other hand, α > 1 is usually associated
with super-diffusive particles. This may occur in case the sample is not properly
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sealed, which may lead to flow channels through which particles rapidly diffuse.
Thus, α values > 1.1 are normally discarded from the results. Similarly, the fitting of
equations Equation (1) or Equation (3) may result on an estimation of α̂ < 0. In these
cases, α̂ is considered to be equal to 0.

2.6.3. Mean and Median Paradigm in Real Samples

To achieve an accurate interpretation of the obtained results, it is highly advisable to
rationally select which statistical measurement fits best to express them. In this sense, the
most used parameters are the mean and the median. The mean might be an appropriate
estimator when data follow a Gaussian distribution, but in conditions of high heterogeneity
with extreme behaviors, the use of the mean might lead to misleading results. In these
situations, selecting the median may be a more suitable choice, since it would be more
representative than the mean, and subsequently less biased [42]. This could be the situation
of lipid nanocarriers that are in the gastrointestinal tract, exposed to enzymes that may
lead to heterogeneous mixtures including non-digested, partially-digested, and totally
digested particles [43,44]. Each of these populations may interact differently with the
intestinal mucus (see case-study section). For this reason, it is useful to perform some
exploratory data analysis of the distribution of the estimators, the R2 and the error measured
using histograms and numeric summaries. Apart from helping the PT user to select the
more suitable statistic, this analysis may contribute to the quick understanding of the
heterogeneity of the sample. This is especially relevant when only a small fraction of the
sample is required to achieve the desired therapeutic effect. However, this information
could be missed in case of systematically working only with the mean of the results.

3. Results and Discussion

It is undoubted that PT is a technique of which fundaments are well stablished
and therefore, highly promising for drug delivery. Nevertheless, there is not a gener-
ally accepted method for data analysis, so researchers may encounter difficulties like the
generation of a large amount of data or the screening of the raw data to determine the
goodness-of-fit of the raw trajectories to the mathematical model. This is internally solved
by researchers but this information is usually not available, so many questions regarding
PT data analysis remain unanswered. This work aims to contribute to PT data analysis by
providing a novel screening approach for particle trajectories, which has been additionally
applied to lipid nanocarriers, a well-known system in drug delivery. Finally, this informa-
tion has been gathered into a publicly available software to enable the robust analysis of
PT data.

3.1. Video Recording and Data Processing Parameters

The pixel resolution of the microscope setup, described in Section 2.4, was 70 or 35 nm
(when 2×magnification lens were placed between the microscope and the CCD camera),
which was small enough to have a good resolution of the nanoparticles movement and also
meet the Nyquist sampling theorem [6,10]. Additionally, this pixel size was large enough to
collect the adequate number of photons per pixel during the image acquisition time (10 ms)
with a good signal/noise (S/N) ratio. Longer image acquisition time might improve the
S/N ratio but could also lead to underestimation of the diffusivity of the particles.

Standard deviation multiplication factor was set to 2. Lower values reduced the
localization perimeter of a particle from frame to frame, which dramatically decreased
the number of available trajectories per movie (data not shown). Increasing the standard
deviation multiplication factor, extended the searching perimeter from frame to frame
which may result in experimental artifacts by merging different trajectories.

The effect that lag time has on the accuracy of PT data analysis has been previously de-
scribed [10,16,45,46]. In this sense, it is widely accepted that increasing lag times enhances
uncertainty and statistical errors of the calculated MSD [10,46], as there are less trajectories
at longer lag times and therefore the calculation of MSD would include less statistically
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significant trajectories (see Figure 2). On this basis, Zagato et al. recommend including
25% of lag times for a robust MSD analysis [10]. Kepten et al. suggested shortening lag
time in term of the magnitude of the measurement error. For a medium measurement
error, they recommended taking lag times 10–20% of the length of trajectories in the case
of short trajectories, and 4–7% in the case of longer trajectories [16]. On the other side,
selecting too short lag times could contribute to the overestimation of the diffusion, since
particles tend to stabilize or stop their diffusion over time, and thus their true MSD is
smaller than the MSD they show at short lag times. Additionally, static (noise) PT errors
are more pronounced at shorter lag times [6].
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Despite these approximations, there is not an optimal lag time associated with the
best estimation of MSD [16,45]. In line with the literature, the model particles PSNPs had an
overestimation of their D values in saline at short lag times (0.3 s), whereas the increase of
the lag time up to 1 s led to similar D to those obtained by DLS (data not shown). Therefore,
the following experiments were performed at a maximum value of 1 s for the lag time,
which is consistent with the lag time threshold commonly used by other authors [26,37,47].
In this sense, it is worth to remark that some currently available commercial PT software
systematically work with short lag times, i.e., few segments (n = 3). Thus, PT users should
be cautious and adjust this parameter to ensure reliable MSD calculations.

3.2. Analysis of the Trajectories

One of the distinctive features of PT from other techniques is its potential to follow
individual trajectories instead of providing information about mean or ensemble diffusion
capacity of the whole formulation. Data analysis should initially consider whether raw
MSD vs. τ data fit to the theoretical model, i.e., MSD = 4Dτα. This screening is highly
relevant but not usually included in the description procedures of PT data analysis. Indeed,
it is common to consider as reliable trajectories only those with a goodness of fit higher
than a certain threshold of the coefficient of determination (R2 ≥ 0.9, 0.8, 0.7, . . . ). By
doing so, the reproducibility of PT experiments among different laboratories might be
compromised; indeed, it can also lead to overestimation of the potential of nanocarriers to
pass across a biological barrier, like the intestinal mucus. Thus, this study aims to develop
a robust method for the analysis of PT raw data.

It is well-known that a value of R2 close to 1 ensures a good linear adjustment as it
represents the proportion of variability explained by the model. In this line, A. Matysik and
R.S. Kraut proposed excluding PT trajectories with R2 values lower than 0.9. Their filtering
approach also included additional criteria, such as the minimum number of frames and a
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minimum and maximum D and average trajectory intensity [20]. In other recent papers,
the R2 threshold was set at 0.8 [21,22] or even at lower values, such as 0.5 [24].

Bearing this in mind we studied the effect of the R2 trim on the estimated D and α of
both the mucoadhesive and mucodiffusive model PSNPs (expressed as Dm/Dw). Briefly,
Dm/Dw → 1 or α→ 1 indicates a mucodiffusive behavior, where Dm/Dw → 0 or α→ 0
implies that the nanocarriers are stuck on the mucus [3,11,26]. Interestingly, the narrow
down of R2 had a minor effect on both parameters for the mucodiffusive PSNPs (Figure 3),
whereas Dm/Dw and α parameters of the mucoadhesive counterpart clearly depended
on the R2 threshold. If those trajectories with R2 below 0.7–0.9 are not considered, we
observed an enhancement of both Dm/Dw and α values. In fact, Dm/Dw obtained with
R2 > 0.7–0.9 criterion was two orders of magnitude higher than the one obtained including
trajectories with lower R2 (Figure 3A). Regarding α, the increase of the R2 threshold shifted
from a totally stuck (α < 0.2) to a subdiffusive pattern (Figure 3B). PSNPs is a well-known
mucoadhesive formulation [47], which does not correlate with the results obtained even at
R2 > 0.5.
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These results can be more easily understood by analyzing the trajectories distribution of
each formulation as a function of R2. The bar chart included in Figure 4 shows the population
distribution of the observed trajectories for the mucoadhesive and mucodiffusive PSNPs.
Nearly 70% of the trajectories from the mucodiffusive PSNPs had R2 ≥ 0.6, which clearly
shows that only a small fraction of the mucodiffusive PSNPs will have low R2 values. This has
a reduced impact on D or α and low R2 values most probably come from trajectories that do
not fit to the theoretical model, e.g., erratic trajectories or experimental artifacts.

Interestingly, ~75% of the trajectories of the mucoadhesive PSNPs presented a R2 ≤ 0.3.
A deeper analysis of this set of data showed that only ~10% of the whole formulation have
a R2 ≥ 0.5 and just the ~5% a R2 ≥ 0.7. This is in line with the work recently published
by A.S Hansen et al. [48]. They also concluded that the MSD fitting with high R2 values
may lead to misleading results. Concretely, they observed that MSD at R2 ≥ 0.8 only used
around 4–5% of the total number of trajectories.

This clearly indicates that using only R2 as the screening parameter can compromise
the validity of the results for low diffusion formulations. Indeed, it is important to highlight
that R2 is excluding not only erratic trajectories, but also those with a good fitting to the
mathematical model but low dependence of MSD with τ. This exclusion of adhesive
trajectories and the consequent overestimation of the diffusion could be explained by how
R2 is calculated. Certainly, R2 is defined as the variation of the y axis variable (MSD)
regarding the x axis variable (τ). In the case of adhesive particles, MSD does not tend
to significantly increase along time, so the expected linear fitting is a close to horizontal



Pharmaceutics 2021, 13, 370 9 of 18

line and therefore if RSS→ TSS , R2 would be ~0 (see Equation (5) and its corresponding
explanation). This is especially relevant when designing novel oral drug nanocarriers, as
discriminating non-fitting and mucus-stuck particles is required for not overestimating the
potential of the nanocarriers.
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3.3. Case Study: Analysis of the Mucodiffusion of Oral Lipid Nanocarriers

Lipid nanocarriers are referent in oral drug delivery. These versatile systems can be
formulated either as digestible or non-digestible nanocarriers depending on the cargo and
the target selected [49]. Once in the intestinal lumen, lipid nanocarriers can be coated by
intestinal enzymes, co-enzymes, and bile salts, leading to the formation of an intestinal
protein corona I-PC [3,4]. Depending on the specific physicochemical characteristics of
the formulation, this enzymatic coating can induce the null, partial, or total digestion of
the oil droplets. This process triggers the partition of the formulation in a heterogeneous
system and the formation of oil enriched mixed micelles [11]. In addition to its role on the
lipid digestion, we have recently shown that the I-PC may have an important effect on the
interaction of edible lipid nanocarriers with the intestinal mucus [3].

The therapeutic effect of oral nanocarriers depends on the fraction of formulations
that reaches the intestinal epithelium. Then, it is advisable to use experimental techniques
like PT for characterization, as it provides reliable information about the mucodiffusion
capacity of the different populations that constitute the formulation after their interaction
with the intestinal milieu.

As shown above, if RSS→ TSS the use of R2 is clearly limited as the single screening
parameter in PT analysis. This mathematical issue complicates the accurate analysis of the
diffusion of the different populations Briefly, RSS gives an indication of the discrepancy
between a theoretical model (MSD = 4Dπτα in our case) and the experimental data.
Interestingly, RSS value is proportional to the magnitude of the observable, reaching high
values when MSD = MSD(τ) and a reduced magnitude for low and ~ constant MSD
values (typical behavior of mucoadhesive formulations). Low RSS values of mucus retained
particles make this parameter an interesting candidate as additional screening criterion to
determine the goodness of fit; allowing the discrimination between non-diffusing particles
and experimental issues. An alternative to RSS is the use of the root mean square Error
(RMSE), which weights RSS and presents the same units as MSD (detailed information of
the calculation of RSS and RMSE can be found in S.1 in Supplementary Information).
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Bearing this in mind, we have analyzed the effect of the inclusion of RSS as an
additional screening parameter on the determination of the mucodiffusion at two different
conditions: (i) a non-digested lipid nanocarrier and (ii) the same nanocarrier pre-incubated
in simulated intestinal fluid (which resulted on the formation of a heterogeneous system
coated by intestinal enzymes and bile salts) [3,43,44]. First, we analyzed the effect of
the R2 threshold on α, Dm/Dw, and the fraction of the formulation included in each R2

box (See Tables 1 and 2). In both conditions, the classical approach (considering only the
trajectories with R2 ≥ 0.6, 0.7, . . . ) results in a loss of ~60–70% of the raw experimental
data. Additionally, as observed with the model PSNPs, the digested formulation could be
considered as highly-, partially-, or even non-retained in the mucus barrier depending
on the goodness-of-fit threshold. Dm/Dw vs. R2 dependence was slightly lower for the
mucoadhesive non-digested lipid nanocarrier; however, even for this formulation, α values
increased from 0.22 to 0.78 as a function of the R2 threshold.

Table 1. Main results of particle tracking experiments performed for digested lipid nanocarriers obtained
after following different approaches for the screening of trajectories showing poor goodness-of-fit.

Screening
Approach α Dm/Dw NPs NPs (%)

R2 ≥ 0.0 0.37 0.064 6965 100.0
R2 ≥ 0.1 0.47 0.083 5259 75.5
R2 ≥ 0.2 0.52 0.094 4532 65.1
R2 ≥ 0.3 0.57 0.108 3883 55.8
R2 ≥ 0.4 0.62 0.126 3236 46.5
R2 ≥ 0.5 0.66 0.148 2646 38.0
R2 ≥ 0.6 0.71 0.181 2090 30.0
R2 ≥ 0.7 0.76 0.225 1591 22.8
R2 ≥ 0.8 0.83 0.299 1102 15.8
R2 ≥ 0.9 0.92 0.443 627 9.0

R2 + RSS 0.32 0.064 6681 95.9

Table 2. Main results of particle tracking experiments performed for non-digested lipid nanocarriers
obtained after following different approaches for the screening of trajectories showing poor goodness-of-fit.

Screening
Approach α Dm/Dw NPs NPs (%)

R2 ≥ 0.0 0.22 0.009 1167 100.0
R2 ≥ 0.1 0.35 0.014 741 63.5
R2 ≥ 0.2 0.41 0.017 605 51.8
R2 ≥ 0.3 0.46 0.020 517 44.3
R2 ≥ 0.4 0.50 0.023 449 38.5
R2 ≥ 0.5 0.53 0.025 396 33.9
R2 ≥ 0.6 0.56 0.029 342 29.3
R2 ≥ 0.7 0.59 0.035 282 24.2
R2 ≥ 0.8 0.66 0.044 211 18.1
R2 ≥ 0.9 0.78 0.072 122 10.5

R2 + RSS 0.22 0.009 1113 95.4

To get a better insight of the effect of the use of R2 threshold or a combination of
R2 + RSS as a screening parameter, we followed the decision tree depicted in Figure 5.
The mean results of the application of the combination approach to the non- and digested
lipid nanocarriers are also included in Tables 1 and 2. Figure 6 illustrates the results
of both situations for the non-digested nanocarrier, which shows that the combination
approach (R2 + RSS) led to a qualitatively identical density line that the non-screened
data (including >95% of the original trajectories). This clearly indicates a homogeneous
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distribution of the erratic trajectories (just ~4% of the original raw data). In line with our
previous results, when the R2 threshold was used as a unique criterion to evaluate the
goodness-of-fit, a clear reduction in the number of the slower trajectories was observed
(the digested formulation presented a similar behavior, see Figure S1). This would lead to
a clear overestimation of the final dose that may reach the intestinal epithelium.
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Bearing this in mind, we have estimated the kinetic for the passage of both lipid
nanocarriers (non-digested or digested) across the intestinal mucus. Considering that the
intestinal mucus blanket has a mean thickness of ~100 µm, it is possible to use D̂m to
calculate the mean time required for a formulation to overcome this layer as (Equation (5):

r =
√

D̂m tlog(1/1− p), (5)

where r is the distance (100 µm), t is the time, and p the probability (set as 99.9%) [11,50,51].
Figure 7 shows the reduction on the mean time required for both lipid nanocarriers to
diffuse across an intestinal porcine mucus layer of 100 µm based on a single (R2) or combi-
nation (R2 + RSS) screening approach. Depending on the lipid nanocarrier, i.e., digested or
non-digested, the single approach led up to ~2–8 fold reduction of the estimated diffusion
mean time in comparison with the combination approach. These results clearly show
that the R2 trim may result in an overestimation of D. Therefore, the fraction of particles
that may reach the epithelium and then could be absorbed, would also be overestimated.
This discrepancy between the estimation and reality could lead to misleading predictions
regarding the expected oral pharmacokinetic profile of the nanocarrier.
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single (R2) or combination (R2 + RSS) screening approach (dotted line) (* p < 0.05).

To confirm the reliability of the combination approach, we followed the same decision
tree illustrated in Figure 5 for the PSNPs controls. Figure 8 shows the different particle
populations considered for calculating the diffusion capacity of each PSNPs control as a
function of the screening approach. These results are in line with the ones described in
Section 3.2 as well as those results obtained with the lipid nanocarriers. Interestingly,
the application of the combination approach yielded a Dm/Dw ~ 1.7 × 10−1 (α ≈ 0.7) for
the mucodiffusive PSNPs, a similar value to the one obtained using just R2 as screening
parameter. This supports our hypothesis about the reliability of the use of R2 as single
screening parameter for diffusing particles; meanwhile a Dm/Dw ~ 1.3 × 10−3 (α ≈ 0.1)
was obtained for the mucoadhesive PSNPs by using the combination approach. Both results
agree with the behavior expected for this type of system [25,37,52].
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These results show that the combination approach is the most reliable to properly
describe the diffusion pattern of the lipid nanocarrier in porcine intestinal mucus. Then,
another issue to determine which statistical measurement, mean, or median is the best esti-
mator to express the results. Although mean value is the most used statistical measurement,
density lines from Figure 6, Figure S1 (lipid nanocarriers), and Figure 8 (PSNPs) clearly
show some non-gaussian distributions, indicating that the use of the median instead of the
mean value is more precise in those cases [42]. Following this rationale, we calculated the
mean/median ratio for each one of the formulations after the screening of the raw data
with the combination approach (R2 + RSS). Lipid nanocarriers displayed a mean/median
ratio of 6.4 (digested) and 8.4 (non-digested) where the PSPNs presented a ratio of 10.3
(mucoadhesive control) and 1.5 (mucodiffusive control). These results are in line with the
Dm/Dw distributions from Figure 6, Figure S1 (lipid nanocarriers), and Figure 8 (PSNPs).
For those formulations with a non-gaussian Dm/Dw distribution (both lipid nanocarriers
and the mucoadhesive PSNPs), using the mean value to express the mucodiffusion capacity,
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instead of the median, may lead to an overestimation of one order magnitude of the re-
sults. However, for formulations with a homogeneous behavior (gaussian) in the intestinal
mucus, like the mucodiffusive PSNPs control, using the mean or the median value for
determining its mucodiffusion capacity is not that relevant.

Altogether, this work shows that it is crucial to follow a proper statistical analysis
of the original raw data in PT to extract accurate and reliable information about the
interaction of the different particle populations in a heterogeneous formulation. This aspect
is especially relevant to correctly determine the fraction of the formulation that would reach
the intestinal epithelium after oral administration. Briefly, the use of just R2 to determine
the goodness-of-fit of the raw trajectories to the MSD = 4Dτα theoretical model may lead
to the consideration of mucoadhesive particles as outliers and be discriminated for the
estimation of the mucodiffusion of the whole formulation. Additionally, the calculation of
the mean/median ratio of the results will illustrate the formulation heterogeneity. In this
case, homogeneous (gaussian) formulations will have mean/median values ~1 and the
heterogenous formulations mean/median values 6=1, indicating that the use of the mean
instead of the median would lead to misleading results.

PT is a powerful technique for analyzing the capacity of nanocarriers to overcome
the intestinal mucus barrier, but this great potential can be compromised if the proper
statistical tools to screen and express the experimental results obtained in the laboratory
are not correctly applied.

3.4. PT Software Implementation

The benefit of using PT for particle characterization compared to dynamic light
scattering or FRAP is its capacity to define the behavior of each single particle of the
sample, as observed for lipid nanocarriers [6,7,14,34]. This allows the classification of
the particles within subpopulations providing information about the heterogeneity and
polydispersity of the sample [6,9,14,53,54]. For this purpose, it is necessary to:

(I). Select an appropriate lag time threshold.
(II). Accurately screen the goodness-of-fit of the experimental data to the mathematical model.
(III). Perform an individual analysis of each trajectory.
(IV). Group similar trajectories into subpopulations.
(V). Express results in an easy-comprehensive fashion, including D and α, as well as other

parameters that can help to understand the interaction of the nanocarrier with the
intestinal mucus.

These are labor-intensive and complicated parts of PT experiments, since they entail
the accurate processing of large sets of data.

To the best of our knowledge, there is no PT software available for screening trajecto-
ries based on additional error measurements to R2. Considering the relevance of the results
previously shown, we have developed a software that integrates this screening approach
and quickly analyses PT raw data, being an intuitive and simple software, that requires no
previous programming skills.

The final application can be found at https://shiny.uclm.es/apps/tracking/ (accessed
on 15 January 2021), where an account can be requested to the manuscript authors to get
access. The organization in different tabs allows researchers to simulate, visualize, and
analyze PT data.

Figure S2 shows the “Model” tab of the application, where the user can explore the
theoretical model in Equation (1) for different values of D and α, and for different lag times.
Two separate models can be represented to compare their theoretical shape for the next
steps. Furthermore, in the “Simulation” tab (Figure S3), the behavior of two particles can
be simulated for each model, including different levels of noise and the time lags at which
the particles would stop diffusing. By setting that maximum lag time, users can visualize
what can be expected to see in an experimental cloud of points. The simulated data can be
downloaded for further use.

https://shiny.uclm.es/apps/tracking/


Pharmaceutics 2021, 13, 370 15 of 18

In the “Tracks” tab, the web application helps in the lag time decision step by visualiz-
ing the observed tracks. An Excel file with the raw MSD vs. time data can be uploaded. In
addition to the data sheet, a set of metadata must be included in a separate sheet within
the same spreadsheet file (including sample name, Dw, etc., . . . ). Once the file is loaded,
the metadata are displayed, and a selectable table shows a list of the videos in the file on
the right side. When a video is selected, the main pane of the application shows a table
with the list of particles within that video, including their ID (j in the notation used above),
the number of segments (nij in the notation), and maximum MSD reached by that particle.
The table is sortable and paged so as users can explore them. The video of the prototype
particle is automatically computed and plotted, as a particle whose MSD at each lag time τ

is the median of all the particles MSD at lag time τ, i.e., MSDi0k = medianj(MSDijk). In
addition to the prototype particle, further particles can be represented by just selecting
them from the table. Figure S4 shows tracks from a given video and its prototype particle
(0, the red one). This can be done for any number of particles, in any of the videos in the
file, until the researcher decides the appropriate lag time. A slider on the right pane can
be used for stretching the x scale of the chart and check different lag times. Moreover,
the regression line for each represented trajectory can be shown by switching the “Show
fitted line(s)” switcher. Note that when selecting the “Linear” tab of the representation,
the linear transformation in Equation (3) is represented and fitted, instead of the original
data. Figures S4 and S5 show the particles with their non-linear and linear regression fitted
curves at the maximum lag time set to 1 s, respectively.

After exploring the tracks and decide on the lag time, we can go to the “Model” fitting
tab. The “Fit models” button starts a process for fitting the models for all the particles in
the file, or just the ones in the “Tracks” tab selected video. The non-linear fitting or the log-
transformed linear fitting can be selected with the “Fit type” switch. Then, the following
estimates, and their counterpart diagnostic measures, are shown in a table, see Figure S6:
Video and particles IDs; Number of segments; α* (max (0, α); D; Dshort (D computed at
the desired “Short lag time”); D/Dw; R2; RSS; RMSE. The table is paged and sortable, so
particle estimations and measurements can be easily explored.

The screening process is done afterwards by setting the screening filters, i.e., (i) the
minimum value of R2; (ii) the maximum value of RSS (e.g., R2 ≥ 0.5; RSS ≤ 5, as proposed
in the decision tree in Figure 5); and (iii) the minimum/maximum value of α (α*). It is
important to highlight that even though the default values in Figure S6 are initially set, they
can be changed at the analyst criteria to handle the problem at hand. The data included in
the table can be downloaded in csv and xlsx formats for further study. The information
included below the fittings table, e.g., summary statistics and histograms, are shown for
the estimates and for the diagnostics measures, see Figure S7. The histograms provide
meaningful information about the heterogeneity behavior of the sample, facilitating the
decision about the statistical measurement (namely the mean or the median) to be selected
for the final interpretation of results.

Once the screening and analysis step is finished, the overall diffusion parameters can
be immediately seen in the “Model selection” tab (see Figure S8). The mean or the median
can be chosen as summary statistic for the coefficients. The final model is represented in a
plot, and the selected estimates and diagnostic measures are shown. Additionally, α values
appear grouped in the different populations described in Section 2.6.2.

Besides, the software also includes a “Team” tab, which gathers the contact information
of the software and methodology developers, as well as a “Support” tab, in which a
summary of basic software instructions and a video tutorial (see S.2 in Supplementary
Material) can be found.

Further research paths will be to investigate the properties of the so-called “prototype”
particle and the use of non-linear profiles as a complementary screening method, as
described in Cano et al. [49]. Moreover, data mining techniques such as unsupervised
classification (cluster analysis) will be explored for subpopulations detection, as well as
machine learning techniques for anomaly detection in the screening phase.
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4. Conclusions

PT is a powerful and unique technique for studying the behavior of individual parti-
cles in biological conditions; in particular, this work focuses on oral drug delivery. This
great potential has been exploited thanks to the development of high-speed and sensi-
tivity cameras. However, once the experimental data have been obtained, there is a lack
of consensus about their statistical analysis. Selecting the proper analysis would avoid
overestimating the therapeutic potential of nanocarriers and achieving erroneous correla-
tions between the physicochemical properties of the nanocarriers and their in vitro/in vivo
performance. Both aspects are crucial for the design and development of new oral drug
delivery formulations.

In this sense, this work proposes the use of a combination of parameters to correctly
determine the goodness-of-fit of the experimental data to the mathematical diffusion model.
We also consider the use of the mean/median ratio as a clear indicator of the heterogeneity
of the formulation behavior in biological fluids. Finally, all these statistical aspects have
been packaged in free, time saving, and user-friendly software to facilitate the essential
task of the statistical analysis of raw PT data.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-4
923/13/3/370/s1; Figure S1: Distribution of Dm/Dw results of digested lipid nanocarrier after
following different goodness-of-fit screenings; Figure S2: PT software. Model tab. Mathematical
model representation; Figure S3: PT software. Simulation tab; Figure S4: PT software. Tracks tab.
Non-linear regression of selected particles from the loaded data (mucodiffusive PSNPs model); Figure
S5: PT software. Tracks tab. Linear regression of selected particles from the loaded data; Figure
S6: PT software. Model fitting tab. Videos and fitting type (linear or non-linear) can be selected;
Figure S7: PT software. Model fitting tab. Distribution of obtained estimators; Figure S8: PT software.
Model selection tab. Overall parameter estimates and diagnostic measures.
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