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Abstract: Colorectal cancer is the third most common and second most lethal tumor globally, causing
900,000 deaths annually. In this research, a computer aided diagnosis system was designed that
detects colorectal cancer, using an innovative dataset composing of both numeric (blood and urine
analysis) and qualitative data (living environment of the patient, tumor position, T, N, M, Dukes
classification, associated pathology, technical approach, complications, incidents, ultrasonography-
dimensions as well as localization). The intelligent computer aided colorectal cancer diagnosis
system was designed using different machine learning techniques, such as classification and shallow
and deep neural networks. The maximum accuracy obtained from solving the binary classification
problem with traditional machine learning algorithms was 77.8%. However, the regression problem
solved with deep neural networks yielded with significantly better performance in terms of mean
squared error minimization, reaching the value of 0.0000529.

Keywords: artificial intelligence; deep neural networks; colorectal cancer; clinical data; computer
aided diagnostic system

1. Introduction

Colorectal cancer (CRC) is the third most common and second most lethal tumor
globally, causing 900,000 deaths annually. According to the International Agency for
research on Cancer in 2018, 1.8 million people were newly diagnosed with colorectal cancer
that year [1]. Additionally, it is predicted that by the year 2030, the prevalence of colorectal
cancer worldwide is going to increase by approximately 60%, in terms of diagnosing
2.2 million new cases annually and causing more than 1.1 million deaths. Additionally, the
chances of developing other cancer types after being diagnosed with colorectal cancer are
significantly high: colorectal cancer is the third major cause of lung and liver cancers [2,3].

The two fundamental steps in tumor recognition are: evaluation of some categorical
and numeric data (typically obtained from a blood test), as well as the inspection of a medi-
cal image taken of the patient. There are a wide variety of medical imaging technologies,
the most frequent of them being MRI, ultrasound, CT scan, endoscopy and X-ray [4]. The
most common technique used nowadays for colorectal tumor detection and screening is
colonoscopy [5]. Although widely used, colonoscopy has a tumor miss-rate as high as 24%
leading to medical malpractice [5]. Furthermore, performing a comprehensive colonoscopy
of an individual can take from 10 min to several hours while making hundreds, sometimes
even thousands of frames. Since not all these frames offer the gastroenterologist useful
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information, the examination of them is a demanding and elongated task, making the
odds of missing them even higher [6]. Research has proved that if endoscopic diagnose
adenoma during colonoscopy, their patient’s risk of having that adenoma turn into colonic
cancer reduces significantly. A study even demonstrated that every 1% raise in polyp
detection leads to a 3% decrease in the risk of colonic cancer, thus making the importance
of developing an automatic polyp-recognition system even more urgent [7].

Obtaining a precise diagnosis in the first phase of the medical examination, from
clinical data, can reduce both the risk of human error and save time so that experts can
make colonoscopies only for patients at high risk of having cancer. Such data can be
obtained from the blood, saliva and fecal of the patient. At the moment there are two major
types of blood data used in cancer diagnosis: genomic and proteomic. Genomic data can
be epigenetic, circulating tumor DNA, MicroRNAs and stool-based tests [8].

A recent study [9] attempted to identify stomach and colorectal cancer through an-
alyzing the following oxygen-containing salivary volatile organic compounds (VOCs):
acetaldehyde, acetone, propanol-2 and ethanol. In order to attain the diagnosis, classifica-
tion and regression trees were used. According to the paper, the results were promising:
the constructed diagnosis system had a sensitivity equal to 95.7% and a specificity of 90.9%.

Numerous papers in an emerging research field inspect the efficiency of blood biomark-
ers in the early detection of cancer [10]. A work [11] on this matter points out that there is
only one biomarker that is an internationally approved clinical practice for colorectal cancer
detection: carcinoembryonic antigen (CAE). In addition, by comparing healthy tissues with
carcinogen ones and performing protein expression analysis on them, the study offers a
novel method to search for other possible biomarkers in order to detect colorectal cancer.

Recently, the CAE antigen has been compared to other novel serum biomarkers with
the hope of finding a more reliable CRC diagnosis method. One approach consisted of
inspecting the accuracy of a plasma biomarker, Alpha 1-antitrypsin (A1AT) activity and
comparing it with the accuracy of CAE. The serum A1AT activity proved to be a more
efficient biomarker than the CAE, with a higher sensitivity and specificity. Moreover, the
study concluded that the concentration of A1AT in the blood indicates the phases of the
tumor growth in a well-distinguishable way [12].

The novel combination of a set of clinical data presented in this study was inspired
also by the scientific work [13] published in 2019. The mentioned paper analyzes a novel se-
quence of plasma biomarkers, namely the following circulating lncRNAs: ZFAS1, SNHG11,
LINC00909 and LINC00654 to diagnose CRC. Along with promising results, according to
which these biomarkers help in CRC detection, the paper also demonstrates the significance
of an exact combination of biomarkers and states that a more abundant set of biomarkers
might provide with even better results.

The efficiency of circular RNAs in colorectal cancer discovery is inspected in many
research papers. One of them reveals the plasma of patients with CRC contains a signifi-
cantly reduced amount of the following three circular RNAs: circ-CCDC66, circ-ABCC1
and circ-STIL. For further development, the study also points out that combining these
three biomarkers with the widely used CAE marker could improve the early diagnosis of
CRC [14].

Even after successful treatment the chance of developing recurrent colorectal cancer
is 30–50%. Another approach that is gaining popularity in diagnosing recurrent CRC
involves the inspection of epigenetic biomarkers, such as cell-free circulating tumor DNA
(ctDNA). Excessive gene methylation is a frequent phenomenon in colorectal cancer, which
can be observed in ctDNA as well [15,16]. Additionally, after comparing this innovative
biomarker with the carcinoembryonic antigen in study [17], the ctDNA proved to be twice
as sensitive as the CEA.

Similarly, the observational study [18] on genetic biomarkers compared a novel 2-gene
dataset (methylated BCAT1 and IKZF1) with CEA and concluded that the set of 2-gene
biomarkers yielded significantly higher sensitivity for diagnosing recurrent colorectal
cancer than the CEA biomarker.
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On the other hand, the role of clinical data in colorectal cancer treatment exceeds
early diagnosis: they can also offer a new alternative way of treatment. For example,
research [19] analyzes the immunoglobulin G, a glycoprotein that can be found in human
plasma. According to the paper, this glycoprotein can induce the activation of antibody-
dependent cellular cytotoxicity, that plays a major role in producing anticancer antibodies.

A different proteomic biomarker, carbohydrate antigen 19-9 (CA19-9) is also offers
useful information regarding the recovery from CRC. In an experiment, this biomarker
was measured in patients before surgery and afterwards. The study concluded that af-
ter successful surgery, patients who developed recurrently colorectal cancer showed a
significantly higher level of CA19-9 than the healthy ones [20].

Promising CRC screening results are presented in [21]. The work presents a successful
method for colorectal cancer detection using a set of proteomic data: IQGAP3, which is
the third member of the IQ-motif-containing GTPase-activating protein family, B7-H4 and
COX-2. Although the efficiency of each biomarker varied depending of the tumor stage
(T, N, M), the paper concluded that all three biomarkers proved to be reliable in tumor
discovery.

The notion of a computer aided diagnosis system (CAD) was first used in the end of
the 20th century, by experts who relied on a computer to inspect medical images. These
first rule-based systems used in the 1970s offered low-level image processing by using
merely filters [3].

Today’s CAD systems often rely on artificial intelligence and deep learning, due to
their high accuracy. Deep learning provides promising results not only on medical image
analysis, but also on speech recognition, object detection, or language distinction and
interpreting. From a medical point of view, there are two cases when experts should trust
a CAD System as a second reader: in data and image analysis. Data analysis is usually
performed with traditional machine learning algorithms, whereas deep learning is mostly
used in image processing [3].

Taking into consideration the encouraging results of a wide range of studies on the
role of biomarkers in CRC detection, in this research a computer aided diagnosis system
was designed that detects colorectal cancer, based on an innovative dataset composing of
both numeric and qualitative clinical data. The aim of the present study is to develop an
intelligent computer aided diagnosis system that detects colorectal cancer using machine
learning techniques. The novelty lies in the dataset composing of a unique combination of
blood and urine analysis and qualitative data.

The paper is structured in seven chapters, in the following way: after the introduction,
in Chapter two, the proposed methods used to design the intelligent CAD diagnosis
system are presented; Chapter 3 exposes the two different types of experiments conducted
to develop the system and the structure of the dataset containing 200 patients’ laboratory
results augmented to 900 by classical methods; Chapter 4 discusses in details the two
different approaches used to develop the software: classification problem with traditional
machine learning and regression problem with neural networks; Chapter 5 presents the
results obtained with the two methods: Chapter 6 reveals the preliminary test results of
the best performing model; Chapter 7 draws the conclusions of the research and future
development goals.

2. Proposed Methods
2.1. Machine Learning

Developing computer aided diagnosis systems is one of the many fields where ma-
chine learning algorithms gain popularity. Being a branch of artificial intelligence, machine
learning refers to systems capable of educating themselves using data along with their
previous experience, without taking direct instructions [22]. There are two main categories
of machine learning algorithms: supervised learning and unsupervised learning. In su-
pervised learning, labeled data (inputs and the corresponding outputs) is used to train the
computer and create a model that later would be capable of correctly classifying unknown
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data. The most common supervised learning techniques used in medical research are linear
and logistic regression [23]. Unsupervised learning suggests training a model on unlabeled
dataset. Clustering is the best-known unsupervised learning technique, which implies the
machine finding hidden patterns in a dataset and creating clusters based on these shared
characteristics [7,24–27]. The use of unsupervised machine learning in medical applications
is an emerging field. In [28], a computer aided diagnosis system is presented, that performs
the correlation analysis between brain structure modifications, the clustering coefficient
and the inspection of the Mini Mental Score, with an accuracy of 95.65%. In this research,
supervised learning techniques were used to train a model on automatic colonic polyp
detection system.

Several studies have been conducted on using artificial intelligence in computer-aided
cancer detection software aiming to reduce the risk of human error. One of the most
common traditional machine-learning algorithms used in medical applications for data
analysis are decision trees (DT). Being one of the oldest and most outstanding machine
learning methods, decision trees have an architecture that can be easily understood and
provides adequate results. Another machine learning technique gaining popularity in
cancer detection software recently are support vector machines (SVMs). According to
a study, SVMs were used in detecting breast cancer (with an accuracy of 95%, multiple
myeloma with an accuracy of 71% and oral cancer with 75% accuracy) [29].

The most common technique used in medical image processing CAD Systems are
convolutional neural networks (CNNs). A comprehensive study [22] compares the accuracy
of deep learning models used in the detection of colorectal cancer in colonoscopy images.
The models compared had a highly varying accuracy: 96.4%, 87.3%, 96% and 98%. These
results prove the high efficiency of deep learning used in CAD diagnosis [22].

Several studies have been conducted on using deep learning for colorectal cancer
detection in colonoscopy images. In [30], a novel dataset is presented that contains 3433
colonoscopy frames, divided into two categories: white-light and narrow-band images.
Based on different deep learning approaches there are four different models constructed,
trained and tested in the research and their performance on the PICCOLO and other two
public datasets compared. The models are either based on backbones or encoder-decoder
architectures. The study concludes that the four deep learning models have the best
performance in colorectal tumor recognition on the novel PICCOLO dataset [30].

Validation Techniques

There are two validation techniques used for evaluating the performance of a machine
learning algorithm: k-fold cross validation and holdout validation.

K-fold cross validation consists of dividing randomly the dataset into k number of
groups and training the model k times on the same dataset: in the kth iteration the kth

group of data is used for validating the model and the other groups for training it. In this
way, the ability of the model to make predictions on new data becomes measurable and the
problem of overfitting is solved, since machine learning models using cross-validation are
constructed only on a part of the dataset [31].

Holdout validation is based on partitioning the dataset into two subsets of different
size. It is used for relatively large datasets. Training the model is performed on the larger
subset, that usually consists of 75–85% of the entire dataset, while for validating the model
the remaining 25–15% of the data is used [31].

2.2. Neural Networks

Neural networks are a subtype of machine learning, designed to model the human
brain in order to solve complex classification problems, detect patterns in voice or images
or detect cancer. They are composed of several layers, each of which contains a varying
number of neurons. The first one, or leftmost is called input layer, while the last one is the
output layer. The layers between the input and output are called the hidden layers of the
network. If there is only one hidden layer then the network is referenced as shallow neural



Diagnostics 2021, 11, 514 5 of 24

network. If there are more than one hidden layer, then the network is called deep neural
network [32].

In the literature of CAD software numerous research have been carried out on artificial
neural networks (ANNs) and deep learning. ANNs used to detect lung and breast cancer
were presented in [22] as well as diagnosing pancreatic, colorectal and ovarian cancer
according to [3].

2.2.1. Feedforward Neural Networks

Regarding the direction of information flow, there are different types of neural net-
works. When the output value is obtained from the input and the following intermediate
computations (the information flux is forward), the network is called feedforward. On the
other hand, if there are feedback loops in the network where information from the output
is fed back and the current output depends on previous outputs, the neural network is
considered recurrent. In recurrent networks, the activation of some neurons can lead to
the activation of a different set of neurons, causing a cascade stimulations. These types of
neural networks have been less popular than feedforward networks due to lower level of
efficiency of their learning algorithms. However, recurrent networks can emerge in the
future and gain more attention than feedforward networks because they are better for
modelling how human brain works [32].

2.2.2. Training of a Neural Network

The training of a neural network refers to the adjustment of the weight and bias values
until the desired, optimal performance is reached. This is achieved through solving the
optimization problem: minimizing the cost function. In regression problems, usually this
cost function is the mean squared error, minimized using gradient descent method. There
are several optimization algorithms for neural networks, such as Levenberg–Marquardt,
scaled conjugate gradient, bayesian regularization, gradient descent with momentum [25].
A recent study compared two of these training techniques: Levenberg–Marquardt with
scaled conjugate gradient in order to obtain a multilayer perceptron neural network for the
diagnosis of breast cancer. The research concluded that similar results were obtained with
the two optimization algorithms regarding the speed and the accuracy, but the Levenberg–
Marquardt algorithm had slightly better performance measures [29].

Additionally, the Levenberg-Marquardt is considered to be the fastest optimization
algorithm for feedforward networks according to [31]. Another alternative for time-
efficient training is the quasi-Newton algorithm, but the Levenberg–Marquardt optimiza-
tion method is more reliable and ensures better performance on nonlinear regression
(also called as function fitting) compared to pattern recognition tasks. In the Levenberg–
Marquardt optimization algorithm, the gradient is a scalar obtained from the multiplication
of a matrix and a vector. The first one is containing the partial derivatives of the cost func-
tion with respect to its parameters (weights and biases), while the second one is the vector
of network errors. During the training of the neural network, the gradient calculated with
the final parameters of the network should be minimized [31].

Concerning the architecture of neural networks there are several rules to consider
to prevent overfitting. Overfitting is a common problem that occurs during the training
of neural networks. It means that the model learns the noise from the training data,
besides the useful information. In this way, the ability of the network generalization
decreases. When constructing neural networks, a network should be large enough to build
complex functions and achieve good performance, but small enough to prevent overfitting.
In order to prevent it, the network should have considerably less parameters than the
amount of data samples in the training set [31]. Moreover, according to [33], another way
to prevent overfitting is increasing the size of the training dataset to the point where a
considerably more generalized model can be built. Although being an overwhelming and
time-consuming task, collecting a large training dataset can help to avoid underfitting as
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well, a phenomenon which can be provoked by reducing the complexity of the network to
the point where it cannot make accurate predictions even during training [34].

2.3. Performance Measurement

An important point to consider when working with CAD (computer aided diagnosis)
in tumor recognition (image processing/classification) is how high the level of confidence
of a certain CAD method is. When diagnosing and classifying (benign/malignant) colonic
tumor, radiologists would only trust CAD systems as a second reader, if their confidence
level would tend to 0.9. A study [35] on confidence analysis compares 11 machine learning
algorithms based on their accuracy, AUC (area under the curve) and probability outputs (P)
regarding the recognition of a tumor and the nature of it (true positive/true negative), with
the aim of determining their level of confidence. According to the results, the Bayesian
Network (B-Net) and the Naive Bayes (NB) are the two most reliable machine learning
algorithms from this point of view [35].

In contrast to this result, another study [36] suggests that ADTree (alternating decision
tree) algorithm provides a machine learning model with the highest level of confidence.
Additionally, a reliable colonic polyp detection system should ensure high sensitivity and
specificity. Sensitivity measures the ratio between the true positives (the cases when the
patient has tumor and the system detects it, denoted with TP) and the total number of
patients having cancer. Specificity expresses the percentage of detecting true negatives
(patients not having cancer, denoted with TN). In such way, a specificity of 0.9 implies that
TNs are detected correctly in 9 cases out of 10 [7,28].

3. Experiments
3.1. The Data

In this research an innovative dataset was used with the aim of maximizing the effi-
ciency of the colorectal cancer detection system, similar to the work presented in [37]. This
novel dataset composed of the following 33 blood and urine data for each patient: albumin,
direct and total bilirubin, creatinine, alkaline phosphatase, gamma GT, glycemia, GOT,
GPT, potassium, total protein level, sodium, quick time, PI, INR, urea, iron, leukocytes,
basophils, neutrophils count, neutrophils percentage, eosinophils percentage, lympho-
cytes percentage, monocytes percentage, MCV, hemoglobin percentage, erythrocytes count,
MCH, MCHC, RDW (rdw-cv), RDW (rdw-sd), hematocrit and platelet count. Additionally,
since professionals believe that sedentary lifestyle and western diet is mainly responsible
for developing colorectal cancer [2], in this study, the environment in which the patients
lived was taken into consideration when obtaining the diagnosis. Among these, 12 qualita-
tive data types are used: tumor position, T, N, M, Dukes classification, associated pathology,
technical approach, complications, incidents, ultrasonography-dimensions as well as lo-
calization. The structure of the dataset is shown in Figure 1. The dataset containing the
200 patients’ results and augmented to 900 by classical augmentation methods, was a table
in Excel, which was then loaded into MATLAB®(MATLAB, 2020, The MathWorks Inc.:
Natick, MS, USA) for further processing. A patient was represented by a row in the table,
whereas variables were indicated by columns. Additionally, there were added to the table
the minimum and maximum values of the healthy range in the first two rows of each
column. Therefore, the resulting dataset had 902 rows and 45 columns.
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3.2. CAD Systems Designed

The development of the computer aided diagnosis software was performed with the
help of the machine learning and neural network toolboxes of the MATLAB®. For training
a model with any of them, two types of input variables were needed: a set of predictors
and one response variable.

In the first phase of the research, machine learning models were trained using the
Classification Learner application of the Machine Learning toolbox to solve a binary
classification problem: from continuous and qualitative input data, obtaining a binary
(true/false or healthy/suspected to have cancer) diagnosis. In total, six types of models
were trained using two different validation techniques: k-fold cross validation and holdout
validation. Using k-fold cross validation three different approaches for selecting k were
implemented: one for a relative small k (taking the value 5), one for a medium k (k = 25)
and one for a large number of folds (k = 50). Similarly, three different methods were tested
regarding the percentage of data held out (5%, 15%, 25%) in holdout validation. At the end
of all 6 experiments, the best performing models resulting from each were compared.

In the second phase of the research, shallow and deep neural networks were trained
using the Neural Network toolbox to solve the regression problem, which provided experts
with a continuous response representing the probability for the presence of colorectal cancer.

In addition to the novelty of the dataset, the most outstanding difference between this
research and the state of the art lies in the discussion of the problem: there are two thoroughly
different approaches discussed. Not only the nature of the two problems differ (classification
and regression problems), but also the methods used and the models constructed.
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4. Discussion
4.1. Classification Problem Solved with Traditional Machine Learning
4.1.1. Data Preprocessing and Labeling

Preprocessing the data was performed in terms of a data labeling process. It consisted
of categorizing each record from the dataset as unhealthy (denoted by 1) or healthy (0).
Since there were given the intervals of healthy values for each variable, values outside
the healthy interval were labeled as 1 (the true value indicating the possibility of having
a tumor) and values from the normal ranges had 0 as label. Taking into consideration
that people living in urban environment are being associated with higher risk of cancer,
in the case of the variable representing the rural or urban provenance of the patient, the
urban origin was denoted with label 1 and the rural otherwise. Similarly, since there
were 10 different categories describing the number of associated diseases of a patient, the
following concept was applied: if the person had no other pathologies that could possibly
influence the growth of colorectal tumor, then he was considered “healthy” from this point
of view. Therefore, the first category denoted with 1 was labeled with 0 and all the other
categories indicating the presence of other diseases or risk factors as 1. The other qualitative
variables were labeled in a similar manner. After the labeling process, a label-matrix of
Boolean values was obtained having 900 rows and 45 columns.

4.1.2. Obtaining the Response Variable
Absolute Deviation

Attaining the response variable was accomplished in two steps. On one hand, the first
step was finding (for every data record) the value of a variable measuring the probability that
a patient had cancer. The workflow was the following: for each data all 45 variables were
examined one after the other. For each variable there was calculated the absolute deviation
and consequently the extent of this deviation showing how far is the value of a variable
outside the healthy range was comparative to the healthy value, expressed in percentage.

For a 100% healthy patient with all the variables within the healthy range (and
therefore, all the labels having the value 0), the probability for tumor was 0. However,
if there were predictors suggesting that the person was unhealthy, the probability was
calculated in a more complex way. Two factors were then considered: how significant the
deviation from the healthy range was and how influential or decisive the predictor was
in determining whether the patient had tumor. According to this, the calculation of the
first factor was performed using the formula of the absolute deviation and then converting
this value into a percentage based on the magnitude of it. These values were stored in a
column vector and each row of this column vector was corresponding to a different patient.
In the case when the data record had a variable within the healthy range, both the absolute
deviation and consequently, this percentage had the value 0.

Weight of Each Predictor

The second factor in computing the probability of a patient having cancer was the
influence each variable had in this decision. In order to distinguish between predictors
with more and less importance, each predictor was assigned a weight. For instance, if the
elevated level of glucose in the blood represented a higher predisposition to cancer than
the elevated level of potassium, the latter had a smaller weight associated with. Therefore,
after finding the percent of deviation in the previous step, there was calculated a weighted
average with the help of these “weights of risk”. Finally, another percentage was obtained
for each data, telling in a more precise way the actual level of risk or probability of having
colorectal tumor.

Taking into consideration that in the research a completely novel dataset was used with
a unique combination of variables, there were no previously defined principles regarding
the degree of contribution each individual variable had to the final diagnosis. Hence,
several calculations were performed to establish the weights.
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In the first approach, determining the weights was based on the presumption that
each variable had approximately the same impact on the diagnosis. The weights took
values in the range of 0.015 and 0.05, but the majority revolved around the value 0.029. This
value was chosen with the purpose of obtaining approximately 1 as the sum of weights.

The second approach of finding the appropriate weights was based on the expansion
of the (healthy and unhealthy) ranges of each variable. Firstly, the relative difference
(or percentage of change) was calculated for both the lower and upper extremities of
the intervals. This quantity measured the absolute difference between the healthy (or
reference value) and unhealthy limits, divided by the reference value (the boundary of
the healthy range). Since two relative differences were obtained for each variable: one for
the minimum and one for the maximum values, the arithmetic mean of these differences
was calculated. Based on this principle, there were obtained weights proportional with the
possible deflection of the variable.

Although this second approach seemed more reasonable than the first one in theory,
the results were not confirming these assumptions. In Figure 2, a comparison of the results
can be seen. The differences are exemplified with three records. Both the 298th and 299th
data had approximately the same results: they had the same number of variables in the
healthy range and some variables outside of it. Even the amplitude of deviations from
the healthy ranges were similar, except for one fact: their variables with “unhealthy”
values were different. It can be observed on the figure that using convergent weights, both
patients had about the same results: 38.74% and 41.02% of cancer. However, according
to the results obtained from the second approach, the first patient was well above the
threshold value 50%, therefore considered unhealthy, while the second one was labeled as
healthy. Additionally, not only the diagnosis was different for them, the two records also
had excessively diverse probability of colorectal cancer: 61.29% and 38.74%. This behavior
was due to the huge differences in the order of magnitude of the weights: some variables
had considerably greater impact on the final diagnosis than others.
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deflection ranges.

However, in the case of data number 302, the second approach proved to be more
appropriate. This patient had values exceeding the accepted values by 4–5 hundred percent
in several variables. The second method interpreted the results as a 77.97% of probability
of cancer and labeled the person as positive, while the method with convergent weights
labeled him as healthy, since the probability (49.69%) in this case did not exceed the
threshold of 50%.

In conclusion, both approaches provided reliable results only in some cases. The
convergent weights did not emphasize sufficiently the differences between healthy and
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potentially unhealthy patients and in many cases indicated an opposite diagnosis than
working with the proportional weights. The weights based on deflection ranges were
dependent on a few particular variables in an unbalanced way.

Misdiagnosing a healthy person as “at risk of having colorectal cancer” is called
false positive, while labeling a patient with high risk of cancer as healthy is false negative
diagnosis. Taking into consideration that fact that a computer aided diagnosis system
should, in the first place, reduce the risk of cancer miss-rate and draw the attention
of the doctor to any anomaly, the number of false negatives should be reduced to the
maximum extent. Therefore, to avoid the huge differences in the order of magnitudes of
the weights and reduce the number of false negatives, a third approach was imposed from
the combination of the previous strategies. These “final” weights were numbers between
0.01 and 0.03, so convergent, but also expressing in their values the importance of each
variable.

In Figure 3 is shown the results given by these weights. There are two important
behaviors to be observed. Firstly, that the final results represented by the yellow line
are between the results given by the other two strategies, regardless of the nature of
the diagnosis or the sign of difference between them. The second behavior of the final
strategy can be examined in the case of data number 305 and 302. These records had
results indicating that they had a chance of colorectal cancer, but the convergent weights
(represented by the blue color in the figure) gave false negative results.
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Normalizing the Continuous Response Variable

An important aspect to be considered when determining the probability of cancer
was the maximum value of this variable. Since the probability is always expressed in
percentage, the chance of a person having colorectal cancer should vary between 0 and
100%. Taking into account that in the case of almost every variable the possible deflection
from the accepted healthy range exceeded 100%, the final percentage measuring the risk of
cancer could also exceed 100%. This problem was solved in two steps.

On one hand, the maximum possible value was calculated that this percentage could
take. Then, a fictive patient was generated who was having 100% cancer: all of his results
were taking the maximum possible values. Afterwards, the probability of cancer was
computed for this patient.

On the other hand, once created and inspected the worst-case scenario, all results were
normalized with respect to this percentage. Normalization in this case meant dividing each
result with this probability of worst case. In Figure 4, it is illustrated how, in the case of
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the last (fictive) patient, all three algorithms converge to 100%, despite of giving different
results for previous patients.
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It is important to mention that in the present, this colorectal cancer diagnosis software
has not been tested profoundly by medical experts yet. Thus, the posterior adjustment of
the weights might be necessary based on medical knowledge and experience. Moreover, by
modifying these values of the weights, the machine learning model and the final diagnosis
are modified as well.

4.1.3. Labeling the Response Variable

As previously mentioned, the first goal of the research was solving the binary classifi-
cation problem. Therefore, for the training of the model a labeled response variable was
needed, representing the answer of the model to the input data. A person was considered
unhealthy and suspected to have colonic cancer if the variable expressing the probability
of colorectal tumor had a value above 50%. In this case, the response variable would take
the value 1 and if the value was below 50%, the response was 0. This boundary value was
determined based on a discussion with the expert.

4.1.4. Developing the Machine Learning Model

After obtaining the predictors and the response variable, several models were trained
using the Classification Learner toolbox in MATLAB®. This toolbox offers the possibility
of training models using k-fold cross validation and holdout validation as well. Therefore,
models were trained using two different validation techniques, three different approaches
for each. At the end of all six experiments, the best performing models resulting from each
were compared.

4.1.5. K-Fold Cross Validation

The first validation technique used was k-fold cross validation. In this research three
different approaches were tested: 5-, 25- and 50-fold cross validation. The accuracy and the
efficiency were both considered when comparing the resulting models, with the intention
of finding the best performing one.

5-Fold Cross Validation

The first approach was separating the dataset in 5 folds, k taking the value 5. The
best performing model based on this approach was logistic regression, having an accuracy
equal with 71.1% and training time 7.56 s. Inspecting the confusion matrix resulting from
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this model in Figure 5, it is observable, that even though the number of false negatives (59)
is low relative to the number of false positives (201), it is not an outstanding performance.
The percentage of false negatives in this model was equal to 6.55%, which is unacceptably
high in computer aided cancer diagnosis systems.
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25-Fold Cross-Validation

The best performing model using 25-fold cross validation was Logistic Regression
with an accuracy of 71.8% and a training time of 9 s. The other resulting models trained
with this validation technique had an average accuracy of 67%. It is important to consider
that the number of false negatives was still relatively high, 56, only slightly smaller than in
the previous experiment.

50-Fold Cross Validation

For k equal to 50, using 50-fold cross validation, two models were obtaining the same,
best accuracy of 71.3%. These models were: logistic regression and medium Gaussian
support vector machines (SVM). Though the accuracies were equal, the training time
for Logistic Regression model was half (16.5 s) of the training time of the SVM (30 s)
model. Taking into consideration the number of false negatives and positives, the logistic
regression model had a higher number of false negatives (56) and lower number of false
positives (202) than the SVM model (36 false negatives and 222 false positives). In cancer
diagnosis, false negatives are more dangerous than false positives; therefore, the SVM
model was considered more reliable.

4.1.6. Holdout Validation

Regarding the percentage of data held out three different methods were tested in this
study. The resulting accuracies of the models, training time and number of false negatives
were compared at the end.

5% of Data Held out for Validation

In the first phase, the models were trained on 95% of the data, while only 5% of it
was left out for validation. The best performing model was linear discriminant with an
accuracy of 77.8% and a training time of 9.7 s. Surprisingly, there were no false negatives
during the model validation process, which was performed using 45 random data records,
5% of the 900 samples, Figure 6.
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15% of Data Held out for Validation

The most common proportion of data held out when using holdout validation is 15%.
Applying this rule, the following results were obtained: the highest accuracy equal to 70.4%
was achieved by medium Gaussian support vector machines (SVM) model. The training
time was 2.44s and the number of false negatives were 5 out of 135 test samples.

25% of Data Held out for Validation

In the third phase, the models were trained on 75% of the data and the remaining 25%
was left out for validation. There were three different models attaining the same accuracy
(70.2%), but regarding the other two performance measures (training time and number of
false negatives), they had different results. The best performing model was the medium
Gaussian SVM, with a training time of 1.53 s and six false negatives, only 2.66% of the
training dataset that contained 225 samples. The other two models, logistic regression and
bagged trees had 10 and 12 false negatives and higher training times as well.

4.2. Regression Problem Solved with Artificial Neural Networks
4.2.1. Reasoning of the Second Approach

A cancer detection software should have an accuracy above 89% (between 89%
and 95%, more precisely) in order to provide the experts a reliable and useful second-
opinion [32]. After obtaining the results with the classification learner toolbox we con-
cluded that even the best performing model (linear discriminant model obtained from
using 5% holdout validation) had an accuracy equal to 77.8%. This was a relatively low
level; therefore, the model was not acceptable to be used in a computer aided cancer
diagnosis software, suggesting that solving only a classification problem might not provide
with adequate results. This problem made the finding of a different approach necessary.

Firstly, for the improvement of the CAD diagnosis system, there was made a change
in nature of the input data. In the first part of the research the labeled dataset was used as
input for the construction of the machine learning models. Therefore, not only the output
was a binary variable, but the inputs as well. In the second part of the research the input
data used for constructing and training the neural networks was continuous to prevent
information loss during conversion from continuous to discrete variables. The percentage
of deviation from the healthy range of each input variable was taken into consideration in
the construction of the response variable.

On one hand, one cannot tell if a person who is 49.9% sure to be having cancer is
healthy and if this percentage is 50.1%, then he is unhealthy. Such diagnosis method could
lead to a considerably large number of false negatives, so in order to obtain a less exact,
but more realistic diagnosis, the classification problem was transformed into a regression
problem, since medical science is not an exact one based on zeros and ones. Later, this
value of the probability of cancer in percentage was displayed on the user interface. In
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the regression problem, a linear response was obtained, representing the probability of the
existence of cancer. The labeling of the input variables using Boolean values was necessary
in order to obtain the continuous response, but these binary predictors were not used as
inputs during the model construction and training, as in the first part of the research.

On the other hand, taking into consideration the fact that deep neural networks per-
form better on large datasets than basic machine learning algorithms, solving a regression
problem was not performed using the Regression Learner, but rather with the Neural
Network toolbox in MATLAB®.

4.2.2. The Architecture of the Network

According to [38], the performance of a deep learning algorithm depends on the
architecture and the parameters of the neural network. Therefore, in order to obtain the
highest possible accuracy for the CAD system, 10 different network architectures were
inspected and their performance results compared. A similar approach is presented in [33],
where several deep and shallow neural network models are compared with the aim of
enhancing the sensitivity, specificity and accuracy of the CAD system. The study compares
three different CNN models and trains them for 30 epochs.

In this study, there were 10 networks trained with different architectures and parame-
ters and their results compared. The type of networks was feedforward with backpropa-
gation in all experiments, but the number of layers and neurons were varying. Both the
number of layers and the number of neurons in the first nine experiments were taking
three types of values: low, medium and large. The last network was constructed using the
conclusions drawn from the performance of the previous nine networks. The performance
function was Mean Squared Error (MSE) and the Levenberg–Marquardt was chosen as the
training algorithm.

Along with the performance function (MSE), four other performance parameters
were examined when evaluating the performance of the networks. These parameters
are: number of iterations on the whole dataset during training (called number of epochs),
training time measured in seconds, the gradient and the accuracy. Although the main goal
of the training was minimizing the performance function (MSE) and obtaining the highest
possible accuracy, the minimization other two performance measures was a secondary
objective. The division of data between training, validation and test set was the following:
60% used for training and 20% for both network testing and validation. The number of
validation checks was set to six during the training of all the 10 networks. This boundary
value is offering protection against overfitting, since it sets the limit of how many iterations
can be performed on the training dataset while obtaining the same value of the performance
function [19].

The networks were trained on a computer with i7 9700K, 4.7 GHz Turbo Boost CPU
and a ddr4 memory of 16 GB. It is important to mention that the resulting performance
measures of the networks presented below may vary depending on the hardware on which
the training is performed.

4.2.3. Examination of the Networks

The first three types of neural networks were shallow neural networks having only
one hidden layer and a varying number of neurons on that hidden layer.

In the first case, when the hidden layer had only three neurons, an MSE equal to 1.94
was obtained after training the network. Despite that the total number of iterations on the
dataset was 41, the training time lasted 0 s and the gradient was equal to 6.8. The network
architecture and parameters can be seen in Figure 7 below.
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Regarding the evaluation of the MSE with respect to the number of iterations, in
Figure 8, it is illustrated that the minimum of the cost function was almost reached after
epoch number eight. However, the training did not stop because the validation perfor-
mance was not constant for six iterations (validation checks). After the 24th epoch, the test
curve started to increase with respect to the validation curve, but this phenomenon cannot
be considered overfitting, since the difference between the two curves was not significant.
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In the second case, a network with 10 neurons on the one hidden layer was constructed.
The MSE of this network is similar to the one obtained with the previous network, as well
as the training time which lasted 0 s. However, the training stopped after half as many
epochs (26) than in the previous case and the gradient was taking a larger value, namely
10.7. In Figure 9, the performance plot of the network can be seen. The test and validation
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curves are similar, but in the test curve a smaller MSE is obtained. This indicates that no
overfitting occurred during training. The validation curve reached the minimum of the
MSE at epoch number 20.
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Figure 9. Performance plot the shallow neural network with 1 hidden layer and 10 neurons on it.

In the third case, a shallow neural network having 20 neurons was constructed. This
network presented the highest MSE among all three shallow neural networks: 3.49. The
number of epochs was 32, but the best performance was reached after 26 iterations. The
only significantly better performance measure obtained with this shallow neural network
was the gradient which had a value of 2.62.

Taking into consideration the results obtained from training these three shallow neural
networks one can see that the MSE was not minimized excessively, remaining in the
0–10 interval.

The next three networks were built on a 5-hidden layer architecture and therefore
were called deep neural networks. The number of neurons was chosen having the same
values as in the case of the shallow neural networks.

Evaluating the results obtained after training the first network with five hidden layers
(three neurons on each), was concluded that this network had the worst performances. First
of all, the minimum of the MSE was 10 times higher than the ones obtained with any of the
shallow neural networks. This was an unexpected result, taking into consideration the fact
that in general, increasing the complexity of the network and the number of parameters
(weights) of it should yield better results. Secondly, the gradient minimization (equal
to 57.1) of this network was also the least successful among all 10 networks. Despite
these inadequate results provided by the network, the performance plot indicated that no
overfitting or underfitting has occurred.

The second deep neural network architecture having 10 neurons on each hidden layer
yielded similar results as the shallow networks. The MSE was equal to 2.15, the gradient
6.07 and the training time lasted 0 s. The only improvement was observed examining the
total number of iterations on the dataset. The value of this performance parameter was 16,
significantly less than in shallow networks, however, not affecting the training time.

The best performing model among the first 9 ANNs was the deep neural network
having 5 hidden layers and 20 neurons on each layer. Despite of the relatively low number
of iterations on the dataset (15 epochs) the training time was 4 s: significantly higher
than in the previous, more simple models. It can be noticed that the training time was
closely related to the complexity of the network: the more neurons and layers it had, the
more the training time lasted. The gradient obtained with this network was 6.45, that,
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comparing to the results of other networks had an average value. Regarding the most
important performance measure, the mean squared error (MSE), this neural network had
the second-best results in minimizing it. The value achieved: 0.000623 was 10 times smaller
than the MSE obtained with the second-best performing network (having 10 layers and
20 neurons on each layer) and 50,000 times smaller than the MSE obtained with the worst
performing neural network (having five layers and three neurons).

The next three deep neural networks were built on the principle of having 10 hidden
layers and a varying number of neurons on those layers. Their evaluation is presented below.

With three neurons on each of his layers, the neural network having 10 hidden layers
yielded an MSE comparable to the mean squared errors obtained with shallow networks.
The training time lasted 0 s, equivalent to the majority of the other networks. Regarding
the other two performance measures; the number of epochs and the gradient, the network
provided rather inadequate results. Among the first nine networks trained, in this one the
gradient took the second largest value: 25.5. Moreover, the most iteration on the dataset
was performed by this network with a number of epochs equal to 56.

Inspecting the performance plot of the network, the following conclusion was drawn:
the training was successful in terms of avoiding over and underfitting, but from the point
of view of the minimization of the cost function it offered mediocre results.

Increasing the number of neurons on each hidden layers of the 10-layered network
granted significantly better results. The mean squared error provided by it was in the
interval of [0;1], taking the value 0.508. The number of iterations on the dataset was also the
third lowest value: the training stopped only after 20 epochs. The other two performance
parameters were above the average: the gradient was equal to 14.3, while the training time
took 2 s.

Despite of the acceptable performance of the network, the performance plot (Figure 10)
indicates that a considerable overfitting occurred during training: after epoch number 10
the test curve starts to increase severely, while the validation curve continues to descend.
This demonstrates that the model learned the noise from the training dataset.
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The last among the first nine networks trained was the neural network having 20 neu-
rons on each of its 10 hidden layers. This network had outstanding performance on almost
every level: the MSE presented by it had the second lowest value (0.00594) which was
a hundred times better than the MSE provided by the third best performing model, but
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still 10 times higher than the lowest MSE yielded by the best performing model. The
gradient was taking the second lowest value (3.89), illustrated in Figure 11 below. Despite
of requiring the lowest number of total passes on the data (14 epochs), the training of the
network lasted 17 s, becoming the longest training duration measured on the first nine
networks.
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Examining the performance plot of the network (Figure 12), it can be observed that
no over or underfitting has occurred during training and the minimum MSE was approxi-
mately reached only after the 4th epoch.
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Based on the knowledge gained from training the first nine networks, a 10th deep
neural network was designed in the attempt to maximize the performance. The optimized
structure of it was constructed based on two aspects deducted from the experiments: for
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the minimization of the MSE the number of neurons must be higher than the number
of hidden layers; for finding the minimum possible training time, the number of hidden
layers has to be kept at a medium value. Based on these arguments, the 10th ANN had five
hidden layers with 40 neurons on them.

The results obtained after training the last model were confirming the conclusions
drawn from the previous experiments. Due to the high complexity of the network, the
training time exceeded one minute, despite of the low number of epochs needed to com-
plete the training. In minimizing the MSE, this network was more than 10 times more
successful than the best performing ANN from the first nine experiments, reaching the
value 5.29 × 10−5. Outstanding result was obtained by the ANN regarding the gradient as
well: 2.73, the second smallest value among the networks. Figure 13 illustrates the structure
of the best performing deep neural network.
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5. Results
5.1. Classification Problem

After training the classification algorithms, the resulting models’ performances were
compared. The performance measures inspected were the following: the accuracy of the
models, the training time, the percentage of false negatives, the sensitivity, specificity
and the precision. The accuracy, sensitivity, specificity and precision are performance
measures that depend on the number of true/false positives and true/false negatives,
which describe the ability of the system to predict correctly the outputs. The formulas of
the four performance measures are the following [28,38]:

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Speci f icity =
TN

TN + FP

Precision =
TP

TP + FP



Diagnostics 2021, 11, 514 20 of 24

Evaluating the results obtained using k-fold cross validation, one can notice that
the model with the highest accuracy of 71.8%, highest specificity of 37.34% and highest
precision of 72.72% was obtained with 25-fold cross validation. This model was Logistic
Regression with a training time of 9 s, a considerably less duration than the training time
of models with 71.3% accuracy, obtained from 50-fold cross validation. Regarding the
number of false negatives, the best performing model was the medium Gaussian SVM
with a percentage of 4% false negatives from the 900 records. This is 2.22% less than the
percentage of false negatives in the case of the two logistic regression models (for 25- and
50-fold cross validation).

Table 1, shows the results obtained from applying k-fold cross validation. The column
with header “% of false negatives” shows the number of false negatives proportional to
the number of samples in the validation dataset. In the case of k-fold cross validation, the
percentage is calculated relative to the whole dataset containing 900 samples.

Table 1. Results obtained using k-fold cross validation.

K-Fold Cross
Validation

Performance Measures of Models

Best Performing
Model Accuracy Training

Time
% of False
Negatives Sensitivity Specificity Precision

5 Logistic regression 71.1% 7.56 s 6.55% 89.89% 36.39% 72.31%
25 Logistic Regression 71.8% 9 s 6.22% 90.41% 37.34% 72.72%
50 SVM 71.3% 30 s 4% 93.83% 29.74% 71.16%

Comparing the results obtained from all 3 holdout validation techniques, one can see
that the highest accuracy of 77.8%, sensitivity of 100% and specificity of 37.5% along with
the lowest number (0, more precisely) of false negatives was obtained using 5% hold out
validation, with the linear discriminant model. Additionally, studying all six resulting
models (from both cross and holdout validation), lead to the conclusion that the linear
discriminant model obtained from 5% holdout validation was the best performing model.

Regarding the average values of the performance measures, the following conclusions
were drawn: using k-fold cross validation, the best resulting models had an average
accuracy equal to 71.4%, average training time of 15.52 s and average percentage of false
negatives from test dataset equal to 5.59%. The average sensitivity of the six models was
94.04%, the specificity 1.45% and the average precision equal to 71.71%.

Holdout validation techniques gave better results regarding the first four performance
measures, Table 2. The average accuracy of best performing models was 72.8%, the average
training time of models lasted 4.55 s and there was a 2.12% of false negatives. K-fold cross
validation yielded better results regarding the specificity and the precision. In conclusion,
the holdout validation technique proved to give slightly better results than K-fold cross
validation.

Table 2. Results obtained using holdout validation.

% of Data Held
out for

Validation

Performance Measures of Models

Best Performing
Model Accuracy Training

Time
% of False
Negatives Sensitivity Specificity Precision

5 Linear Discriminant 77.8% 9.7 s 0% 100% 37.5% 74.35%
15 SVM 70.4% 2.44 s 3.7% 94.25% 25% 70.08%
25 SVM 70.2% 1.53 s 2.66% 95.89% 22.78% 69.65%

Our results are comparable with similar results obtained in the domain. For example,
in paper [23] are obtained accuracy between 66.9% and 74.51%, sensitivity between 49.36%
and 66.82%, specificity between 80.42% and 80.97% and precision between 68.12% and
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74.11%. In [22], a method proposed by Blanes-Vidal et al. yielded with better results: an
accuracy above 96%, a sensitivity of 97% and a specificity of 93%.

Another work conducted in colorectal cancer detection in colonoscopy [38] compares
three different models with the following results: the first model had an accuracy of 68.91%,
sensitivity of 66.27% and specificity of 71.94%, the second model attained an accuracy of
66.50%, sensitivity of 87.43% and specificity of 42.47%, while the third model yielded an
accuracy of 52.60%, with a sensitivity of 19.55% and specificity of 90.55% [38].

5.2. Regression Problem

After training all 10 neural networks the following deductions were made: enhancing
the complexity of the networks by adding more layers or neurons did not necessarily lead
to improved performance. In fact, if the number of neurons was smaller or equal to the
number of hidden layers, led to poor performance, implying that the number of neurons
should be increased along with the number of hidden layers. To exemplify this aspect, the
performance measures of the shallow neural network having three neurons on its hidden
layer can be compared with the performances of the deep neural network having five
layers and three and 10 neurons on them (Table 3).

Table 3. Performance of the 10 trained neural networks.

Hidden Layers Neurons on Each
Hidden Layer

Performance Measures of Networks

Number of Epochs Performance (MSE) Training Time [s] Gradient

1
3 41 1.94 0 s 6.8
10 26 1.2 0 s 10.7
20 32 3.49 0 s 2.62

5

3 39 33.4 0 s 57.1
10 16 2.15 0 s 6.07
20 15 6.23 × 10−4 00:04 s 6.45
40 16 5.29 × 10−5 62 s 2.73

10
3 56 2.9 0 s 25.5
10 20 0.508 00:02 s 14.3
20 14 5.9 × 10−3 00:17 s 3.89

Similarly, the minimization of the gradient was closely related to the number of
neurons the ANN had: a network with more nodes on its hidden layers minimized the
gradient more efficient.

In Table 3 an interesting relationship can be observed between the efficiency of the
minimization of the cost function and the training time. In the four best performing
networks (producing the smallest MSE) the training time was measurable in seconds: it
varied between 2 and 62 s. However, in the case of the other six networks this duration (0 s)
was not perceptible for the human eye. The detailed results regarding all the performance
measures of the networks are accumulated in Table 3 below.

Comparing the results obtained with the best performing model with the results
presented in [39] we can conclude that the MSE obtained in this research is significantly
lower than the MSE obtained in [39], which is equal to 0.01, reached after 2000 epochs.

After concluding that the MSE obtained with the best performing deep neural network
was equal to 5.29 × 10−5 an accuracy of 99.106% was obtained for this model. This result
indicates that the CAD system designed met the expectations of a reliable intelligent cancer
diagnosis system.

Comparing this result with other diagnosis systems presented in the state of the art
also indicates its efficiency: In [39] several models were compared in the literature of CAD
diagnosis systems with the accuracies: 93.85%, 92.45%, 93.08%, 92.58% and 97%. In [35],
the accuracies vary less, between 92.97% and 99.26%. Moreover, similar accuracies were
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obtained in work [38]. Therefore, the diagnosis system presented in this research represents
a contribution to the evolution of computer aided diagnosis.

6. Testing the System

The best performing deep neural network was tested in several scenarios: medical
experts examined a reduced set of eight patients and estimated the probability of having
tumor. After colonoscopy was taken, this percentage was reevaluated and adjusted, if
needed. Then, the data of patients was loaded into the CAD system. The difference
between the two diagnoses is indicated on Figure 14 below:
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The vertical lines on Figure 14 indicate the deflection of the human diagnosis from the
diagnosis specified by the intelligent system. All errors are under 10%, indicating a good
behavior of the developed diagnosis system.

7. Conclusions and Future Goals

Taking into consideration the results obtained from solving the binary classification
problem with traditional machine learning algorithms, a cancer detection software should
have a considerably higher accuracy than 77.8%; therefore, the machine learning model
resulting from the classification problem cannot serve experts with a reliable second opinion.
Moreover, regarding the nature of the output variable, a cancer detection software should
provide experts a continuous response in terms of a percentage rather than a discrete
variable in order to avoid misdiagnosis. Therefore, in the second approach the binary
classification problem was turned into a regression problem.

In the attempt of finding a solution to the regression problem, a different machine
learning technique was exploited: artificial neural networks. There were 10 networks
trained with different architectures. The networks presented a varying performance regard-
ing the minimization of the cost function, the mean squared error. The best performing
deep neural network having five hidden layers and 40 neurons on each hidden layer
provided significant results in the minimization process of the cost function, ensuring that
the MSE had an order of magnitude of 10−5 and an accuracy equal to 99.106%.

In conclusion, deep neural networks are both more reliable and more efficient in
colorectal cancer detection than traditional machine learning algorithms. The optimal
neural network should have tens of neurons to ensure high performance and several
hidden layers, while keeping the training time as low as possible.

The innovative structure of the dataset used in this study offers a new perspective
for the non-invasive colorectal cancer diagnosis. The presented novel combination of the
numeric data from blood and urine analysis with the qualitative data ensures a more
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detailed and precise diagnosis of the patient. The future goal is to enhance this intelligent
colorectal cancer detection software with an image processing functionality in order to
detect cancer in colonoscopy frames.
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