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Abstract: It is well known that the standard state estimation technique performance is particularly
sensitive to perfect system knowledge, where the underlying assumptions are: (i) Process and
measurement functions and parameters are known, (ii) inputs are known, and (iii) noise statistics
are known. These are rather strong assumptions in real-life applications; therefore, a robust filtering
solution must be designed to cope with model misspecifications. A possible way to design robust
filters is to exploit linear constraints (LCs) within the filter formulation. In this contribution we
further explore the use of LCs, derive a linearly constrained extended Kalman filter (LCEKF) for
systems affected by non-additive noise and system inputs, and discuss its use for model mismatch
mitigation. Numerical results for a robust tracking and navigation problem are provided to show the
performance improvement of the proposed LCEKF, with respect to state-of-the-art techniques, that is,
a benchmark EKF without mismatch and a misspecified EKF not accounting for the mismatch.

Keywords: state estimation; linearly constrained EKF; robust filtering; model mismatch; non-additive
noise; robust vehicle navigation

1. Introduction

The design and use of state estimation techniques is fundamental in a plethora of
applications, such as robotics, tracking, guidance and navigation systems [1–4]. For a linear
dynamic system, the Kalman filter (KF) is the the best linear minimum mean square error
(MSE) estimator. The most widespread solution for nonlinear systems is to resort to system
linearisations, leading to the so-called linearised or extended KF (EKF) [3]. In both cases, as
well as for more advanced techniques such as sigma-point filters [5], the main assumption
is perfect system knowledge: (i) Known process and measurement functions, and their
parameters, (ii) known inputs, and (iii) known noise statistics (i.e., first and second order
moments for the KF and EKF). However, these are rather strong assumptions in real-life
applications, where the noise statistics’ parameters may be unknown to a certain extent,
inputs may be uncertain and system parameters may be misspecified. The performance
degradation of minimum MSE estimators under model mismatch has been widely reported
in the literature [6–10], which is a reason why there exists a need to develop robust filtering
techniques able to cope with mismatched systems.

Notice that in the robust filtering literature, a lot of effort has been devoted to the
mitigation of possible noise statistics’ parameters misspecification, that is, to coping with
non-nominal or unexpected noise behaviours. In that perspective, we may cite the robust
KFs able to counteract the presence of outliers [11], the ones that estimate Gaussian noise co-
variances [12,13], or alternative formulations to deal with heavy-tailed distributions [14,15].
In contrast, few contributions explored how to counteract a mismatch on system matri-
ces/functions or the filter initialisation. Within the KF framework, the latter can be solved

Sensors 2021, 21, 2086. https://doi.org/10.3390/s21062086 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7858-4171
https://orcid.org/0000-0001-8831-0684
https://orcid.org/0000-0003-1909-5591
https://orcid.org/0000-0002-7029-3019
https://doi.org/10.3390/s21062086
https://doi.org/10.3390/s21062086
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21062086
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21062086?type=check_update&version=2


Sensors 2021, 21, 2086 2 of 17

by either the information filter form of the KF ([3] §6.2) or the so-called Fisher initiali-
sation [16], which can be generalised by imposing initial distortionless constraints [17],
i.e., the so-called minimum variance distortionless response (MVDR) estimators. In order
to further generalise these MVDR results, how to incorporate non-stationary constraints
within the KF has been recently proposed by Villà-Valls et al. [18], leading to a general
linearly constrained KF (LCKF) formulation, which has also been shown concerning linear
systems to generalise the results proposed by Teixeira et al. [19]. Indeed, the use of linear
constraints (LCs) has been shown to be a promising robust filter design solution in order to
mitigate the impact of misspecified system matrices [18], which complements the existing
results cited above for noise parameter mismatch mitigation. Notice that other alternatives
exist to estimate unknown system parameters/inputs, such as augmenting the filter state,
which are not discussed in this contribution.

Once the general LCKF has been established, it is of interest to extend its use to more
general nonlinear settings. A first attempt in the context of additive nonlinear systems was
recently proposed by Hrustic et al. [20], where a linearly constrained EKF (LCEKF) was
introduced, together with its use to mitigate parametric misspecifications on both system
functions. Notice that this approach is fundamentally different from state constrained
solutions [21,22], where LCs are imposed on the state and not on the filter. Overall, the
use of non-stationary linear constraints for robust filtering in general nonlinear systems is
still an open issue. In this contribution we further explore the use of LCs to mitigate the
impact of model misspecifications in nonlinear dynamic systems with both non-additive
noise and system inputs. (Notations: Italic, lower case boldface and upper case boldface
indicate scalar, vector and matrix quantities; E[.] denotes the expectation operator; the filter
estimates based on measurements up to time k are denoted by x̂k|k; N (µ, R) is the normal
distribution of mean µ and covariance R; mz and Cz denote the mean and covariance of a
given variable z.) The main contributions of this article are:

• The derivation of a LCEKF for general non-additive nonlinear systems.
• A demonstration of how to exploit LCs for robust filter design towards the mitigation

of parametric modelling errors in both system functions.
• The LCEKF performance improvement with respect to state-of-the-art EKF solutions

is validated and discussed for an illustrative tracking and navigation problem.

Notice that the proposed methodology, even if not directly stated throughout the
article, can also be used to mitigate a mismatch on both process and measurement noise
means (constant or time-varying), which can be regarded as inputs.

2. Background

Consider a linear discrete state–space model, where the state vector xk ∈ CPk must be
estimated from the available measurements yk ∈ CNk (for k ≥ 1),

xk = Fk−1xk−1 + wk−1, yk = Hkxk + vk, (1)

with Fk−1 ∈ CPk×Pk−1 and Hk ∈ CNk×Pk are known system model matrices, wk ∈ CPk and
vk ∈ CNk are the process and measurement noise with zero mean and known covariance.
If a minimum set of uncorrelation conditions holds [17], the recursive linear estimator of
xk, which minimises the MSE (for k ≥ 1) is the KF (the superscript (·)b stands for the best
solution in the MSE sense),

x̂b
k|k =

(
I−Kb

kHk

)
Fk−1x̂b

k−1|k−1 + Kb
kyk, (2)
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where the optimal gain Kb
k ∈ CPk×Nk is the one that minimises the MSE,

Kb
k = arg min

Kk

{
Pk|k(Kk)

}
, (3)

Pk|k(Kk) = E
[
(x̂k|k(Kk)− xk)(x̂k|k(Kk)− xk)

H
]
.

A possible way to robustify the KF is to incorporate LCs. How to use non-stationary
constraints within the KF framework, leading to the so-called LCKF, has been recently
proposed in [18]. In this case, the filter is

x̂b
k|k =

(
I− Lb

kHk

)
Fk−1x̂b

k−1|k−1 + Lb
kyk, (4)

Lb
k = arg min

Lk

{
Pk|k(Lk)

}
s.t. Lk∆k = Tk, (5)

computed from a “constrained” KF recursion [18], with Lb
k ∈ CPk×Nk . Such LCKF is fully

adaptive and allows to incorporatenew LCs at every time k (∆k ∈ CNk×Qk and Tk ∈ CPk×Qk ).
The use of such LCKF to robustify the filter under a mismatched model was also discussed
in [18].

If we consider now an additive noise nonlinear discrete state–space model (NLDSSM),

xk = fk−1(xk−1) + mwk−1 + dwk−1, (6)

yk = hk(xk) + mvk + dvk, (7)

where fk−1(·) and hk(·) are the known system model (process and measurement) functions,
and E[dwk−1] = 0, E[dvk] = 0; a standard approach to derive a nonlinear filter of xk is to
assume that Equations (6) and (7) can be linearised at the vicinity of a nominal trajectory [3]
yielding the standard EKF,

x̂b
k|k = x̂b

k|k−1 + Kb
k(yk − ŷb

k|k−1), (8)

x̂b
k|k−1 ' fk−1(x̂

b
k−1|k−1) + mwk−1 , (9)

ŷb
k|k−1 ' hk(x̂

b
k|k−1) + mvk , (10)

where Kb
k is computed as in the unconstrained KF with Fk−1 '

∂fk−1(x̂b
k−1|k−1)

∂xT
k−1

, Hk '
∂hk(x̂b

k|k−1)

∂xT
k

. As has been recently proposed in [20], the corresponding LCEKF for addi-

tive noise systems is x̂b
k|k = x̂b

k|k−1 + Lb
k(yk − ŷb

k|k−1), where the constrained gain Lb
k is

computed as in the original LCKF but using the linearised matrices, as done in the EKF.
Notice that the LCKF in [18] is not applicable to nonlinear systems, and the LCEKF in [20] is
only valid for additive systems. The goal of this article is to further analyse these methods
and extend their use to more general settings.

3. An LCEKF with Non-Additive Noise and System Inputs, and Its Use in
Robust Filtering

We consider now a more general NLDSSM, represented by the following state and
measurement equations (k ≥ 1){

xk = fk−1(xk−1, wk−1)
yk = hk(xk, vk)

, xk ∈ CPk , yk ∈ CNk , (11)

with fk−1(·) and hk(·) being known system model functions, and both noises wk and vk
with known mean and covariance. First, we want to obtain the EKF-type linear MMSE
filter of xk that can be written as in the previous cases. If tr(Cx0) � 1, tr

(
Cwk−1

)
�
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1, tr
(
Cxk−1

)
� 1 and tr

(
Cvk

)
� 1, we can resort to a first order Taylor expansion

of fk−1(xk−1, wk−1) at the vicinity of
(
mxk−1 , mwk−1

)
, and of hk(xk, vk) at the vicinity of(

mxk , mvk

)
. In such a case, if we restrict ourselves, for legibility, to the usual uncorrelation

conditions, i.e., Cx0,wk = 0, Cx0,vk = 0, Cwl ,wk = Cwk δl
k, Cvl ,vk = Cvk δl

k, Cwl ,vk = 0, the
general form of the EKF becomes

x̂b
k|k = x̂b

k|k−1 + Kb
k(yk − ŷb

k|k−1), (12)

x̂b
k|k−1 ' fk−1(x̂

b
k−1|k−1, mwk−1), (13)

ŷb
k|k−1 ' hk(x̂

b
k|k−1, mvk ), (14)

Pb
k|k−1 = Fk−1Pb

k−1|k−1FH
k−1 + Nk−1Cwk−1NH

k−1,
Sb

k|k−1 = HkPb
k|k−1HH

k + MkCvk MH
k ,

Kb
k = Pb

k|k−1HH
k (Sb

k|k−1)
−1,

Pb
k|k = (I−Kb

kHk)Pb
k|k−1,

with Fk−1, Nk−1, Hk, Mk approximated as: Fk−1'
∂
(

x̂b
k−1|k−1,mwk−1

)
∂xT

k−1
, Nk−1'

∂fk−1

(
x̂b

k−1|k−1,mwk−1

)
∂wT

k−1
,

Hk '
∂hk

(
x̂b

k|k−1,mvk

)
∂xT

k
and Mk '

∂hk

(
x̂b

k|k−1,mvk

)
∂vT

k
. Notice that we do not explicitly exhibit the de-

pendence on the system inputs in the previous EKF, which can be embedded in the noise means
mwk−1 and mvk .

3.1. Mismatched and True System Models

As previously stated, it is unlikely that the practitioner has a full knowledge of the
system, and therefore we want to cope with the situation where there is a trueMT and a
mismatched/assumedMA NLDSSM as follows,

MA :

{
x′k = fk−1(x′k−1, mwk−1 + dwk−1, !̂)
yk = hk(x′k, mvk + dvk,̂̀) (15)

MT :
{

xk = fk−1(xk−1, mwk−1 + dwk−1, !)
yk = hk(xk, mvk + dvk, `)

(16)

with wk−1 = mwk−1 + dwk−1, vk = mvk + dvk, E[dwk−1] = 0 and E[dvk] = 0. Since the
EKF of xk is based on the measurements and our knowledge of the model dynamics, any
mismatch between the true model dynamicsMT and the assumed oneMA leads to a
suboptimal filter, and possibly to a filter with bad performance, as the discrepancy between
the two models increases.

The existence of uncertainty on system nonlinear functions, either because of a para-
metric model error or a mismatch on system inputs, is taken into account as fk−1(.) ,
fk−1(., !) and hk(.) , hk(., `), where ! and ` are deterministic vector values or system inputs,
and the possible parametric model mismatch is given by !̂ = ! + d̂! and ̂̀= ` + d̂`. If errors
d̂! and d̂` are small, then the true state and measurement nonlinear functions differ from
the assumed ones via first order Taylor series as follows,

fk−1(xk−1, wk−1, !)− fk−1

(
xk−1, wk−1, !̂

)
'

∂fk−1

(
xk−1, wk−1, !̂

)
∂!T

(
!− !̂

)
, (17)

hk(xk, vk, `)− hk(xk, vk,̂̀) ' ∂hk(xk, vk,̂̀)
∂`T (`− ̂̀).

At time k ≥ 1, the EKF of xk is obtained from the Kalman-like recursion Equation (12)
computed with the assumed modelMA,
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x̂k|k(Lk) = x̂b
k|k−1 + Lk(yk − ŷb

k|k−1), (18)

x̂b
k|k−1 = fk−1(x̂

b
k−1|k−1, mwk−1 , !̂), (19)

ŷb
k|k−1 = hk(x̂

b
k|k−1, mvk ,̂̀), (20)

with the gain Lk obtained from the MSE minimisation, and also computed withMA.

3.2. Impact of System Parametric Modelling Errors

The first step towards the system model mismatch mitigation is to compute the
estimation error induced by the use of the assumed model MA. Among the possible
estimation error breakdowns, we look for the one that makes the terms in (17) appear, and
which reduces to the error analysed in [18] when the system becomes linear (as shown in
Section 3.5). An iterative approach was taken to integrate these two requirements and led
to breaking down the error as

x̂k|k(Lk)− xk = x̂b
k|k−1 − xk + Lk

(
yk − ŷb

k|k−1

)
= fk−1

(
x̂b

k−1|k−1, mwk−1 , !̂
)
− fk−1

(
xk−1, mwk−1 + dwk−1, !̂

)
+ Lkhk

(
fk−1

(
xk−1, mwk−1 + dwk−1, !̂

)
, mvk + dvk,̂̀)

− Lkhk

(
fk−1

(
x̂b

k−1|k−1, mwk−1 , !̂
)

, mvk ,̂̀)+ ”k(Lk), (21)

with the additional error term,

”k(Lk) = fk−1

(
xk−1, wk−1, !̂

)
− fk−1(xk−1, wk−1, !)

+ Lk
(
hk(fk−1(xk−1, wk−1, !), vk, `)− hk(fk−1

(
xk−1, wk−1, !̂

)
, vk,̂̀)). (22)

Indeed, if we assume that x̂b
k−1|k−1 is a good enough unbiased estimate of xk−1, that is,

E[x̂b
k−1|k−1] = E[xk−1] = mxk−1 (23)

tr(Pb
k−1|k−1) = E[||x̂b

k−1|k−1 − xk−1||2]� 1, (24)

then the first order approximations of Equations (21) and (22) are

x̂k|k(Lk)− xk ' (I− LkĤk)
(

F̂k−1(x̂
b
k−1|k−1 − xk−1)− N̂k−1dwk−1

)
+ LkM̂kdvk + ”k(Lk), (25)

”k(Lk) ' Lk
∂hk(xk, vk,̂̀)

∂`T (`− ̂̀)− (I− LkĤk)
∂fk−1

(
xk−1, wk−1, !̂

)
∂!T

(
!− !̂

)
, (26)

where the linearised matrices for the assumed model are now F̂k =
∂fk(mxk ,mwk ,̂!)

∂xT
k

, N̂k =

∂fk(mxk ,mwk ,̂!)
∂wT

k
, Ĥk =

∂hk(m̂xk ,mvk ,̂`)
∂xT

k
, M̂k =

∂hk(m̂xk ,mvk ,̂`)
∂vT

k
, with mean terms given by mxk '

fk−1
(
mxk−1 , mwk−1 , !

)
and m̂xk ' fk−1

(
mxk−1 , mwk−1 , !̂

)
.
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3.3. Mitigation of Parametric Modelling Errors through LCs

Once we have established the additional error induced by the model mismatch, the
practitioner needs an efficient way to mitigate it. Notice that

E[x̂b
k−1|k−1 − xk−1] = 0⇒ E

[
x̂k|k(Lk)− xk

]
= E[”k(Lk)], (27)

E[”k(Lk)] ' LkE
[

∂hk(xk, vk,̂̀)
∂`T

]
(`− ̂̀)− (I− LkĤk)E

[
∂fk−1(xk−1, wk−1, !̂)

∂!T

]
(!− !̂),

therefore, we can conclude that

∀(!− !̂), ∀((`− ̂̀), E[”k(Lk)] = 0 ⇔


LkE

[
∂hk(xk ,vk ,̂`)

∂`T

]
= 0

(I− LkĤk)E
[

∂fk−1(xk−1,wk−1 ,̂!)
∂!T

]
= 0

, (28)

which defines a sensible set of constraints in order to mitigate at first order, which mainly
consists of the bias, the error introduced by parametric modelling errors in the nonlin-
ear system functions. However, expectations are probably not computable in several
applications, and

dHk , E
[

∂hk(xk ,vk ,̂`)
∂`T

]
'

∂hk

(
x̂b

k|k−1,mvk ,̂`
)

∂`T ,

dFk , E
[

∂fk(xk ,wk ,̂!)
∂!T

]
'

∂fk

(
x̂b

k|k ,mwk ,̂!
)

∂!T .
(29)

These LCs provide a non degenerate solution [18] only if rank(dFk−1) = Rk−1 < Pk−1.
Then, Equation (28) can be recast as {LkdHk = 0, Lk(ĤkdFk−1) = dFk−1}. Let dFk−1 =
Uk−1dΦk−1 be the singular value decomposition (SVD) of dFk−1, where Uk−1 ∈ CPk×Rk has
full rank Rk < Pk and dΦk−1 ∈ CRk×Pk−1 . Then Equation (28) becomes,

{LkdHk = 0, Lk(ĤkUk−1) = Uk−1}. (30)

3.4. Exploiting LCs for Robust Filtering under Mismatch

Notice that by imposing LCs in Equation (30), the estimate obtained with the mis-
matched NLDSSM Equation (15) is matched to the true observation in Equation (16).
Indeed, the LCKF minimises the MSE associated to the true state xk, matching the true
observations to the assumed model. We detail the robust LCEKF methodology in the
sequel. At every time k,
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Prediction

x̂b
k|k−1 ' fk−1(x̂

b
k−1|k−1, mwk−1 , !̂), (31)

Pb
k|k−1 = F̂k−1Pb

k−1|k−1F̂H
k−1 + N̂k−1Cwk−1N̂H

k−1,

ŷb
k|k−1 ' hk(x̂

b
k|k−1, mvk ,̂̀), (32)

Sb
k|k−1 = ĤkPb

k|k−1ĤH
k + M̂kCvk M̂H

k ,

Unconstrained Gain

Kk = Pb
k|k−1ĤH

k (Sb
k|k−1)

−1, (33)

Linear Constraints

∆k = [dHk ĤkUk−1], Tk = [0 Uk−1]

Γk = Tk −Kk∆k, Ψk = ∆H
k (Sb

k|k−1)
−1∆k

Constrained Gain

Lb
k = Kk + ΓkΨ−1

k ∆H
k (Sb

k|k−1)
−1 (34)

Update

x̂b
k|k = x̂b

k|k−1 + Lb
k(yk − ŷb

k|k−1), (35)

Pb
k|k =

(
I−KkĤk

)
Pb

k|k−1 + ΓkΨ−1
k ΓH

k

with the matrices F̂k−1, N̂k−1, Ĥk, M̂k evaluated at x̂b
k−1|k−1 and x̂b

k|k−1 instead of at the
unknown state means.

3.5. Special Cases: Linear and Additive Systems

If we assume that the NLDSSMs Equations (15) and (16) become linear, we have that,

fk−1(xk−1, wk−1, !) = Fk−1(!)xk−1 + wk−1, (36)

hk(xk, vk, `) = Hk(`)xk + vk, (37)

with Fk−1(!) = [f1
k−1(!) . . . fPk−1

k−1 (!)] and Hk(`) = [h1
k(`) . . . hPk

k (`)], leading to F̂k−1 = Fk−1 (̂!),
N̂k−1 = I, Ĥk = Hk (̂`) and M̂k = I. Moreover, in this case,

∂fk−1

(
xk−1, wk−1, !̂

)
∂!T

(
!− !̂

)
'
(

Fk−1(!)− Fk−1

(̂
!
))

xk−1 = dFk−1xk−1, (38)

∂hk(xk, vk,̂̀)
∂`T (`− ̂̀) ' (Hk(`)−Hk (̂`))xk = dHkxk,

then, Equation (26) reduces to the linear system error analysed in [18], which confirms the
relevance of Equations (25) and (26) as a first order approximation of Equations (21) and (22)
and the choice of the form of Equation (21).

If we assume the intermediate case where the NLDSSMs Equations (15) and (16) are
still nonlinear but with additive noise, then,

fk−1(xk−1, wk−1, !) = fk−1(xk−1, !) + wk−1, (39)

hk(xk, vk, `) = hk(xk, `) + vk, (40)
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leading to F̂k =
∂fk(mxk ,̂!)

∂xT
k

, N̂k = I, Ĥk =
∂hk(m̂xk ,̂`)

∂xT
k

and M̂k = I, with mxk ' fk−1
(
mxk−1 , !

)
and m̂xk ' fk−1

(
mxk−1 , !̂

)
. Because the noise terms do not depend on the system parameters

or inputs, we simply have that,

∂fk−1

(
xk−1, wk−1, !̂

)
∂!T

=
∂fk−1

(
xk−1, !̂

)
∂!T

,

∂hk(xk, vk,̂̀)
∂`T =

∂hk(xk,̂̀)
∂`T .

Finally, if we consider nonlinear additive inputs of the form, fk−1(xk−1, wk−1, !) =
fk−1(xk−1) + gk−1(!) + wk−1, then ∂fk−1(xk−1, wk−1, !̂)/∂!T = ∂gk−1 (̂!)/∂!T and we recover
the results in [20].

4. Illustrative Example: Robust Vehicle Tracking and Navigation

To illustrate the validity of the proposed LCEKF and its performance improvement
with respect to standard (not robust) EKF solutions, we analyse a two vehicle tracking
and navigation problem. We consider for both vehicles a tricycle dynamic model (i.e., two
rear wheels provide the speed, and the front one controls the direction), also known as
the Ackerman model [23], which is used to describe the kinematic behavior (2D position
and orientation) of most parts of vehicles with three and four wheels (see Figure 1). In the
sequel subscript (·)T refers to the tracking vehicle, and (·)B to the tracked one. Refer to
Appendix A for details.

As shown in Figure 2, we consider a tracking vehicle at (xT , yT) with linear ve-
locity VT , orientation α and steering angle ψ, and a tracked vehicle at (xB, yB) with
linear velocity VB, orientation θ and steering angle φ. The state at discrete time k is
xT

k = [(xB)k, (yB)k, θk, (xT)k, (yT)k, αk] (in the global frame (xOy)), to be estimated from
measurements yT

k = [(x′B)k, (y′B)k, βk, (xT)k, (yT)k, αk], where ((x′B)k, (y′B)k) and βk are the
tracked vehicle position and orientation in the tracker (x’O’y’) coordinate frame. Velocities,
VT and VB, and steering information, ψ and φ, are obtained from an odometer and steer-
ing angle sensor. We consider a cooperative tracking process where the tracked vehicle
communicates its navigation information, i.e., VB and φ, to the tracking vehicle. Therefore,
we have an input parameter vector uT = [VB, φ, DB, VT , ψ, DT ], with DB and DT being the
distance from the front wheel to the rear axle.

Figure 1. Three-wheeled vehicle model in movement.
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Figure 2. Two vehicle tracker (T) and tracked (B) scenario, and the different vehicle coordinate
systems.

4.1. State Model with Both Additive and Non-Additive Noise

We consider a nonlinear state model of the form xk = fk−1(xk−1, u, wk−1) + w′k−1.
The additive noise w′k−1 ∼ N (m′w, C′w) models deviations on the vehicles’ position
and orientation, due to wind perturbations or unmodeled accelerations, with C′w =
diag(σ2

xB
, σ2

yB
, σ2

θ , σ2
xT

, σ2
yT

, σ2
α). The non-additive noise wk−1 = [wv, wψ]Tk−1 ∼ N (mw, Cw)

models perturbations on the input parameters VT and ψ (i.e., the odometer may be affected
by tire pressure and road conditions, and the steering information is subject to noise due to
friction and wind), with Cw = diag(σ2

v , σ2
ψ),

xk = xk−1 + gk−1(xk−1, u, wk−1) + w′k−1, (41)

[gk−1(·)]1 =
2DB

tan(φ)
sin
(

VB dt tan(φ)
2DB

)
cos
(

θk−1 +
VB dt tan(φ)

2DB

)
, (42)

[gk−1(·)]2 =
2DB

tan(φ)
sin
(

VB dt tan(φ)
2DB

)
sin
(

θk−1 +
VB dt tan(φ)

2DB

)
, (43)

[gk−1(·)]3 =
VB dt

DB
tan(φ), (44)

[gk−1(·)]4 =
2DT

tan(ψ̂)
sin

(
V̂T dt tan(ψ̂)

2DT

)
cos

(
αk−1 +

V̂T dt tan(ψ̂)
2DT

)
, (45)

[gk−1(·)]5 =
2DT

tan(ψ̂)
sin

(
V̂T dt tan(ψ̂)

2DT

)
sin

(
αk−1 +

V̂T dt tan(ψ̂)
2DT

)
, (46)

[gk−1(·)]6 =
V̂T dt

DT
tan(ψ̂), (47)

with V̂T = VT + wv and ψ̂ = ψ + wψ.
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4.2. Nonlinear Measurement Model and Mismatch

The measurement principle is illustrated in Figure 2, where the tracker locates itself at
point O′ and the tracked vehicle at point B in its coordinate frame (x’O’y’),

yk = hk(xk) + nk, nk ∼ N (0, Cn), (48)

Cn = diag(σ2
x′ , σ2

y′ , σ2
β, σ2

x′T
, σ2

y′T
, σ2

α′), (49)

and hk(xk) is given by

hk(xk) =

 [
cos(−αk) − sin(−αk)
sin(−αk) cos(−αk)

]
O

O I4




(xT)k − (xB)k
(yT)k − (yB)k

θk − αk
(xT)k
(yT)k

αk

. (50)

We consider the case where we may have an imperfect knowledge on the system
inputs. In practice, the distance DB and DT are not accurate, i.e., there exists a deviation
between the true values, DB and DT , and the assumed ones, D̂B and D̂T , dDB = DB − D̂B
and dDT = DT − D̂T . In order to mitigate the possible impact of such error, we resort to
the LCEKF in Section 3.4, incorporating the constraint(

I− LkĤk

)
dFk−1 = 0, dFk =

∂fk(xk, u, wk)

∂aT

∣∣∣∣
xk=x̂k|k ,u=û,wk=mw

, (51)

with the input vector given by û = [VB, φ, D̂B, VT , ψ, D̂T ]
T in the additive noise case, or

û = [VB, φ, D̂B, V̂T , ψ̂, D̂T ]
T in the non-additive noise one, and a = [DB, DT ]

T .

4.3. Scenarios

We consider the following setup: dt = 1 ms, Cx0 = 0, x0 = (10, 20, 1◦, 8, 19, 1.5◦)T ,
and a measurement noise with σx′ = 1 m, σy′ = 1 m, σβ = 0.1◦, σx′T

= 1m, σy′T
= 1 m and

σα′ = 0.1◦. Three scenarios are of interest:

• S1) Only additive noise (wk−1 = 0): m′w = 0, σxB = σyB = σxT = σyT = 0.1 m and
σθ = σα = 0.1◦.

• S2) Only non-additive noise (w′k−1 = 0): mw = 0, σv = 0.1 m/s and σψ = 0.1◦.
• S3) Both additive and non-additive noise with the values in S1 and S2.

In the three scenarios we consider different mismatches dD = dDT = dDB = 0.1, 0.5
and 1 m, and true values DB = 3 m and DT = 3 m. We compare five filters:

(i) EKFre f is the benchmark using the true system (dDT = dDB = 0).
(ii) EKF stands for the mismatched filter, that is, using the mismatched system input

values D̂B and D̂T .
(iii) LCEKFDT is a linearly constrained filter only accounting for an erroneous value of DT

(a = DT in Equation (51)).
(iv) LCEKFDB is a linearly constrained filter only mitigating the impact of dDB (a = DB in

Equation (51)).
(v) LCEKFDB,DT accounts for both mismatched inputs (a = [DB, DT ]

T).

4.4. Results

Numerical results for the three scenarios are summarised in Figure 3, where we show
the position MSE vs time for the five filters obtained over 100 Monte Carlo runs. First,
notice that in each scenario (S1, S2 and S3) and regardless of the mismatch value dD the
standard EKF always diverges and is not able to correctly estimate the states of interest.
That is, even a minor mismatch on the distance from the front wheel to the rear axle induces
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a performance breakdown on the standard misspecified EKF; therefore, such a mismatch
must be accounted for. In addition, the larger the mismatch the faster the performance
breakdown. Second, the LCEKFDB accounting only for a mismatched input on the tracked
vehicle (DB) does not improve the standard EKF performance (results are superimposed in
the plots). Third, the LCEKFDT , which mitigates the tracker input mismatch (DT), slightly
improves the performance w.r.t. the EKF and LCEKFdB but does not prevent a performance
breakdown. Then, we can conclude that with a mismatch on both vehicles’ distance D, and
regardless of whether the system is affected by either additive or non-additive noise, either
we correctly deal with both mismatched inputs or the filters are not useful anymore.

In contrast to the previous filters, the LCEKFDB,DT , which properly accounts for both
input mismatched values, is able to correctly estimate the states and avoid the performance
breakdown exhibited by the mismatched filters, regardless of the mismatched value dD,
and therefore it is a powerful solution to coping with a possible system model mismatch.
Notice that the LCEKFDB,DT performance is almost superimposed with the optimal EKFre f
in the plots, which again proves the good behaviour of the LCEKF for both additive and
non-additive noises. It is worth pointing out that the non-additive noise has a larger impact
than the additive one on the system dynamics, which can be seen from the optimal MSE
results (i.e., MSE EKFre f ≈ 10−4 for the additive noise case S1 and MSE EKFre f ≈ 0.5× 10−2

for both non-additive noise cases S2 and S3); this drives the estimation error (MSE EKFre f S2
≈MSE EKFre f S3). This further supports the need for filters able to cope with non-additive
noise and system inputs, and the interest of the robust LCEKF formulation proposed in
this contribution.
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Figure 3. Cont.
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Figure 3. Results for the different sceanrios: (Top) Additive noise S1, (Middle) non-additive noise
S2, and (Bottom) both additive and non-additive noise S3. MSE results for the optimal EKFre f ,
mismatched EKF, and three LCEKF implementations: LCEKFDB (mitigation of dDB), LCEKFDT

(mitigation of dDT), and LCEKFDB,DT (mitigation of both dDB and dDT).

5. Conclusions

In this contribution we explored the use of linear constraints to design robust nonlinear
KF-type filtering strategies. This was shown in previous contributions to be a promising
solution to mitigate parametric modelling errors in both system functions, a problem of
interest in real-life applications. In that perspective, we derived a linearly constrained EKF
for systems affected by non-additive noise and system inputs, which generalises previous
solutions only able to cope with either linear systems or additive noises. Within this
framework, it was shown how to exploit linear constraints to mitigate possible nonlinear
system model parametric misspecifications on both process and measurement functions.
This approach encompasses both errors on system function parameters and system inputs,
as well as on noise mean values. A two vehicle robust tracking and navigation problem was
used to show the validity and performance improvement provided by the robust LCEKF
with respect to state-of-the-art solutions. In addition, it was shown that the non-additive
noise has a larger impact than the additive one on the system dynamics, and drives the
estimation error, which further supports the need for filters able to cope with non-additive
noise and system inputs, and the interest of the robust LCEKF formulation.

As future work, it would be of interest to analyse the use of linear constraints within
the context of sigma-point filtering, to better cope with the system nonlinearity and avoid
the EKF linearisation errors. Moreover, the proposed solution should be compared to
alternative system identification techniques, which, rather than mitigating the impact of
mismatched parameters, estimate them together with the states of the system. Another
research line would be the generalisation to more general mismatched systems, for instance,
considering a possible mismatch on covariance matrices, as well as the comparison or
combination with noise statistics’ parameter estimation techniques.
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Appendix A. Details on the Robust Vehicle Tracking and Navigation Example

Appendix A.1. Tricycle Dynamic Model

The tricycle model (also known as Ackerman model) can be used to model the kine-
matic behavior of most part of vehicles with three and four wheels. As it is shown in
Figure 1, it consists of two main wheels which provide the vehicle speed, and a third wheel
which controls the vehicle direction. The turn radius ρ is given by

ρ =
D

tan(ψ)
(A1)

where D denotes the distance from the front wheel to the rear axle. We consider the
following equations 

dx = x′ − x = S cos(θ + ∆θ
2 )

dy = y′ − y = S sin(θ + ∆θ
2 )

dθ = θ′ − θ = L/ρ

, (A2)

where, 

L = Vdt

∆θ = L/ρ = Vdt tan(ψ)
D

S = 2ρ sin
(

∆θ
2

)
= 2Vdt tan(ψ)

D sin
(

Vdt tan(ψ)
2 D

)
= V dt sinc

(
Vdt tan(ψ)

2 D

) , (A3)

and then, 
dx = V dt sinc

(
Vdt tan(ψ)

2 D

)
cos
(

θ + Vdt tan(ψ)
2 D

)
dy = V dt sinc

(
Vdt tan(ψ)

2 D

)
sin
(

θ + Vdt tan(ψ)
2 D

)
dθ = Vdt tan(ψ)

D

. (A4)

Appendix A.2. Nonlinear Discrete State Model

Considering the state at discrete time k, xT
k = [(xB)k, (yB)k, θk, (xT)k, (yT)k, αk] (in the

global frame (xOy)), and the previous equations, we can obtain the state equation for the
general case with additive and non-additive noise terms, xk = fk−1(xk−1, u, wk−1) + w′k−1,
detailed in Equations (41)–(47). For the three scenarios of interest, we give in the sequel the
corresponding approximations (i.e., we omit the dependency with discrete time k for the
sake of simplicity):

• (S1) Only additive noise (wk−1 = 0, N̂k−1 = 0):
Let

q(x) = VB dt tan(φ)/(2DB), g(x) = θ + q(x), (A5)

qT(x) = VT dt tan(ψ)/(2DT), gT(x) = α + qT(x), (A6)

then
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F̂k−1 =
∂fk−1(xk−1, u)

∂xT
k−1

∣∣∣∣∣
xk−1=x̂k−1|k−1,u=û

,

∂f(x, u)
∂xT =



1 0 −VB dt sinc(q(x)) sin(g(x)) 0 0 0
0 1 VB dt sinc(q(x)) cos(g(x)) 0 0 0
0 0 1 0 0 0
0 0 0 1 0 −VT dt sinc(qT(x))sin(gT(x))
0 0 0 0 1 VT dt sinc(qT(x))cos(gT(x))
0 0 0 0 0 1

. (A7)

• (S2) Only non-additive noise (w′k−1 = 0):
Let

q(x) = VB dt tan(φ)/(2DB), g(x) = θ + q(x) (A8)

qT(x) = (VT + wv) dt tan(ψ + wψ)/(2DT), gT(x) = α + qT(x), (A9)

then

F̂k−1 =
∂fk−1(xk−1, u, wk−1)

∂xT
k−1

∣∣∣∣∣
xk−1=x̂k−1|k−1,u=û,wk−1=mw=0

, (A10)

∂f(x, u, w)

δxT =

1 0 −VB dt sinc(q(x))sin(g(x)) 0 0 0
0 1 VB dt sinc(q(x))cos(g(x)) 0 0 0
0 0 1 0 0 0
0 0 0 1 0 −(VT + wv) dt sinc(qT(x))sin(gT(x))
0 0 0 0 1 (VT + wv) dt sinc(qT(x))cos(gT(x))
0 0 0 0 0 1

,

N̂k−1 =
∂fk−1(xk−1, u, wk−1)

∂wT
k−1

∣∣∣∣∣
xk−1=x̂k−1|k−1,u=û,wk−1=mw=0

, (A11)

∂f(x, u, w)

∂wT =



0 0
0 0
0 0

∂f4(x,u,w)
∂wv

∂f4(x,u,w)
∂wψ

∂f5(x,u,w)
δwv

∂f5(x,u,w)
∂wψ

∂f6(x,u,w)
∂wv

∂f6(x,u,w)
∂wψ


, (A12)
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where

∂f4(x, u, w)

∂wv
= dt sinc(qT(x))cos(gT(x))− dt qT(x)sinc(qT(x))sin(gT(x))

+ dt (cos(qT(x))− sinc(qT(x)))cos(gT(x)),

∂f4(x, u, w)

∂wψ
= − (VT + wv)2 dt2

2DT

(
1 + tan2(ψ + wψ)

)
sinc(qT(x))sin(gT(x))

+
(VT + wv) dt

(
1 + tan2(ψ + wψ)

)
tan(ψ + wψ)

cos(gT(x))cos(qT(x))

−
(VT + wv) dt

(
1 + tan2(ψ + wψ)

)
tan(ψ + wψ)

cos(gT(x))sinc(qT(x)),

∂f5(x, u, w)

∂wv
= dt sinc(qT(x))sin(gT(x)) + dt qT(x) sinc(qT(x))cos(gT(x))

+ dt (cos(qT(x))− sinc(qT(x)))sin(gT(x)),

∂f5(x, u, w)

∂wψ
=

(VT + wv)2 dt2

2DT

(
1 + tan2(ψ + wψ)

)
sinc(qT(x))cos(gT(x))

+
(VT + wv) dt

(
1 + tan2(ψ + wψ)

)
tan(ψ)

sin(gT(x))cos(qT(x))

−
(VT + wv) dt

(
1 + tan2(ψ + wψ)

)
tan(ψ + wψ)

sin(gT(x))sinc(qT(x)),

∂f6(x, u, w)

∂wv
=

dt
DT

tan
(
ψ + wψ

)
,

∂f6(x, u, w)

∂wψ
=

(V + wv)dt
DT

(
1 + tan2(ψ + wψ

))
.

• (S3) Both additive and non-additive noise: in this case F̂k−1 and N̂k−1 are computed
as in S2)

Appendix A.3. Nonlinear Measurement Model

The nonlinear measurement model is given in Equation (48). To use the EKF and

LCEKF we need to compute the approximation Ĥk =
∂hk(xk ,vk ,̂`)

∂xT
k

∣∣∣∣
xk=x̂b

k|k−1

= ∂hk(xk)

∂xT
k

∣∣∣∣
xk=x̂b

k|k−1

,

which is given by

Ĥk =



− cos(αk) − sin(αk) 0 cos(αk) sin(αk)

(
− sin(αk)((xT)k − (xB)k)
+ cos(αk)((yT)− (yB)k)

)
sin(αk) − cos(αk) 0 − sin(αk) cos(αk)

(
− cos(αk)(xT − xB)

− sin(αk)((yT)k − (yB)k)

)
0 0 1 0 0 −1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xk=x̂b

k|k−1

. (A13)

Notice that in this case M̂k = 0.

Appendix A.4. Linear Constraints

As already stated, the goal is to mitigate the possible mismatch impact by exploiting
the constraints(

I− LkĤk

)
dFk−1 = 0, dFk =

∂fk(xk, u, wk)

∂aT

∣∣∣∣
xk=x̂k|k ,u=û,wk=mw=0

, (A14)
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with û = [VB, φ, D̂B, VT , ψ, D̂T ]
T and a = [DB, DT ]

T . Omitting the dependency with discrete
time k for the sake of simplicity, such constraint is computed as follows. Let

q(x) = VB dt tan(φ)/(2DB), g(x) = θ + q(x),

qT(x) = (VT + wv) dt tan(ψ + wψ)/(2DT), gT(x) = α + qT(x),

∂f(x, u)
∂aT =



∂f1(x,u)
∂DB

∂f1(x,u)
∂DT

∂f2(x,u)
∂DB

∂f2(x,u)
∂DT

∂f3(x,u)
∂DB

∂f3(x,u)
∂DT

∂f4(x,u)
∂DB

∂f4(x,u)
∂DT

∂f5(x,u)
∂DB

∂f5(x,u)
∂DT

∂f6(x,u)
∂DB

∂f6(x,u)
∂DT


=



∂f1(x,u)
∂DB

0
∂f2(x,u)

∂DB
0

∂f3(x,u)
∂DB

0

0 ∂f4(x,u)
∂DT

0 ∂f5(x,u)
∂DT

0 ∂f6(x,u)
∂DT


, (A15)

∂f1(x, u)
∂DB

=
VB dt

DB
sinc(q(x))cos(g(x))− VB dt

DB
cos(q(x))cos(g(x))

+
VB dt

DB
q(x)sinc(q(x))sin(g(x)),

∂f2(x, u)
∂DB

= −VB dt
DB

sinc(q(x))cos(g(x))− VB dt
DB

cos(q(x))sin(g(x))

− VB dt
DB

q(x)sinc(q(x))cos(g(x)),

∂f3(x, u)
∂DB

=
2q(x)

DB
,

∂f4(x, u)
∂DT

=
VT dt

DT
sinc(qT(x))cos(gT(x))− VT dt

DT
cos(qT(x))cos(gT(x))

+
VT dt

DT
qT(x)sinc(qT(x))sin(gT(x)),

∂f5(x, u)
∂DT

= −VT dt
DT

sinc(qT(x))sin(gT(x))− VT dt
DT

cos(qT(x))sin(gT(x))

− VT dt
DT

qT(x)sinc(qT(x))cos(gT(x)),

∂f6(x, u)
∂DT

=
2qT(x)

DT
.
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