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Abstract: Bearings of rail vehicles bear various dynamic forces. Any fault of the bearing seriously
threatens running safety. For fault diagnosis, vibration and temperature measured from the bogie
and acoustic signals measured from trackside are often used. However, installing additional sensing
devices on the bogie increases manufacturing cost while trackside monitoring is susceptible to
ambient noise. For other application, structural displacement based on computer vision is widely
applied for deflection measurement and damage identification of bridges. This article proposes
to monitor the health condition of the rail vehicle bearings by detecting the displacement of bolts
on the end cap of the bearing box. This study is performed based on an experimental platform of
bearing systems. The displacement is monitored by computer vision, which can image real-time
displacement of the bolts. The health condition of bearings is reflected by the amplitude of the
detected displacement by phase correlation method which is separately studied by simulation. To
improve the calculation rate, the computer vision only locally focuses on three bolts rather than
the whole image. The displacement amplitudes of the bearing system in the vertical direction are
derived by comparing the correlations of the image’s gray-level co-occurrence matrix (GLCM). For
verification, the measured displacement is checked against the measurement from laser displacement
sensors, which shows that the displacement accuracy is 0.05 mm while improving calculation rate by
68%. This study also found that the displacement of the bearing system increases with the increase in
rotational speed while decreasing with static load.

Keywords: displacement detection; bearing system; experimental platform; computer vision; phase
correlation; GLCM; condition monitoring

1. Introduction

Axle box bearings of rail vehicle, as a key component of railway running gear, are used
to adapt the rotational movement of wheelsets into a longitudinal motion of the car body
along the track. Any fault state of the axle box bearing seriously challenges the running
safety of rail vehicles [1]. Different from other kinds of bearings, axle box bearings work in
a harsh condition and are heavily subjected to wheel–rail contact force, dynamic vibration
generated by the car body and frame, meshing excitation during the gear engagement in
the power transmission of gear box, and the excited dynamic load generated by the bearing
itself [2]. Therefore, it is necessary to monitor the health condition of the bearings to ensure
the running safety of rail vehicles.

At present, the condition monitoring and health diagnosis methods of bearings in
railway applications are mainly categorized into two groups: on-board monitoring based
on vibration or temperature, and trackside monitoring based on acoustics. The on-board
monitoring requires additional detecting equipment installed on the bogie, which greatly
increases the manufacturing cost. The acoustic signals measured by trackside monitoring
are seriously affected by ambient noise [3,4]. In order to reduce monitoring cost and further
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improve monitoring accuracy and reliability, it is necessary to develop a new method for
bearing monitoring.

In contrast, there are many monitoring technologies for structural health monitoring
which can potentially apply to bearing condition monitoring. Structural health moni-
toring is widely used for the assessment of structural performance and safety state by
monitoring, analyzing, and identifying various loads and structural responses of the tar-
get structures [5–7]. Displacement is an important index for structural state evaluation
and performance evaluation [6] because the displacement can be further converted into a
corresponding physical index for structural safety assessment. Static and dynamic char-
acteristics of the structure, such as bearing capacity [8], deflection [9], deformation [10],
load distribution [11], load input [12], influence line [13], influence surface [14], modal
parameters, etc. [15,16], can thus be reflected by the structural displacement. Among them,
structural displacement monitoring based on computer vision has attracted more and
more attention because it has many advantages, e.g., non-contact, high accuracy, time and
cost saving, multi-point monitoring, etc. [17]. Computer vision monitoring methods of
structural displacement have been applied to many tasks of bridge health monitoring,
Yoon et al. [18] used a UAV(Unmanned Aerial Vehicles) to carry a 4K camera to monitor
the displacement of a steel truss bridge, and obtained the absolute displacement of the
structure without the influence of UAV movement. Ye et al. [19] used a computer-controlled
programmable industrial camera to monitor the behavior of an arch bridge under vehicle
load, obtaining the influence line of its structural displacement, and realizing the real-time
online displacement monitoring of multiple bridges. Tian et al. [20] combined the accelera-
tion sensor and visual displacement measurement method to carry out an impact test of
a structure and construct the frequency response function of the structure, to realize the
estimation of the structure’s mode, mode shape, damping, and modal scale factor, and to
realize the impact displacement monitoring of the pedestrian bridge. Besides the bridge
health monitoring, many other engineering applications also use this method to monitor
and identify structural displacements. For example, Chang et al. used structural displace-
ment monitoring, feature extraction, and the support vector machine of computer vision to
form vibration monitoring systems for the on-site diagnosis and performance evaluation
of industrial motors and carried out preventive maintenance experiments [21]. Liu studied
a track displacement monitoring system in which a fixed camera at the trackside was used
for imaging and then the actual displacement of the track was calculated through a digital
image processing algorithm, which realized an accurate non-contact measurement of track
displacement [22]. Based on the above studies using computer vision to monitor struc-
tural displacement in different engineering applications, it can be seen that it is effective,
convenient, and accurate to monitor structural states by detecting displacement signals.

Based on the existing bearing monitoring are some shortcomings of traditional meth-
ods (including installing additional sensing devices on the bogie which increases manu-
facturing cost; trackside monitoring is susceptible to ambient noise, etc.). In this article,
a displacement monitoring method based on computer vision to monitor the vertical
displacement of the axle box bearing of the rail vehicles under simulated real working
conditions in proposed, in order to realize the non-contact, high accuracy of axle box bear-
ings of condition monitoring, the realization of ultimate axle box bearing fault diagnosis,
and preventive maintenance. Firstly, a portable camera is used to image the platform and
detect the displacement amplitude of the bolts, which is used to calculate the state of the
bearing through the phase correlation method. Next, the displacement amplitudes of the
bearing system in the vertical direction are derived by comparing the correlations of the
image’s gray-level co-occurrence matrix (GLCM). Finally, for verification, the measured
displacement is checked against the measurement from a laser displacement sensor. In the
following sections, the proposed approach is used to monitor the displacement of several
sets of the platform under different working conditions, and the experimental results are
analyzed. Finally, the associated open research challenges are discussed.



Sensors 2021, 21, 2100 3 of 19

2. Experimental Setup of Bearing Experimental Platform

The platform was built to simulate the real operation of the bearing, and at the same
time, it can apply radial load (simulating the weight of the train) and stimulate the track
irregularity to the tested bearing. The structure of the platform is shown in Figure 1. It
mainly consists of three parts (shown in the dotted box in Figure 2): (1) the power input; (2)
the excitation and expansion platform; (3) the whole bearing system. The platform adopts
a horizontal structure, and the tested bearings are placed on both sides of the spindle. The
spindle is connected to the motor through a universal joint coupling (simulating the speed
of the train axle); the side view of the whole bearing system is shown in Figure 3. The
bearing system is fixed on the excitation platform, and the end cover and the shell of bearing
box are connected by eight bolts (bolts on which this article focuses) evenly distributed
along the circumference. The radial load (simulated vehicle axle load) is applied to the
bearing under test by two sets of vertically mounted springs. The radial load is loaded onto
the two bearing under test. By applying vertical excitation to the test system (simulating
the vertical irregularity of the actual line), the excitation platform is bolted to bearing
bracket. The inertial force of the equivalent parts is reasonably simulated by the mass of
the spindle and the bearing bracket. In this way, the bearing under the combined action
of the radial load and excitation platform can simulate the working condition of the train
operation so as to monitor the service state of the axle box bearing of a high-speed train.

The electric machinery speed of the platform is 0~1460 r/min, the excitation frequency
of the excitation platform is 0~50 Hz, and the vertical loading range of the tested bearing is
0~2000 kg. The parameters of the axle box bearing under test are shown in Table 1. To the
platform can be added a temperature sensor, acoustic sensor, vibration sensor, etc., which
have collected data including images, sound, temperature, and vibration.
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Table 1. Axle box bearing dimension parameters.

Bearing Dimension Parameter Parameter Value

bearing outside diameter/mm 240
bearing inner diameter/mm 130

bearing width/mm 180.5
roller diameter/mm 27

number of rollers 17 × 2

3. Methodology

The general framework of the displacement monitoring system based on computer
vision is shown in Figure 4. This section mainly describes the identification principles and
methods of camera calibration, object tracking and displacement identification. The flow
chart of displacement identification in this article is shown in Figure 5. Video input was
collected by the portable camera (the video capture scheme is shown in Figure 6), and
then captured the video into images according to the frame; all the images constitute the
displacement image set. The displacement image of the first frame is marked as the sample
image, and the coordinates of the three bolt points in the sample image are automatically
located by the positioning algorithm. Then, images with the same coordinate position as
the sample image are intercepted from the displacement image set and the sample image
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are calculated by the phase correlation method. Finally, the displacement amplitudes of
the bearing system in vertical direction are derived by comparing the correlations of the
image’s gray-level co-occurrence matrix (GLCM).

The portable camera was positioned on the central axis on the side of the platform;
sample video images of the displacement of the platform for a short period of time are
shown in Figure 7. The collected image contents include the bearing end cover and bolts,
door frame, and expansion platform. The whole bearing system is fixed on the vibration
platform, and the bearing end cover and bolts, door frame and expansion platform are
fixed rigidly by bolts; therefore, the displacement amplitude of each place in the image
collected in Figure 7 is the same. Therefore, in order to improve the calculation rate, and
achieve the purpose of real-time monitoring and identification, the local images of the three
bolts under the end cover of bearing box (as shown in the red rectangle in Figure 7) were
used instead of the whole image to calculate the vertical displacement amplitudes of the
three bolts over time. The displacement amplitudes in vertical direction of the three bolts
over time were calculated individually. The displacement amplitudes of the bearing system
in vertical direction were derived by comparing the correlations of the image’s gray-level
co-occurrence matrix (GLCM).
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Figure 7. Image of bearing system experimental platform.

3.1. Camera Calibration

For the displacement monitoring of the platform, the measurement task was limited
to one-dimensional displacement; thus, this article adopted a simplified camera calibration
method: the scale factor method [23].

As shown in Figure 8, when the camera optical axis is perpendicular to the structural
plane, and the optical axis is in line with the normal of the structural plane, the calculation
formula of scale factor e is:

e =
D
d

(1)

Or
e =

Z
f

dpixel (2)

where D is the size of the selected object in the structure plane, d is the corresponding
number of pixels in the image plane, ƒ is the focal length of the lens, Z is the distance from
the camera to the structure plane, and dpixel is the pixel size.
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3.2. Object Tracking and Feature Extraction

The displacement calculation method used in this article is the phase correlation
method; the method needs two Fourier transforms and one inverse Fourier transform.
Therefore, the amount of calculation load increases with the input images and decreases
with the operation speed. Therefore, it cannot meet the needs of real-time displacement
monitoring. The simple compressed image size will lead to a decrease in the accuracy of the
calculation of displacement, because the displacement amplitude of the captured image (as
shown in Figure 9) is the same at every point. Observe the captured image, which contains
the lower half of the end cover of the bearing box of the bearing system and the bolts above,
part of the expansion platform and the door frame. Among them, the bolt features on the
bearing end cover are obvious, the geometric features are stable, and the contour points
are distributed uniformly along a central point, which reduces the calculation error of the
power spectrum (Equation (12)) caused by the small and concentrated image pixel value
gradient in the later phase correlation method to calculate the displacement. Therefore, the
local image of the three bolts is selected for calculation of the phase correlation method.
Figure 9 shows the displacement image of the platform under different ray directions due
to different time periods (the difference can be seen clearly by the portion of the rectangular
box in each drawing). Due to the influence of the change of image gray value caused
by different ray direction on the positioning of bolts of end cover, this article compares
two positioning methods: template matching positioning method and contour feature
positioning method.
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3.2.1. Template Matching Positioning Method

The template matching and positioning method is shown in Figure 10 (taking one
of the three bolts as an example). The main process is to intercept the grayscale image
of the target bolt (the size of the captured image is

√
n×
√

n) subset and the template in
a part of the image in advance, and then traverse the matrix with the size of

√
n×
√

n
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in the grayscale pixel matrix of the image to be fixed. The two matrices are reduced
to one dimension to perform correlation operation to complete the global search. The
measurement index of the search is the normalized correlation coefficient r.

r =
n

n
∑

i=1
xiyi −

n
∑

i=1
xi ·

n
∑

i=1
yi√

n
n
∑

i=1
x2

i − (
n
∑

i=1
xi)2 ·

√
n

n
∑

i=1
y2

i − (
n
∑

i=1
yi)2

(3)

where xi represents the element corresponding to the reduction in one dimension of the
template matrix, and yi represents the element corresponding to the reduction in one
dimension of the truncated matrix with the size of

√
n×
√

n in the grayscale pixel matrix
of the image to be determined.
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Figure 10. Template matching process. Figure 10. Template matching process.

The correlation coefficient r ranges from 0 to 1, and the peak position in the correlation
coefficient map in Figure 10 is the matching position. In Figure 10, the abscissa corresponds
to the abscissa of the image, the ordinate corresponds to the ordinate of the image, and the
vertical coordinate is the correlation coefficient. The horizontal and vertical coordinates are
in pixels, and the vertical coordinates are unified dimensions. Figure 11 shows the effect
picture of the image taken under different illumination conditions in Figure 9. When the
size of the image to be positioned is input as 960 × 544, the size of the template is set as
51 × 51 and the number of templates is 1; the calculation time is shown in Table 2 (the
computer CPU used for calculation was Inter(R) Core(TM) I7-4790 CPU @ 3.60 GHz).

Table 2. Calculation times of template matching.

Image Number Processing Time (s)

1 305.0
2 305.0
3 305.0
4 303.0

mean value 304.5
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According to the positioning effect image in Figure 11 and the calculation time in
Table 1, it can be seen that the template matching method has a good positioning effect and
high robustness to the illumination conditions of the image. However, this method needs
to traverse the entire image removal matrix and calculate multiple correlation coefficients,
so the calculation time is relatively long, and the average positioning time is 304.5 seconds
per piece, which is difficult to meet the real-time displacement identification requirements
of the platform.

3.2.2. Contour Feature Positioning Method

The contour feature location method skips the gray pixel matrix of the image and di-
rectly uses the outstanding contour features in the image, establishing the geometric model
through auxiliary graphics to complete the positioning. In order to more conveniently
observe and select the contour features used in positioning, the image is first detected by
canny edge, as shown in Figure 12. We can observe that the obvious and easy-to-detect
contour features in the image are the two horizontal lines, L1 and L2 running through
the whole image, and the contour features of these two lines are selected as the reference
lines for the establishment of the geometric model. Observed that bolts P1 and P3 were
symmetrically distributed about bolt P2, and bolt P2 was just on the center line L3 of the
circular contour. L1, L2, L3, P1, P2, P3 and the circular contour were extracted from the edge
image Figure 12 to establish the geometric model, as shown in Figure 13.
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• Positioning reference line L3: canny edge detection for the image obtains the pixel
matrix A of the image, as shown in Figure 12. The value of 255 in the matrix is the
edge point, then the x-coordinate value of the reference line L3 is determined by
Equation (4):

X =
X2− X1

2
+ X1 (4)

where X1 and X2 are the number of columns where the first edge point is located
when traversing from the middle of the matrix to both sides in the first row of matrix
A (as shown by the arrow in Figure 12).

• Positioning reference line L1/L2: Hough transform is adopted to detect the straight
line, and the edge line of the excitation platform is positioned as the reference line, but
there are two upper and lower edge lines L1 and L2, as shown in Figure 13. It can be
observed that, when positioned as the lower edge line L1, the value of the pixel matrix
of the grayscale image below the edge line is obviously smaller than that located at
the upper edge line L2. According to Equation (5), whether the positioned edge line is
the upper edge line L1 or the lower edge line L2 can be determined:{

L1 f (M2+M1
2 + a, X) < b

L2 f (M2+M1
2 + a, X) ≥ b

(5)

where M1 and M2 are the vertical coordinates of the two endpoints of the detected line,
and f(x, y) is the gray value of the image at (x, y). a is the error value of the positioning
edge line, and is the empirical parameter, b is the gray value below the edge line L2,
and is an empirical parameter. In this article, a = 6, b = 40.

When the positioning reference line is determined to be L1 or L2, the vertical distance
between the reference line and the bolt P2 is d1 or d2:

d1 = H ∗ k1 (6)

d2 = H ∗ k2 (7)

where H is the height of the image; H = 544 in this article. k1 and k2 are empirical parameters,
k1 = 0.1; k2 = 0.25.

• Positioning bolts: after positioning the reference line, and according to the geometric
relationship shown in Figure 13, the locations of the center points of the bolt are at the
positions P1(x1, y1), P2(x2, y2), P3(x3, y3). When the positioning edge line is L1:

x1 = X ∗ (1− k3)
x2 = X
x3 = X ∗ (1 + k3)

y2 = M2+M1
2 − d1

y1 = y3 = M2+M1
2 − d1 − k4 ∗ H

(8)

When the positioning edge line is L2:

x1 = X ∗ (1− k3)
x2 = X
x3 = X ∗ (1 + k3)

y2 = M2+M1
2 − d2

y1 = y3 = M2+M1
2 − d2 − k4 ∗ H

(9)

where k3 and k4 are empirical parameters.
After positioning to the center point of the bolts, the images of the bolts can be captured

according to a certain size of the rectangular box. The positioning effect pictures are shown
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in Figure 15, and the calculation time is shown in Table 3 (the computer CPU used for
calculation was Inter(R) Core(TM) I7-4790 CPU @ 3.60 GHz).
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Figure 15. Contour feature positioning effect image under different illumination conditions (as Figure 9): (a) image under
strong supplementary light source condition; (b) image under strong natural light conditions; (c) images under low natural
light conditions; (d) image under weak supplementary light source condition.

Table 3. Calculation times of contour feature positioning.

Image Number Processing Time (s)

1 0.02
2 0.02
3 0.02
4 0.02

mean value 0.02

The red line in Figure 15a is the case of the reference line L1 and L3 of the positioning,
and the case of the reference line L2 and L3 of the positioning is shown in Figure 15b–d.
In the green rectangles are the locations of P1, P2 and P3 bolts. The method of using
contour lines to establish reference lines to assist positioning has a good effect. Moreover,
it can accurately identify and position objects under different lighting conditions and
different surface textures, reflecting the robustness of the algorithm to surface texture
changes and light intensity of objects. The average calculation speed is 0.02s to complete
the positioning, which can meet the requirements of real-time monitoring and identification
of the displacement of the platform.

Two different positioning methods of template matching and contour feature are
compared. As can be seen from the positioning renderings in Figures 11 and 15, the
positioning effect of the two methods is good, and the robustness to ray intensity is very
good, which can realize the automatic positioning requirements of bolts under different
lighting conditions. According to the positioning times required by the two positioning
methods in Tables 2 and 3, the average positioning time of the template matching method
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is 304.5 s. The average of the contour feature method is 0.02 s, which greatly reduces the
positioning time. Although the two positioning methods can achieve the same positioning
effect, considering the requirements of real-time monitoring, this article adopted the second
positioning method by contour feature for bolt positioning interception, and then carried
out subsequent displacement calculation.

3.3. Displacement Calculation

In this article, the phase correlation method is used to calculate the displacement of
the collected video images. The phase correlation algorithm [24] is a frequency-domain
correlation algorithm based on Fourier power spectrum. This method only takes the phase
information in the cross-power spectrum, which reduces the dependence on the image
content. In addition, the obtained correlation peak is sharp and prominent, the detection
range of displacement is large, and the matching accuracy is high. The image gray scale is
less dependent and has a certain anti-interference ability. Assuming that f 2(x, y) and f 1(x, y)
are two image signals, and f 2(x, y) is obtained by f 1(x, y) translation (dx, dy), which satisfies
the following formula:

f2(x, y) = f1(x− dx, y− dy) (10)

It is reflected in the frequency domain in the form of:

F2(µ, υ) = F1(µ, υ) ∗ e−i∗2π∗(µ∗dx+υ∗dy) (11)

The cross-power spectrum of f 2(x, y) and f 1(x, y) can be obtained from the above
formula:

H(µ, υ) =
F1 ∗ F∗2
|A1| ∗

∣∣A∗2∣∣ = e−i∗2π∗(µ∗dx+υ∗dy) (12)

where F* is the conjugate of F.
The inverse Fourier transform of the cross-power spectrum can obtain a Dirac function

(pulse function) and find the offset by finding the coordinates of the peak. However, this
method can only obtain the displacement of the pixel level. Then, the peak position can be
found according to the above, and a weighted mean of response size can be processed in
a × a form centered on this position. The following formula can be applied to obtain the
precision position at the sub-pixel level:

x =
∑a×a i f (i, j)
∑a×a f (i, j)

(13)

y =
∑a×a j f (i, j)
∑a×a f (i, j)

(14)

The final (x, y) is the subpixel displacement between the two images.
For the selection of the calculated displacement amplitudes, this article proposes a new

method to convert the displacement amplitudes into images and calculate the correlation
of the GLCM of the displacement amplitudes. The displacement amplitudes with the
greatest correlation, namely the most periodic and obvious, are selected to represent the
displacement of the platform.

In image processing, when not only the distribution of gray level but also the relative
position of pixels in the image should be considered, the GLCM of the image is usually
generated [25]. Let Q be an operator to define the relative position of two pixels, and
consider an image f with L possible gray levels. Let G be a matrix, whose element gij is
the number of pixels with grays of zi and zj appearing in the position indicated by Q in
f , where 1 ≤ i, j ≤ L. The matrix formed in this way is called GLCM. Figure 16 shows an
example of how the GLCM is constructed using L = 8 and the position operator Q defined
by “one pixel to its right”. The array on the left is the small image in consideration, and the
array on the right is the matrix G.
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Element (1,1) of the GLCM G is 1, because in f , the pixel with value of 1 to the right of
a pixel with value of 1 appears only once. Similarly, the element of G (6,2) is 3, because in
f , the right value of a pixel with value of 6 appears three times with value of 2, and the
possible gray level of the image determines the size of the matrix G. The total number of
pixel pairs n that satisfy Q is equal to the sum of the elements of G. As a result:

pij = gij/n (15)

Correlation is a descriptor of the characteristics of the GLCM and is a measure of how
closely a pixel is related to its neighbors on the entire image. The range is [1,−1], which
corresponds to perfect positive correlation and perfect negative correlation. The correlation
is calculated as follows:

K

∑
i=1

K

∑
j=1

(i−mr)(j−mc)pij

σrσc
(16)

In Equation (16), the quantity used is defined as follows:

mr =
K

∑
i=1

i
K

∑
j=1

pij (17)

mc =
K

∑
j=1

j
K

∑
i=1

pij (18)

σr
2 =

K

∑
i=1

(i−mr)
2

K

∑
j=1

pij (19)

σc
2 =

K

∑
j=1

(j−mc)
2

K

∑
i=1

pij (20)

where K × K is the size of the GLCM.

4. Experimental Results and Analysis
4.1. Measured Results

Double row cylindrical roller bearings were used in the experiment; the displacement
image of platform in stable state for 30 s was collected under the working conditions of
rotation speed n = 0, static load F = 0 kg and excitation frequency f = 6 Hz. The displacement
was calculated by using the phase correlation method of local images proposed in this
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article. The frame rate of the portable camera used in this test was 30 frames s−1; and the
portable camera was placed on the central axis of the platform, and the camera calibration
was carried out in accordance with Section 3.1. The computer CPU used for calculation was
Inter(R) Core(TM) I7-4790 CPU @ 3.60 GHz. The sampling frequency in the experiment was
more than twice that of the excitation frequency of the platform; therefore, the influence
of temporal aliasing effect and rolling shutter effect on the image was not considered.
According to the method proposed in Section 3.3., the vertical displacement amplitude
of the input three bolts and the whole image were calculated, respectively. The four
displacement amplitudes are shown in Figure 17, and the calculation times are shown
in Table 4. The displacement amplitudes calculated from the three bolts were generated
by the GLCM of position operator Q defined as “one pixel to the right of the bolt”. By
calculating the correlation of GLCM, the amplitudes with the greatest correlation, namely,
the strongest periodicity, were selected to represent the vertical displacement amplitudes
of the platform. The correlation of the three bolts according to their respective GLCM is
shown in Table 5.
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Figure 17. Vertical displacement amplitude diagram: (a) the vertical displacement amplitudes obtained when the input is a
whole image; (b) the vertical displacement amplitudes obtained when the input is bolt P1; (c) the vertical displacement
amplitudes obtained when the input is bolt P2; (d) the vertical displacement amplitudes obtained when the input is bolt P3.

Table 4. Calculation times of input different images.

Input Image Operating Time (s)

Whole image 24.199
Bolt P1 6.895
Bolt P2 7.252
Bolt P3 7.000

Bolts P1, P2, P3 7.221
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Table 5. Correlation of the GLCM of different vertical displacement amplitudes.

Displacement Amplitude Diagram Correlation (GLCM)

Bolt P1 0.9098
Bolt P2 0.9986
Bolt P3 0.9991

By observing Table 4, it can be seen that the vertical displacement amplitudes cal-
culated from the local images of input bolt P3 have the strongest periodicity; thus, the
displacement amplitudes at bolt P3 are shown as the vertical displacement amplitudes of
the platform.

4.2. Verification of Results

In order to verify the effectiveness and accuracy of the method in this article, the
real displacement amplitude of the platform was collected by using a laser displacement
sensor under the same working condition as in Section 4.1. Moreover, the comparison
and verification were made from the peak mean value of the displacement amplitude (as
shown in Table 6) and the spectrum diagram (as shown in Figure 18).Sensors 2020, 20, x  17 of 20 
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Table 6. Peak mean values of displacement amplitudes of different displacement images.

Displacement Amplitude Diagram Peak Mean (mm)

Bolt P1 0.6041
Bolt P2 0.6367
Bolt P3 0.6465

Actual measurement 0.6973

By comparing the spectrum diagram shown in Figure 18, it can be seen that the
frequency of the vertical displacement amplitude of the platform calculated from the local
image of the bolt P3 selected by the method described in Section 4.1. differs little from the
actual measured value. From Table 5, the average peak of the three bolts’ displacement
amplitudes and laser displacement sensor displacement amplitude were contrasted; bolt P3
is closer to the value measured by the sensor, and the error is 0.05 mm, which verifies that
the selection of displacement amplitude based on the correlation of the GLCM is effective.

In this article, local (bolt) images were input to replace the whole image for dis-
placement calculation, and GLCM correlation of different displacement amplitudes was
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calculated by converting the displacement amplitudes into images, and the method of final
calculation result of displacement amplitudes with the maximum correlation was selected.
By observing Tables 4 and 6, it can be seen that the calculation rate can be increased by
68% if the local image is input instead of the whole image, and the calculated displacement
error can be guaranteed to be 0.05 mm.

4.3. Analysis of Displacement Amplitude under Different Working Conditions

The method verified in this article is used to calculate the displacement amplitude
of the platform under different working conditions. The average values of the peak
displacement amplitudes are shown in Table 7.

Table 7. Mean peak values of displacement amplitudes under different working conditions.

Working Condition
Peak Mean (mm)

Number of Groups Load (kg) Rotation Speed
(n/min) Excitation (Hz)

1 600 500 6 0.738
2 600 800 6 0.757
3 600 1100 6 0.855
4 1200 500 6 0.707
5 1200 800 6 0.718
6 1200 1100 6 0.737

In Table 7, by comparing different working conditions, it is found that when static
load and excitation frequency are unchanged, the vertical displacement amplitude of the
platform tends to increase with the rotating speed. The vertical displacement amplitude of
the platform tends to decrease with the static load when the rotational speed and excitation
frequency remain unchanged.

5. Discussion

In this article, the vertical displacement of the platform was monitored by computer
vision. The local image of the bolts on the bearing end cover were used instead of the whole
image for calculation. Although the calculation speed can be increased by 68% with this
method and an accuracy of 0.05 mm can be guaranteed, there are still several challenges
that remain open for future investigation, and some critical challenges are discussed in
detail below: (1) Limited frame rate and temporal aliasing effect: temporal aliasing is
caused by the sampling rate (i.e., number of frames per second) of a scene being too low
compared to the transformation speed of objects inside of the scene; this causes objects
to appear to jump or appear at a location instead of smoothly moving, which can cause
errors in the calculation of displacement. When the excitation frequency of the platform
gradually increases and gradually exceeds the sampling rate of the camera, we cannot
blindly adopt the camera with high frame rate. Therefore, the time aliasing effect needs to
be studied and solved in the next stage of research. (2) Rolling shutter effect: most cameras
use complementary metal oxide semiconductor (CMOS) sensors. The CMOS sensor uses
a sequential readout, scanning each line exposed at different times to obtain the image,
resulting in geometric distortion, especially when the relative velocity between the camera
and the object is high. As the excitation frequency of the platform increases, in order to
reduce the error, additional research is needed to eliminate the shutter curtain effect in the
case that the speed of the structure is large relative to the camera.

6. Conclusions and Future Work

This article proposed to use displacement signal to monitor the state of rail vehi-
cle bearings. With the help of an experimental platform of bearing system, a method
of displacement monitoring by computer vision detection was explored to identify the
displacement. The vertical displacement of all the components in the whole bearing system
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was the same, to improve the calculation rate and meet the purpose of real-time displace-
ment monitoring; the bolts on the axle end cap were used for displacement identification.
Two positioning methods were compared: the template matching method and contour fea-
ture method. Considering localization accuracy and localization efficiency, the localization
method based on contour feature was chosen. The displacement amplitudes of the bearing
system in the vertical direction were derived by comparing the correlations of the image’s
gray-level co-occurrence matrix (GLCM). The measured displacement of the laser displace-
ment sensor was compared with the calculated displacement in the frequency domain and
the mean value of the peak displacement to verify the accuracy of the proposed method.

The following conclusions and findings are drawn:

1. Contour feature to locate the bolt is much faster than using the template matching
method. The locating rate is 0.024 s/sheet on average, and the bolt is more robust to
illumination conditions;

2. By replacing the whole image with a local image, the phase correlation method can
improve the calculation rate by 68% with an accuracy of 0.05 mm;

3. According to the correlation of GLCM of the displacement amplitude image, the
displacement amplitude graph is the closest to the real value;

4. The method of replacing the whole image with the local (bolt) images to calculate the
displacement proposed in this article was used to calculate the displacement of six
groups of bearing platforms under different test conditions;

5. It was found that the vertical displacement amplitude of the bearing system increases
with the increase in rotating speed and decreases with the increase in static load;

6. It is feasible and effective to introduce displacement signals to monitor the state
of bearings;

7. At the same time, practical considerations and limitations of the proposed method
were discussed, including the issues of the temporal aliasing effect, and rolling
shutter effect. In addition, the following aspects are determined for future research:
displacement amplitudes of the bearing system in the vertical direction should be
derived by comparing more parameters of the image’s gray-level, rather than just by
comparing co-occurrence matrix (GLCM); studying the influence of the acquisition
distance on the accuracy of displacement calculation by setting the distance between
different portable equipment placement points and the platform; diagnosing bearing
faults by the displacement signals.
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