Table 6.
Comparison of the spEnhancer model performances using different dimensions of word vectors on the independent test dataset. The first column gives the binary classification problem. The column “WV” is the dimension of the word vector. The other five columns give the prediction performances Acc, Sn, Sp, MCC, and AUC.
Word Vector Dimension | Acc | Sn | Sp | MCC | AUC | |
---|---|---|---|---|---|---|
enhancers vs. non-enhancers |
12 | 0.7085 | 0.8550 | 0.5606 | 0.4943 | 0.8177 |
24 | 0.6658 | 0.9150 | 0.4141 | 0.4655 | 0.8094 | |
48 | 0.7538 | 0.8150 | 0.6919 | 0.5408 | 0.8167 | |
96 | 0.7060 | 0.8650 | 0.5455 | 0.4971 | 0.7359 | |
192 | 0.7186 | 0.7650 | 0.6717 | 0.4580 | 0.8078 | |
394 | 0.7337 | 0.8400 | 0.6263 | 0.5253 | 0.8172 | |
768 (this study) | 0.7725 | 0.8300 | 0.7150 | 0.5793 | 0.8235 | |
1536 | 0.7764 | 0.7550 | 0.7980 | 0.5408 | 0.8281 | |
strong enhancers vs. weak enhancers |
12 | 0.5550 | 0.4300 | 0.6800 | 0.0984 | 0.6351 |
24 | 0.5000 | 1.0000 | 0.0000 | 0.0000 | 0.6324 | |
48 | 0.6000 | 0.7100 | 0.4900 | 0.2265 | 0.6342 | |
96 | 0.6250 | 0.8000 | 0.4500 | 0.3101 | 0.6275 | |
192 | 0.5700 | 0.6700 | 0.4700 | 0.1565 | 0.6279 | |
394 | 0.5950 | 0.7100 | 0.4800 | 0.2165 | 0.5987 | |
768 (this study) | 0.6200 | 0.9100 | 0.3300 | 0.3703 | 0.6253 | |
1536 | 0.5800 | 0.8700 | 0.2900 | 0.2469 | 0.5972 |