Skip to main content
. 2021 Mar 17;22(6):3079. doi: 10.3390/ijms22063079

Table 6.

Comparison of the spEnhancer model performances using different dimensions of word vectors on the independent test dataset. The first column gives the binary classification problem. The column “WV” is the dimension of the word vector. The other five columns give the prediction performances Acc, Sn, Sp, MCC, and AUC.

Word Vector Dimension Acc Sn Sp MCC AUC
enhancers
vs.
non-enhancers
12 0.7085 0.8550 0.5606 0.4943 0.8177
24 0.6658 0.9150 0.4141 0.4655 0.8094
48 0.7538 0.8150 0.6919 0.5408 0.8167
96 0.7060 0.8650 0.5455 0.4971 0.7359
192 0.7186 0.7650 0.6717 0.4580 0.8078
394 0.7337 0.8400 0.6263 0.5253 0.8172
768 (this study) 0.7725 0.8300 0.7150 0.5793 0.8235
1536 0.7764 0.7550 0.7980 0.5408 0.8281
strong enhancers
vs.
weak enhancers
12 0.5550 0.4300 0.6800 0.0984 0.6351
24 0.5000 1.0000 0.0000 0.0000 0.6324
48 0.6000 0.7100 0.4900 0.2265 0.6342
96 0.6250 0.8000 0.4500 0.3101 0.6275
192 0.5700 0.6700 0.4700 0.1565 0.6279
394 0.5950 0.7100 0.4800 0.2165 0.5987
768 (this study) 0.6200 0.9100 0.3300 0.3703 0.6253
1536 0.5800 0.8700 0.2900 0.2469 0.5972