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Abstract: Human activity recognition (HAR) remains a challenging yet crucial problem to address
in computer vision. HAR is primarily intended to be used with other technologies, such as the
Internet of Things, to assist in healthcare and eldercare. With the development of deep learning,
automatic high-level feature extraction has become a possibility and has been used to optimize
HAR performance. Furthermore, deep-learning techniques have been applied in various fields for
sensor-based HAR. This study introduces a new methodology using convolution neural networks
(CNN) with varying kernel dimensions along with bi-directional long short-term memory (BiLSTM)
to capture features at various resolutions. The novelty of this research lies in the effective selection
of the optimal video representation and in the effective extraction of spatial and temporal features
from sensor data using traditional CNN and BiLSTM. Wireless sensor data mining (WISDM) and
UCI datasets are used for this proposed methodology in which data are collected through diverse
methods, including accelerometers, sensors, and gyroscopes. The results indicate that the proposed
scheme is efficient in improving HAR. It was thus found that unlike other available methods, the
proposed method improved accuracy, attaining a higher score in the WISDM dataset compared to
the UCI dataset (98.53% vs. 97.05%).

Keywords: human activity recognition; local spatio-temporal features; deep learning; convolution
neural networks; Bi-directional LSTM

1. Introduction

As a significant discipline of study in computer vision, human activity recognition
(HAR) has applications in fields ranging from human–computer interaction to healthcare.
With advancing technologies, such as camera devices and imaging techniques, novel HAR
modalities are continuously emerging. Given its ability to yield high-level insights into
human activity from raw sensor inputs, HAR is used in areas such as gait analysis, gesture
recognition, video surveillance, and home behavior analysis. Video-based HAR, which
examines videos or images that include human motion, and sensor-based HAR, which
uses smart sensor data (e.g., accelerometers, sound sensors, or gyroscopes), are the two
main categories of HAR. With the increasing ubiquity of smart sensor technology and
the availability of robust cryptosystems for ensuring data privacy, sensor-based HAR is
growing in popularity.

Various types of sensors have been investigated for their potential to make activity
detection more precise. Thus, fixed sensors and mobile sensors have emerged as the
basis for two different types of methods for detecting human activity, depending on the
way in which sensors are used within a setting. Mobile sensor-based methods make use
of specialized movement sensors placed on the body (e.g., accelerometers, gyroscopes,
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magnetometers) to collect data on various activities. Human activities can be extracted
from data on acceleration and angular velocity because they alter in keeping with human
movements. Furthermore, unlike fixed sensors, mobile sensors are small in size and
flexible, so that they can be incorporated in body gear or mobile devices. Mobile sensors
are additionally advantageous as they are inexpensive, use less energy, have high capability,
and are more independent of the environmental setting. Hence, the extensive incorporation
of mobile sensors in everyday life is the reason for the increased interest in mobile sensor-
based activity detection, with numerous studies having been dedicated to the investigation
of the suitability of mobile sensors for identifying human activities [1].

Detection of human activities based on mobile device sensors has been typically
recognized as a problem of multivariate time series classification. Feature extraction is a
major stage in addressing the problem and can be achieved based on certain raw signal
statistical aspects, such as variance, mean, entropy, and correlation coefficients, or through
integration of cross-formal coding, such as signals with Fourier transform and wavelet
transform. Detection of various types of activities has been successfully achieved via
conventional machine learning methods, including decision tree, support vector machine,
and naïve Bayes [2]. On the other side, hand-crafted feature extraction often underpins
such methods and demands expertise or knowledge of domains. Automatic feature
extraction is possible within a deep-learning setting via the designing of a deep model
with multiple layers [3]. These approaches can only learn shallow features, which reduces
performance levels for incremental and unsupervised tasks. In view of these challenges,
conventional pattern recognition methods tend not to have high classification accuracy or
model generalization [4]. Human activity recognition consists of several stages. It starts
with time series data pre-processing and segmentation, followed by data feature extraction,
and application of a relevant algorithm for classification purposes as illustrated in Figure 1.

Figure 1. A block diagram of sensor-based human activity recognition using deep learning.

The most significant development in machine learning recently has been convolution
neural networks (CNN). These models can be used instead of methods with manual feature
extraction and have led to an increase in pre-eminence of network engineering over feature
engineering. Furthermore, there is a growing emphasis on the development of smaller
network configurations without altering performance. There is evidence that the designing
of CNNs of greater depth can enhance performance for various HAR tasks, although
at the expense of a larger number of resources (e.g., memory, computational power) [2].
Moreover, resource restrictions make it impractical to integrate deep models in mobile
devices because their parameters typically number in their millions, so deep learning for
HAR cannot be applied widely in the case of mobile devices [2]. This calls for the creation
of lightweight CNNs.

Growing attention has been paid to the development of CNNs of small size and
high efficiency for different embedded applications intended to minimize the number of
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parameters. Regarding this, research has been spearheaded by computer vision studies,
sparking further investigations on lightweight network design for using of pre-trained
networks or designing of small networks from scratch [2]. However, the adaptation of this
approach to HAR tasks remains to be studied. The use of sensors by HAR can basically be
construed as a standard problem of multivariate time series classification, whereby sensor
signals are segmented via a sliding window and differentiating features are extracted from
those signals for the purpose of activity recognition via a classifier. Hence, the difficulties
confronting the HAR task sets it apart from imagery data. Outstanding outcomes have
been accomplished in computer vision tasks based on lightweight network modules, yet
such modules have not been often used in relation to HAR. Several studies have explored
the feasibility of re-designing filters and its kernel in deep learning, since the filter is the
fundamental component in CNN development. Thus, the use of a set number of filters
with different kernel size can capture different aspects of data in sensor-based HAR.

Nevertheless, no single deep-learning model can overcome all the issues related to
HAR. For instance, suitable local features can be extracted from sensor data highly effi-
ciently by CNNs, yet these models lack memory and overlook temporal dependencies
among data records. By contrast, problems in which temporal dependencies are significant
can be successfully addressed with recurrent neural networks (RNNs). Long short-term
memory (LSTM) exhibit significantly higher performance compared to conventional RNNs
in terms of long-term memory of dependencies owing to the structure of its repeating mod-
ule [5]. Overall, deep-learning models are most useful because they can learn complicated
features from unprocessed data, so that a priority knowledge and hand-crafted extraction
of features are not required.

CNN with varying kernel dimension along with bi-directional long short-term mem-
ory (BiLSTM) has been proposed as a new deep neural network for human activity detection
to overcome problems presented by the above-mentioned approaches. The proposed model
was capable of automatic extraction of activity attributes and subsequent categorization
of those attributes using a handful of parameters. Therefore, the approach put forth in
this research employs a technique that does not require statistical features to be applied to
raw signal data. Furthermore, both spatial and temporal features are considered in feature
extraction. Two common public datasets were employed for assessing the model, , which
was found to be highly accurate, while also demonstrating satisfactory generalization and
rapid speed of convergence. The remainder of this paper provides an overview of existing
related works and explains in detail the proposed model. The reminder of this paper is
organized as follows. The most common modalities of sensors and a brief background
about previous studies in the field of HAR is given in Section 2. A detailed description of
the proposed approach is described in Section 3. The experimental setting and the obtained
results are discussed in Section 4. In Section 5, we conclude our proposed work and discus
the main limitations of the proposed approach.

2. Background

Although it is possible to generalize certain HAR approaches to every sensor modality,
most are specific and narrow. There are three types of modalities: body-worn sensors,
ambient sensors, and object sensors.

2.1. Types of Sensor Modalities
2.1.1. Body-Worn Sensors

Sensors worn on the body (i.e., body-worn sensors such as gyroscopes, magnetometers,
and accelerometers) are a prevalent HAR modality. These devices can gather data on human
activities based on changes in angular velocity and acceleration. Body-worn sensors have
been used in deep learning for HAR in several studies, most of which have focused on
data obtained from accelerometers. To recognize activities of daily living (ADL) as well
as specific activities related to sports, gyroscopes and magnetometers are often combined
with accelerometers [6].
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2.1.2. Ambient Sensors

Ambient sensors, which are typically integrated into a user’s smart environment
and include radar, temperature sensors, pressure sensors, and sound sensors, are often
used to gather data on interactions between humans and the environment. Various object
sensors are used to measure object movements, and ambient sensors capture environmental
changes. Several studies have used ambient sensors for HAR in ADL and hand gestures [6].

2.1.3. Hybrid Sensors

Several studies have used acceleration or sensors with ambient sensors to optimize
HAR accuracy. It indicates that the use of hybrid sensors, establishing varied datasets from
multiple sources, can significantly aid research efforts in HAR, and promote applications
in applications such as commercial smart home systems [6].

2.2. Deep-Learning Models

The purpose of this section is to provide an overview of some deep-learning models
that are applied in HAR.

2.2.1. Convolution Neural Networks (CNN)

CNNs rely on sparse interactions, equivariant representations, and parameter sharing.
Following convolution, fully connected (FC) and pooling layers are generally employed for
regression or classification. Compared with other models in terms of performance when
used for time series classification in HAR, CNNs benefit from both scale invariance and
local dependency. Owing to the efficacy of CNNs, most research has focused on this topic.
For CNN application to HAR, a range of considerations must be considered, including
pooling, weight-sharing, and input adaptation [4].

2.2.2. Autoencoder

Latent representations of input values are learned by autoencoders via hidden layers,
which can be regarded as an encoding-decoding process. An encoder learns advanced
features based on an unsupervised learning approach. Stacked autoencoders (SAEs) treat
each layer as the autoencoder’s basic model, and following multiple training periods,
learned features are stacked with labels to create a classifier. A critical benefit associated
with SAE is the ability to undertake unsupervised feature learning in HAR, which could
prove valuable in feature extraction. However, the high level of dependency on layers
and activation functions in SAE may create situations in which it is difficult to identify an
ideal solution.

2.2.3. Restricted Boltzmann Machine (RBMs)

Restricted boltzmann machine (RBMs) are fully connected (FC), bipartite, undirected
graphs that include hidden and visible layers [7]. Stacked RBMs are referred to as deep
belief networks (DBNs), which can be established by treating every two consecutive layers
as a single RMB. DBN/RBM is frequently followed by FC layers [8].

2.2.4. Recurrent Neural Network (RNN)

RNNs are frequently employed for natural language processing and speech recog-
nition. Successes have been achieved in these areas due to the exploitation of temporal
connections existing between neurons (or nodes) in a network. RNNs are commonly
used with LSTM cells to enable memory through gradient descent. Relatively few prior
studies have used RNNs for HAR, but in these previous studies, the speed of learning
and computational overhead were the key issues in HAR. As the literature indicates, the
key issue in RNN-based HAR models is to satisfy requirements in low computing power
settings without undermining performance [9].
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2.2.5. Hybrid Model

Hybrid models refer to models that combine several deep-learning models. One
example involves combining CNNs and RNNs. This combination can be performed well
because CNNs and RNNs reflect spatial and temporal relationships, respectively. Hence,
in terms of recognizing activities with diverse signal distributions and time spans, the
use of CNNs and RNNs together could promote increases in performance. Other studies
have used CNNs with stacked autoencoders (SAE) and RBM. In these studies, CNN
performed feature extraction, while the generative models increased the speed of the
training phase [4].

A range of challenges is associated with HAR, including the issue of the dynamic,
complex background, the change in perspective, the camera’s height, and variability in the
morphological features of human beings. Additionally, significant variability both within
and between activity categories represents a critical challenge for continued progress in the
field [10]. Figure 1 presents a block diagram of sensor-based HAR. In the next section, a
summary of prior studies addressing the HAR pipeline is given.

With the development of deep-learning techniques, significant advances have been
achieved in fields such as natural language processing, visual object recognition, and logical
reasoning. The key difference between conventional pattern recognition methods and deep
learning is that the latter can avoid having to expend significant effort on designing features,
and it can learn more meaningful, high-level features through training on an end-to-end
(E2E) neural network. With these considerations in mind, deep-learning is appropriate for
HAR, and as such, many scholars have already examined the possibilities in this area [11].

HAR is significantly shaped by temporal movement, which is overlooked by the deep-
learning CNN model. The principal neural network approaches suitable for HAR that yield
promising outcomes in terms of HAR based on sensor information from fitness devices
and smartphones are recurrent neural network (RNN) models and CNN models [12].
This combination between CNN and RNN can extract the temporal and spatial features
effectively. In this study, we designed a temporal and spatial deep-learning model as a
form of two-stream deep-learning infrastructure that allows deep-learning techniques to
obtain spatial and temporal features using CNN and BiLSTM models.

2.3. Literature Review

There are two approaches for HAR: first, manual feature extraction; and second,
automatic feature extraction, which relies on deep-learning. Here, we explore HAR,
focusing on deep-learning approaches.

The convolutional architectures in video-based action recognition have been proposed
in several studies such as in [13,14]. Using a two-stream ConvNets, namely VGGNet and
GoogLeNet is conducted by [13]. Obtaining dynamic images through the direct application
of rank pooling on a video’s raw image pixels, which generates one RGB image for every
video is conducted by [14]. The concept is straightforward, but significant, mainly because
it allows available CNN models to be directly applied to video data with some particular
configuration. Ronao et al. used CNN to recognize the activities that were recorded by
sensors [15]. Feichtenhofer et al. [16] formulated another spatio-temporal architecture for
a pair of stream networks, each of which had a new convolutional fusion layer between
the networks. The well-known issue of the proposed two-stream ConvNets relates to
their weaknesses in modelling long-range temporal structure, as discussed in the study
conducted by [17]. This stems from their lack of access to temporal context, as they were
only ever intended to function on one frame (spatial networks) or one stack of frames in a
brief snippet (temporal network).

One of the developed versions of CNN is designing a lightweight CNN for HAR
based on Lego filters that was proposed by Tang et al. [2]. Author’s in [18] have proposed
a multi-stage transformation of a raw signal data. Diverse representations of the raw
data-encoded features are obtained at first by subjecting time series data to a different
number of transformations, rather than just one transformation. Individual training for
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extraction of features from various transformed spaces is applied with an effective deep
CNN architecture. A basic issue in these approaches that it required a prior knowledge
of features.

Author’s in [19] designed a trajectory-pooled deep-convolutional descriptor (T-DD)
to leverage the benefits of both deep-learning-derived and hand-crafted features. Another
work by Ignatov [20] used CNN along with statistical features to preserve both local and
global features. Encoding the features as images from ten types of indoor activity class were
obtained and pre-processed to match the data format, after which they were converted
into 2D feature vectors with the log Mel-band energy technique [21]. Most of the studies
that employ only a 2D-CNN to extract the features ignore the concept of translation in time
between frames which is a significant factor to identify the action. Also, the image quality,
illumination, brightness and camera setting are affected the performance of these systems.

The aim of Tran et al. [22] was to solve the issue of learning spatio-temporal features
of videos with 3D-ConvNets. Carreira and Zisserman [23] proposed a two-steam inflated
3D-ConvNet (I3D). This method relied on 2D ConvNet inflation, particularly in terms of
the use of filters and pooling kernels for deep image classification. 3D-ConvNets increased
in size by adding another dimension, meaning that seamless spatio-temporal feature
extractors could be captured from the video, at the same time exploiting effective ImageNet
architectures and parameters. The study’s results indicated that following pre-training on
kinetics, I3D models showed substantial improvements in terms of action classification.

Wang et al. [24] proposed that a CNN could be used to extract only the spatial
features for every frame, and so the researchers designed two types of LSTM networks
to examine temporal features in successive video frames. In Xia et al. [1], mobile sensors
were used to acquire raw data, which were introduced in an LSTM two layers, with
subsequent convolutional layers. Furthermore, the model parameters were restricted
by substituting the fully linked layer with a global average-pooling layer. CNNs and
LSTMs in activity recognition in younger adults has been widely studied, their function
in older people had been largely under-investigated. Thus, in the research presented
by Nan et al., they improved many models such as 1D CNN, a multichannel CNN, a
CNN-LSTM, and multichannel CNN-LSTM model. Comparisons were made between the
computational efficiency and accuracy of the different models and ultimately, the well-
developed multichannel CNN-LSTM model was found to be the most suitable approach
for investigation long-term activity recognition in older individuals [25].

In the study conducted by Sargano et al. [24], the researchers found that to apply
techniques that rely on deep learning (e.g., those involving 3D-CNN or LSTM networks), a
large data set is required to perform the learning. Hence, certain models are unsuitable
for small data sets due to the challenge arising from overfitting in CNNs. Methods reliant
on learning spatial features with pre-trained deep neural networks, they do not address
temporal features, but have better performance than current reference methods because
these methods leverage the pre-trained model’s knowledge. A configuration integrating a
shallow CNN for unsupervised extraction of local features and statistical features encoding
universal attributes related to the time series was put forth in a study by Ignatov [20].
The impact of the length of time series on detection precision was examined as well. A
summary of these proposed approaches is listed in Table 1. Based on these findings, a HAR
technique is proposed in this research that relies on an E2E deep neural network.



Sensors 2021, 21, 2141 7 of 20

Table 1. Summary of the proposed studies in the related work.

Ref. Year Model Domain Proposed Study Comments

[13] 2015

CNN

video-based

Two-stream convNets (VGGNet,
GoogLeNet); 10-frame stacking of
optical flow for temporal network
and a single frame for spatial
network; data augmentation to
increase the size of the dataset

* It requires features pre-processing.
* It needs the augmentation to
handle the issue of overfitting.
* It introduces a new representation
of features and nets but it is not
effectively representing the
spatio-temporal features in HAR.

[14] 2016 video-based

Propose the idea of dynamic map and
rank pooling to encode the video
frames into a single RGB image
per video.

[15] 2016 sensor-based
Propose a multi-layer CNN with
alternating convolution and pooling
layers to extract the features.

[16] 2016 video-based
Propose a two-stream network,
fusion is done at the level of
convolution layer.

[17] 2016 video-based

Propose a temporal segment network
(TSN); Instead of working on each
frame individually it works on a set
of a short snippets sparsely sampled
from the video; these snippets will be
fed up to a two-stream of CNN.

[2] 2020 sensor-based Propose to use Lego filters to have a
lightweight deep CNNs

[18] 2020 video-based
Propose to use CNN as a feature
extractor from different
transformed domains

[19] 2015
CNNs with
hand-crafted
features

video-based

A new video representation, called
trajectory-pooled deep-convolutional
descriptor (TDD); two-stream
ConvNets; using improved dense
trajectories (iDTs) features

* It requires features pre-processing.

[20] 2018 sensor-based Propose a new design of CNN and
combine it with stats. features

* A new designing of nets but it is
not effectively representing the
spatio-temporal features in HAR.

[22] 2015

3D-CNN

video-based Propose a C3D (Convolutional-3D),
with a simple linear classifier * It can capture the spatio-temporal

feature more effectively than
3D-CNN.[23] 2018 video-based Two-steam inflated

3D-ConvNet (I3D)

[24] 2018

CNN-LSTM

video-based

CNN to extract the spatial features,
then these feature will be the input to
two different stream of
LSTM(FC-LSTM, ConvLSTM) to
extract the temporal features

* CNN-LSTM model was found to be
the most suitable approach for
investigation long-term activity
recognition.

[25] 2020 sensor-based

They improved many models such as
1D CNN, a multichannel CNN, a
CNN-LSTM, and multichannel
CNN-LSTM



Sensors 2021, 21, 2141 8 of 20

3. Proposed Approach

In the proposed approach, we will work to develop an E2E temporal and spatial
deep-learning model as a form of two-stream deep-learning architecture based on CNN
and BiLSTM that allows deep-learning techniques to obtain temporal cues. Subsequently,
activity recognition is completed through the fusion of features that was obtained from
both streams. Figure 2 presents the overall architecture, with the spatial and temporal
characteristic streams depicted, respectively. The inherent temporal relationship of the
spatial deep-learning map is understood via BiLSTM. A new architecture of the spatial
stream with many convolution layers and with varying kernel dimensions was used to
achieve feature capture at various resolutions. Below, we explain the basic structure of
CNN and BiLSTM as well as the basic metrics used to evaluate deep-learning models.

Data

Preparing data for 
DL model 

CNN Layers

BiLSTM Layers

Features 
Fusion 

Classification 
Layer

%

%

%

.

.

.

Figure 2. Overall architecture of the proposed approach.

3.1. Basic Structure of CNNs

A specific set of components are generally applied when using the CNN. Supervised
learning often uses CNNs. These neural networks usually connect each neuron to every
other neuron in each subsequent layer of the network itself. The neurons’ input value is
transformed into the output value using the activation function of the neural network. The
activation function has two notable factors that govern its quality. These are sparsity and its
ability to handle the reduced gradient flow to the neural network’s lower layers [26]. CNNs
often use pooling as a form of dimensionality reduction. Both the maximum and average-
pooling functions are typically used, which are referred to as max- and average-pooling,
respectively.

3.2. Basic Structure of Long Short-Term Memory (LSTM)

LSTM architecture has proven to be effective to obtain temporal information concern-
ing HAR [21]. LSTM unit can determine whether existing memory should be retained, or
new information should be added to it. Hence, LSTM-RNN can create long-range dynamic
dependencies for avoiding the vanishing or exploding gradients problem while training.
Regarding the time series classification, the principal elements of an LSTM network in-
clude the sequence input layer, the LSTM layer, the FC layer, the SoftMax layer, and the
classification output layer. More details can be found in Rashid and Louis [27].

3.2.1. Training LSTM

The LSTM layer comprises of LSTM units, as well as a shared architecture of such
units, namely an input gate (i), output gate (o), cell (c), and forget gate ( f ). The architecture
of an LSTM unit is shown in Figure 3.

Drawing on an activation function of the weighted sum, the computation of an
activation function is the responsibility of each output. This refers to the activation of the i
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gate at the tth time step, while ft and ot are the same for the f and o gates. Additionally, ht
and xt denote the LSTM unit’s output and input vectors. In the case of exit arrows from
c (i.e., the memory cell) to the gates, note that i, o and f refers to the contribution of the
activation of c at the (t − 1)th step (that is to say, ct-1).

Another way to state this is that the f , i, and o gates compute their activations at every
tth step, based on the c at the (t − 1)th step. In Figure 3, element-wise multiplication with
respect to inputs is indicated by the circle marked with an , whereas the circle marked
with an denotes the use of the sigmoid function (or, for that matter, any other application
function) to a weighted sum. The LSTM network involves the automatic learning of
high-level features which are related to long-term ways across time steps [27].

Figure 3. Architecture of a long short-term memory (LSTM) unit.

3.2.2. Basic Structure of Bi-Directional Long Short-Term Memory (BiLSTM)

Figure 4 illustrates the basic structure of BiLSTM. The set of x0, x1, x2, ..., xi refers to the
input units, whereas y0, y1, y2, ..., yi refers to the output units. The hidden units are labelled
as s0, s1, s2, ..., si. BiLSTM was used for obtaining the temporal representation concerning
activity recognition that can access context in the forward and backward directions [28].

Figure 4. Architecture of a Bi-directional long short-term memory (BiLSTM) unit.
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3.2.3. Designing a Deep CNN-BiLSTM Learning Model

Employing CNN and BiLSTM to extract features is the key principle underpinning
the proposed model. Here BiLSTM and CNN work in parallel as a two-stream. Subse-
quently, the outputs of both streams are combined to generate a final output that is used
for recognition.

The structure of the system applying the proposed model is shown in Figure 2. The
pre-processing module incorporated in the system underpins input data preparation for
the deep-learning libraries. The CNN model subsequently undertakes processing of
the segmented data. This model comprises several one-dimensional convolution layers
equipped with the ReLU activation function. Feature map extraction from the input
windows is undertaken by every convolution layer based on 128-size filters, each of which
has a different size kernel. The CNN model additionally encompasses a max-pooling layer
with 5-size pool to generate an overview of the feature maps supplied by the convolution
layers and make computation more cost-effective. Furthermore, to facilitate their processing
by the RNN models, the dimensions of the feature maps must be contracted as well. This
involves conversion of the matrix representation of every feature map by the flatten layer
into a vector. Addition of a few dropouts above the pooling layer is done for the purposes
of regularization and minimization of the likelihood of overfitting. A set of neurons is
overlooked by the system during training due to the use of dropouts and those neurons
are chosen arbitrarily, with 0.05 probability.

Figure 5 presents the detailed architecture of the proposed CNN-BiLSTM. Each con-
volution layer consists of a set of filters possessing the same kernel size. The kernel size
is a significant parameter. This is because, to convert the input data into meaningful
information, each filter’s output must respond to areas that have the same sizes as those of
the different objects/patterns inputted [29]. If a filter’s kernel size is significantly larger
than the input pattern, this may cause the filter to capture blurred features from the input
patterns. On the other hand, if a unit’s kernel is smaller than that of the input patterns, this
compromises the global structure of the input patterns [29].

Thus, to obtain meaningful information from the CNN, filters with different kernel
sizes should be used in each layer. Moreover, the kernel size should be proportional to
the patterns. After considering these issues, we developed the multi-resolution-CNN
presented in Figure 5 with multi-resolution filters (filters with different kernel size) in
each layer.

All filters in one layer are the same size. However, this size is different from those in
other layers within the same set. Each set consists of four convolution layers. In Figure 5,
the layers involved in the multi-resolution-CNN are presented in detail. For example, the
first set has four convolution layers with four different kernel sizes. The first layer has 128
filters with a kernel size equal to 9, whereas the second layer has 128 filters with a kernel
size equal to 7. The third and fourth have kernel sizes of 5 and 3, respectively. All these
layers have the same size of input features, which is equal to 128× 9 features, as mentioned
in the following section. Multi-resolution features are created from the input features in
each layer, which facilitates the production of accurate patterns that form the structure of
the underlying data.

The multi-resolution-CNN involves many different parameters (including filter size,
number of layers, and number of filters per set), as is the case with most deep-learning
models. The selection of these parameters is usually determined by data and its application.
It is a challenging task to select proper CNN parameters. In this work, the strategy used
in Grais et al. [30] was followed. However, the number of filters remained constant.
Additionally, as we moved through the layers, we reduced the filter sizes.
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Figure 5. A detailed description of the proposed approach.

The outputs of the CNNs and the BiLSTM will then be combined. Here, the rele-
vant temporal and spatial features can be successfully identified using the model. The
conversion of the class weights determined by the earlier layers into probabilities is done
by the last system layer, namely the classification layer. This layer comprises two fully
connected layers, these layers subjecting its inputs to the SoftMax activation function.
Weight updating and loss computation are respectively undertaken by all the system via
the Adam optimization algorithm. The Adam optimizer represents an effective extension
of stochastic gradient decent intended exclusively for deep artificial neural networks.
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4. Experimental Results and Discussion
4.1. Database Setting

In this model, we investigated the use of sensor-based HAR using datasets such as
wireless sensor data mining (WISDM) [31] and UCI-HAR dataset [32].

4.1.1. Wireless Sensor Data Mining (WISDM)

Wireless sensor data mining (WISDM) dataset includes 1098209 samples. Table 2
presents the proportion of the overall samples related to every activity, revealing the
unbalanced nature of the WISDM dataset. The activities of greatest and lowest prevalence
are walking (38.6%) and standing (4.4%), respectively. Furthermore, 36 subjects who were
required to undertake specific everyday tasks while carrying an Android phone in the front
pocket of their pants constituted the experimental target of WISDM. An accelerometer with
a 20-Hz sampling frequency served as the sensor, while being a motion sensor integrated in
smartphones as well. Standing (Std), sitting (Sit), walking (Walk), upstairs (Up), downstairs
(Down), and jogging (Jog) were the documented activities. To ensure that data were of
high quality, a designated individual monitored the process of data collection. The features
of the raw data on every axis could be observed based on the acceleration waveform of
2.56 s (128 overall number of points). We assigned 70% for training and 30% for testing.

Table 2. Activities of wireless sensor data mining (WISDM) [1].

Activity Walk Jog Up Down Sit Std

Samples 424,400 342,177 122,869 100,427 59,939 48,397
Percentage (%) 38.6 31.2 11.2 9.1 5.5 4.4

4.1.2. UCI-HAR

The dataset of UCI is obtained from the recordings of 30 individuals doing different
activities of ADL while wearing waist-mounted smartphones with embedded inertial sen-
sors. This database introduced a new type of data parameter and reduced the time required
for training and testing the model effectively. It involved 30 participants between 19 and
48 years of age. Table 3 presents the proportion of the overall activities in UCI dataset.

Table 3. Activities of UCI-HAR [1].

Activity Walk Up Down Sit Std Lay

Samples 122,091 116,707 107,961 126,677 138,105 136,865
Percentage(%) 16.3 15.6 14.4 16.9 18.5 18.3

All participants had a smartphone (Samsung Galaxy S II) strapped to their waist,
and they all executed six activities: Sit, Walk, Walk Up, Walk Down, Std, and Laying
Down. The phone’s embedded gyroscope and accelerometer were used to capture 3-axial
linear acceleration as well as 3-axial angular velocity. Gyroscopic data (angular velocity)
and x, y, and z accelerometer data (linear acceleration) from a Samsung Galaxy S II were
used as movement data. Fifty data points were captured each second (i.e., recording of
observations at 50 Hz), and every participant performed the activity sequence a total of
two times: first, with the device on their left-hand side and then with the device on their
right-hand side.

Several often-used frequency and time features in HAR were captured from each
window. The outcome was a feature vector containing 561 elements. The primary signal
types included in the raw data were the following: body acceleration, total acceleration, and
body gyroscope. In each case, the signal types were associated with 3 axes of data, meaning
that there were 9 variables for every time step. Every series of data were partitioned into
intersecting windows (2.65 s, or 128 time steps each), meaning that a single row of data
contained 1152 (128 × 9) elements. The data were then loaded into a 3D array, where the
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dimensions corresponded to samples, time steps, and features. To clarify, 128 time steps
and 9 features were involved, and the number of samples amounted to the number of rows
in each raw signal data file. The model’s output was a 6-item vector with the probability
of any given window being associated with all activity types, of which there were 6. We
assigned 70% for training and 30% for testing, i.e., 21 subjects for training and 9 for testing.

4.2. Evaluation Metrics

The evaluation procedure was carried out by dividing the dataset into two sets:
training and testing. Then, the model was fitted to the training set. The prediction was
made on the test set. Evaluation of the prediction was performed using metrics such as
the classification accuracy, which measured the ability to recognize the activity correctly.
This was defined as the number of correctly recognized activities divided by the number
of activities.

Hence, performance is not correctly reflected only by the general categorization
accuracy. False positives as well as false negatives are considered by the F-measure (F1
score), which integrates two measures characterized according to the overall count of
samples identified accurately. Within the information retrieval community, this is referred
to as “precision” and “recall”, which are respectively described as TP/TP + FP and
TP/TP + FN, with TP, FP, and FN respectively denoting the number of true positives,
false positives, and false negatives. As such, performance is better reflected by the F1 score
compared to accuracy. Furthermore, the F1 score weighs classes according to their sample
proportion, thus addressing class imbalances. The F1 score is expressed as:

F1 = ∑
i

2 ∗ wi
precisioni · recall

precisioni + recall
(1)

Another metric used to evaluate the model is the confusion matrix. This can graph-
ically illustrate the performance of the model. It is defined as the matrix of recognized
activities versus known activities [33].

We also used recall, which finds the proportion of activities that are correctly classified,
and precision, which finds the proportion of a correctly predicted activity.

4.3. Experimental Setup

The model training and testing were performed on a machine that has an E5-2686 v4
Xeon CPU, 32 GB RAM, and an NVIDIA V100 graphics card. The machine used an Ubuntu
operating system with 32 bits.

The proposed model was developed with Python (3.7.0). We also used Theano,
TensorFlow, and Keras libraries.

This model was regarded as a Sequential Keras model. One version of stochastic gradi-
ent descent, namely the efficient Adam version, was used to achieve network optimization,
and since a multiclass classification problem is the central issue, categorical cross-entropy
loss function was employed. The model was fitted based on a predetermined number of
epochs (namely 30), and the batch size comprised 128 samples. After the fitting of the
model, the evaluation occurred using a test data set, which offers insights into the accuracy
of the model.

4.4. Discussion

The accuracy of the CNN-BiLSTM model was 98.53% in WISDM and 97.05% in UCI-
HAR. This was an acceptable accuracy in terms of spatial and temporal features. Better
training and validation accuracy was attained, with a reduction in training loss (0.0011)
and validation loss (0.0086) as illustrated in Figures 6 and 7.

Convolution kernels are capable of learning features with greater complexity. How-
ever, this may also cause overfitting due to the rise in the number of model parameters.
Hence, it is essential to select the number of filters carefully. The accuracy associated with
the CNN model with a different number of filters of the first and second convolution levels
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are illustrated in Figure 8. For 128 filters in the first level of CNN layer and 64 in the second
level of CNN layer, the accuracy score was 92.43%.
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Figure 6. Training accuracy vs. validation accuracy.
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Figure 7. Training loss vs. validation loss.

Figure 8. The impact of the number of filters on recognition accuracy in the proposed convolution
neural networks (CNN).

The use of the UCI-HAR and WISDM test sets to estimate the model yielded the classi-
fication confusion matrices presented in Tables 4–7. The WISDM dataset of an unbalanced



Sensors 2021, 21, 2141 15 of 20

nature attained a general precision of 98.53% upon exposure of the trained model to the test
set. The activities of sitting and standing were not differentiated highly effectively as we
have observed in Table 4, possibly due to their similarity from the viewpoint of the motion
sensors. Another experiment was conducted using the proposed model, CNN-BiLSTM,
as a feature extractor and support vector machine (SVM) as a classifier. We considered
the extracted features at the level of concatenation layer as we illustrated the model in
Figure 2. Then these features will be fed up to the SVM. The classification confusion matrix
is presented in Table 5. Accurate classification using the proposed model for extraction
the features and classification was achieved in 2940 instances in the case of the UCI-HAR
dataset, with general accuracy of 97.05% as we observed in Table 6. Table 7 presented the
confusion matrix of applying the proposed model , CNN-BiLSTM, as a feature extractor
and SVM as a classifier.

Table 4. Classification of the confusion matrix on the WISDM.

Activities Down Jog Sit Std Up Walk Precision F1

Down 739 2 0 0 34 5 0.94 0.96
Jog 0 2576 0 0 8 0 0.99 0.99
Sit 0 0 395 20 1 2 0.94 0.97
Std 0 0 2 353 1 0 0.99 0.97
Up 20 4 0 0 855 0 0.97 0.95
Walk 6 2 0 0 14 3197 0.99 0.99

Recall 0.96 0.99 0.99 0.94 0.93 0.99

Accuracy 98.53%

Kappa 0.98
The result marked in bold refers to the results that achieve the best classification of activities using different metrics.

Table 5. Classification of the confusion matrix on the WISDM using the proposed model, CNN-
BiLSTM, as a feature extractor and support vector machine (SVM) as a classifier.

Activities Down Jog Sit Std Up Walk Precision F1

Down 646 0 2 0 30 2 0.95 0.96
Jog 1 2574 0 0 7 2 0.99 0.99
Sit 1 0 395 20 1 1 0.94 0.97
Std 2 0 0 354 0 0 0.99 0.97
Up 22 3 0 0 854 0 0.97 0.96
Walk 10 1 1 0 13 3194 0.99 0.99

Recall 0.94 0.99 0.99 0.94 0.94 0.99

Accuracy 98.53%

Kappa 0.98
The result marked in bold refers to the results that achieve the best classification of activities using
different metrics.
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Table 6. Classification of the confusion matrix on the UCI-HAR.

Activities Walk Up Down Sit Std Lay Precision F1

Walk 494 2 0 0 0 0 0.99 0.99
Up 0 470 0 1 0 0 0.99 0.99
Down 2 10 407 0 1 0 0.96 0.99
Sit 0 3 0 449 36 3 0.94 0.91
Std 0 0 0 29 503 0 0.93 0.94
Lay 0 0 0 0 0 537 0.99 1.00

Recall 0.99 0.96 1.00 0.93 0.93 0.99

Accuracy 97.04%

Kappa 0.96
The result marked in bold refers to the results that achieve the best classification of activities using
different metrics.

Table 7. Classification of the confusion matrix on the UCI-HAR using the proposed model, CNN-
BiLSTM, as a feature extractor and SVM as a classifier.

Activities Walk Up Down Sit Std Lay Precision F1

Walk 494 2 0 0 0 0 0.99 0.99
Up 0 465 5 1 0 0 0.98 0.99
Down 0 4 415 0 1 0 0.98 0.99
Sit 0 0 0 448 43 0 0.91 0.93
Std 0 0 0 24 508 0 0.95 0.94
Lay 0 0 0 0 0 537 1.00 1.00

Recall 1.00 0.98 0.98 0.94 0.92 1.00

Accuracy 97.28%

Kappa 0.96
The result marked in bold refers to the results that are achieve the best classification of activities using
different metrics.

Table 8 lists the performance accuracy of some studies using different datasets. In
relation to the WISDM dataset, the CNN-BiLSTM performed better than other models,
while in relation to the UCI dataset, the proposed method attained accuracy of 97.05%.
By comparison, the maximum accuracy achieved for the UCI dataset was 97.63% via
using CNN [20], Statistical features and data centering. Therefore, given that no statistical
features or other hand-crafted features were employed in this work, it is not fair to compare
the two approaches.
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Table 8. Comparison with other studies conducted on different human activity recognition
(HAR) dataset.

Database Ref. Year Used Technique Accuracy (%)

UCF101

[13] 2015 GoogLeNet & VGG-16 91.40
[19] 2015 TDD 91.50
[22] 2016 Two CNN stream (VGG-16) 93.50
[16] 2016 TSN 94.20
[17] 2016 CNN 89.10
[14] 2017 Two-stream-3D-ConvNet 93.40
[23] 2018 CNN-LSTM 84.10

HMDB51

[19] 2015 TDD 65.90
[16] 2016 Two CNN stream—iDT 69.20
[17] 2016 TSN 69.40
[14] 2016 CNN 65.20
[23] 2017 Two-3D-ConvNet 88.40

ASLAN [22] 2015 CONV3D-SVM 78.30

Sports 1M [22] 2015 CONV3D-SVM 85.20

UCF-ARG [10] 2020 Pre-trained CNN 87.60

Sound dataset [21] 2020 CNN 87.20

HHAR [3] 2020 Fusion ResNet 96.63

MHEALTH [3] 2020 Fusion ResNet 98.50

WISDM
[1] 2020 CNN-LSTM 95.75
[2] 2020 CNN 97.51

Proposed 2020 CNN-BiLSTM 98.53

UCI

[15] 2016 CNN 93.75
[20] 2018 CNN 95.31
[20] 2018 CNN with stat. features 97.63
[1] 2020 CNN-LSTM 95.80
[2] 2020 Lightweight CNN 96.27

Proposed 2020 CNN-BiLSTM 97.05
The result marked in bold refers to the results that are achieved by the proposed approach.

In this work, we used both types of features, spatial and temporal, and achieved an
acceptable accuracy. This accuracy was obtained using the simple and effective structure
of CNN and BiLSTM. However, after many experiments, we observed that the extraction
of spatial and temporal features using CNN-BiLSTM was an efficient solution. In this
proposed model, we maintained the relationship between the movement and spatial
features. To identify a specific method concerning the intended application, different
factors must be considered, and the approach should be determined accordingly; thus,
although there are various methods, certain challenges continue to persist, and still require
further attention.

4.5. Ablation Study

To validate the efficiency of the proposed work, we have conducted many experiments.
For example, we have described a set of these experiments in Table 9.
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Table 9. Ablation study.

Experiment Accuracy (%) Precision
(%)

Recall
(%)

F1
Score
(%)

Cohens
Kappa

Six Conv. Layers at each
level, work in parallel with
two BiLSTM layers, then
their output are
concatenated

95.55 95.52 95.55 95.52 0.9465

Two Conv. Layers at each
level, work in parallel with
three BiLSTM layers, then
their output are
concatenated

75.97 78.93 75.97 75.27 0.7107

Two Conv. Layers, followed
by BatchNormalization
layer, work in parallel with
two BiLSTM layers, then
their output are
concatenated

87.13 89.98 87.13 87.23 0.8456

One Conv. Layers, work in
parallel with three BiLSTM
layers, then their output are
concatenated

88.63 88.99 88.63 88.51 0.8633

5. Conclusions

Recently, it has become possible for deep CNNs to perform exceptionally well on
different HAR benchmark datasets that necessitate a massive number of resources. How-
ever, such models are incompatible with wearable HAR sensors. Nevertheless, CNN
has been computationally simplified on visual tasks using several lightweight structure
designs. This research proposed a new architecture involving the use of many convolution
layers, with varying kernel dimensions to achieve feature capture at various resolutions.
Subsequently, temporal features were captured by applying BiLSTM in parallel.

The proposed model displays better performance compared with the earlier research
on WISDM and UCI in the context of UCI use with no hand-crafted features. A comparative
analysis of the confusion matrices makes it obvious that activity differentiation is most
effectively undertaken by CNN-BiLSTM.

In terms of the activities of lying in UCI, 100% precision was attained by the model
because those activities do not involve any motion whereas achieving 99% to recognized
activities of jogging and walking in WISDM. Furthermore, sitting-up and standing-down
was partially differentiated from other activities by achieving 93% and 95% respectively
in UCI. Meanwhile, walking was detected well solely by the proposed model, with the
others potentially confusing this activity for other similar ones, such as walking-up or
waling-down. Moreover, activities with close similarities, were categorized with a high
degree of precision by the proposed model.

Empirical investigation of a fusion feature at various CNN and BiLSTM levels will be
considered in future studies. Another aspect warranting additional examination includes
the features derived by CNN and BiLSTM through automatic extraction and their contrast-
ing against common hand-crafted features. In relation to HAR, the main approach is deep
CNN, but the attributes of the approach should be researched in greater detail and a more
expansive database should be employed.

Human activity recognition can be applied to other applications such as vehicle activity
recognition [34]. Autonomous vehicles represent vehicles that can guide themselves and
do not rely on human drivers to manage obstacles. They are anticipated to have a higher
safety performance compared to vehicles with human drivers.
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