Skip to main content
. 2021 Mar 20;23(3):369. doi: 10.3390/e23030369
Algorithm 1 FaultMap.
Information Transfer Network Inference
  • 1:

    Input:N-dimensional time series {X(1),X(2),...,X(N)}, of M samples from system X represented by: x(i)={x1(i),x2(i)...,xM(i)}ϵRM, statistical significance threshold δ in, e.g., a rank-order test using iAAFT surrogates, embedding delay range τmax and embedding history lengths k and l for time series i and time series j(i)

  • 2:

    Output: adjacency matrix WϵRN×N, where entry (i,j) represents information transfer from node i to node j

  • 3:

    fori1 to N do

  • 4:

        for j1 to N,ji do

  • 5:

            for τ0 to τmax do

  • 6:

               compute TEij(k,l,τ) by Equation (1)

  • 7:

               if TEij=0<δ<max0ττmax{Equation(1)} then

  • 8:

                   WijTEij

  • 9:

               else

  • 10:

                   Wij0

  • 11:

               end if

  • 12:

            end for

  • 13:

        end for

  • 14:

    end for

Spectral Centrality Ranking
  • 1:

    Input: matrix Pγ=γP+1N(1γ)J where γϵ0,1], ranking distance ϵ

  • 2:

    Output: node centrality score vector π1

  • 3:

    initialize π(0) with probabilities [(1/N,1/N,...,1/N)]

  • 4:

    while|π(k+1)π(k)|>ϵdo

  • 5:

        compute eigenvector π(k+1) of matrix Pγ associated

        with eigenvalue λ1(Pγ)=1, such that π1=Pγπ1

  • 6:

    end while