Skip to main content
. 2021 Mar 20;21(6):2173. doi: 10.3390/s21062173

Table 1.

This table provides a summary of the feature extraction methods.

A Summary of Feature Extraction Methods
Temporal
methods
Statistical Features [19,20] Mean(x¯)=1Tt=1T|xt|,
Std.Dev(σ)=1Tt=1T(xtx¯)2
Variance(x)=1Tt=1T(xtx¯)2
skewness=1Tt=1T(xtx¯)3σ3
kurtosis=1Tt=1T(xtx¯)3σ4
Hijorth features [21] Activity=t=1T(xtx¯)2T
Mobility=Var(xt^)Var(xt)
Complexity=Mobility(xt^)Mobility(xt)
RMS [20] RMSt=1Ni1Nxi2
IEEG [20] IEEGt=i=1N|xI
Fractal Dimension [22] D=log(L/a)log(d/a)
Autoregressive modeling [21] xt=i=1paixti+ϵt
where {a for i = 1,…, p} are AR model coefficients and p is the model order
Peak-Valley modeling [23,24] Cosine angles, Euclidean distance between neighbouring peak and valley points
Entropy [25,26] S=i=1Npilnpi
Quaternion modeling [27] Mean(μ)=(qmod)N
Variance(σ)=((qmod)2μ)2+(qmod)22N
Contrast(con)=(qmod)2N
Homogeneity(H)=(1)1+(qmod)2
ClusterShade(cs)=(qmodμ)3
Clusterprominence(cp)=(qmodμ)4
Spectral
methods
Band power [19] F(s)=n=0N1xne2πNsn,s=0,1,,N1
Pow(s)=flowfhighF(s)2ds
Spectral Entropy [26] SH=f1f2P^(f)log(P^(f))
P^(f)=P(f)/f1f2P(f), P(f) is PSD of signal
Spectral statistical
Features [19]
Mean Peak Frequency, Mean Power, Variance of Central Frequency etc.
Time-frequency
Methods
STFT [28] S(m,k)=n=0N1s(n+mN)w(n)ej2πNnk
Wavelet transform [29] ψs,τ(t)=1sψtτs
EMD [30] x(t)=i=1nci(t)+rn(t)
Spatial Methods CSP [31] J(w)=wTC1wwTC2w
BSS [32,33] x(t)=As(t)
s(t)=Bx(t)
Approaches like ICA, CCD estimate s(t)
Spatio-temporal
methods
Sample covariance matrices [34] Ci=XiXiTtr(XiXiT)
Where Ci is covariance matrix of single trial