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Abstract: While SARS-CoV-2 specific neutralizing antibodies have been developed for therapeutic
purposes, the specific viral triggers that drive the generation of SARS-CoV-2 specific IgG and IgM
antibodies remain only partially characterized. Moreover, it is unknown whether endogenously
derived antibodies drive viral clearance that might result in mitigation of clinical severity during
natural infection. We developed a series of non-linear mathematical models to investigate whether
SARS-CoV-2 viral and antibody kinetics are coupled or governed by separate processes. Patients
with severe disease had a higher production rate of IgG but not IgM antibodies. Maximal levels of
both isotypes were governed by their production rate rather than different saturation levels between
people. Our results suggest that an exponential surge in IgG levels occurs approximately 5–10 days
after symptom onset with no requirement for continual antigenic stimulation. SARS-CoV-2 specific
IgG antibodies appear to have limited to no effect on viral dynamics but may enhance viral clearance
late during primary infection resulting from the binding effect of antibody to virus, rather than
neutralization. In conclusion, SARS-CoV-2 specific IgG antibodies may play only a limited role in
clearing infection from the nasal passages despite providing long-term immunity against infection
following vaccination or prior infection.

Keywords: SARS-CoV-2; IgG antibodies; IgM antibodies; severity; mathematical model

1. Introduction

The interplay between the SARS-CoV-2 life cycle and humoral immune responses
during natural infection has only been partially described. While neutralizing antibodies
are detected 1–2 weeks after symptom onset, it is less certain whether these antibodies
are relevant for clearance of the virus or whether they only protect viral re-exposure. A
better understanding of viral antibody interactions is critical to specify the optimal timing
for neutralizing antibody treatments which may be more effective according to the stage
of infection [1–7]. Indeed, recent trials of neutralizing antibody infusions demonstrate
antiviral and clinical efficacy though only if dosed early in infection prior to clinical de-
compensation [8–10]. A deeper understanding of the link between viral loads, antibody
dynamics, and COVID-19 severity may also assist in the identification of immune sur-
rogates of protection following infection or vaccination. The specific role of individual
antibody isotypes is also not well understood [5,11–13].

The present study aims to define some of these basic features of humoral antibody
responses. Using mathematical modeling and longitudinal datasets of IgG, IgM, and
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viral loads, we explored (i) how SARS-CoV-2 viral loads relate to the generation of anti-
bodies, (ii) how and when different isotypes of antibodies correlate with each other, and
(iii) whether SARS-CoV-2 antibody levels alter viral load dynamics.

2. Materials and Methods
2.1. The Raw Data

Three groups of longitudinal datasets were employed for modeling purposes. The first
dataset provided IgM and IgG levels from 26 hospitalized SARS-CoV-2 patients in China,
and 6 of them developed severe symptoms characterized as the development of dyspnea
and/or hypoxemia and rapid progression to acute respiratory distress syndrome, septic
shock, refractory metabolic acidosis, coagulopathy, or multiple organ failure [14]. The
IgG and IgM antibody levels were measured using the magnetic chemiluminescence im-
munoassay (MCLIA) value divided by the cutoff (absorbance/cut off, S/CO) with peptides
derived from the amino acid sequence of ORF1a/b, spike (S) protein, and nucleocapsid (N)
protein [15].

We digitized the second dataset that captured anti-nucleocapsid IgG antibodies and
SARS-CoV-2 viral loads in 6 hospitalized patients in Washington State, USA [16]. IgG
antibodies were measured using Abbott Architect anti-SARS-CoV-2 nucleocapsid IgG index
value, and the cut-off for seropositivity suggested by the manufacturer was 1.40 [17]. The
viral loads from nasopharyngeal swabs were originally measured as cycle threshold values
with the detection limit 40 using SARS-CoV-2 qRT-PCR test applying Hologic Panther
Fusion and laboratory-developed test (LDT) assays.

Finally, the third dataset was measured from two patients who developed mild symp-
toms of COVID-19. The digitization yielded SARS-CoV-2 viral loads and IgG antibodies
against another target site S1 protein of SARS-CoV-2 [18]. Antibodies were measured using
optical density value with the cut-off to be 1.1. The viral loads were measured as average
cycle threshold values through nasopharyngeal swabs tested by RT-qPCR that applied
the TaqMan SARS-CoV-2 Assay Kit v2, the 2019-nCoV CDC qPCR Probe Assay, or the
Roche Cobas SARS-CoV-2 Test CE-IVD. The cycle threshold detection limit was 40 [18]. If
unavailable, we converted the cycle threshold values into copies/mL using the relation
reported in [19].

2.2. Mathematical Model Recapitulating Antibody Kinetics

We introduce a simple model that recapitulates IgG and IgM kinetics (Model M3,
Table S1) as follows:

dIM
dt = rMIM

kM+IM
− dMIM

dIG
dt = rGIG

kG+IG
− dGIG

(1)

In this model, rM, kM, rG, and kG represent the production rate of IgM, the level of
IgM antibodies at which its production rate becomes 50%, the production rate of IgG,
the level of IgG antibodies at which its production rate becomes 50%, respectively. The
model is derived from the complex dynamics of the development of humoral immunity
involving B cells (Figure S1, [20–23]) and this derivation is provided in Section S1 in the
Supplementary Information.

Two variants of the model (1) were also employed for fitting purposes. This included,
(i) IgG and IgM production rates that are independent of antibody concentration (kG = 0
and kM = 0, Model M1 in Table S1) and (ii) non-saturated proliferation of different B cell
subsets leading to unregulated IgG and IgM production (kG + IG = 1 and kM + IM = 1,
Model M2 in Table S1) [24].

2.3. Mathematical Model Recapitulating the Interplay between Antibodies and SARS-CoV-2
Viral Loads

To recapitulate longitudinal viral loads in addition to antibody data, we extended
models in the previous section. These extended models mainly consisted of two compart-
ments. The first compartment corresponds to the first 3 equations below in model (2).
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It recapitulates SARS-CoV-2 viral loads over time and is inspired from [25]. This model
assumes that SARS-CoV-2 (V) infects susceptible cells (T) at rate β and converts them
to infected cells (I). Infected cells are cleared by innate immune responses in a density-
dependent manner at a rate δIIk. More SARS-CoV-2 viruses are produced by infected cells
at rate p, and rate c represents the natural clearance. The second compartment corresponds
to the last equation and is borrowed from the best model M3 in Table S1. After the first τG
days, the IgG level (IG) begins to grow at rate rG and becomes saturated at high levels of
IgG antibodies (modeled by the term kG). The natural clearance rate of IgG is denoted by
dG. The model is thus given by,

dT
dt = −βVT

dI
dt = βVT − δIIk

dV
dt = pI − cV

dIG
dt = rGIG

kG+IG
− dGIG

(2)

To investigate the role of IgG antibodies on viral loads, we modified model (2) by
assuming that antibodies have binding effects, neutralizing effects, or effects on clearing
infected cells. This is shown in model (3), where the neutralizing efficacy is represented by
the term IG

kE+IG
, which suggests higher levels of IgG antibody give rise to higher neutralizing

efficacy and prevent viral infections. Here, parameter kE represents the value of IgG
antibodies at which the neutralization efficacy becomes 50%. The binding effect, which is
responsible for the faster clearance of the virus, is captured by the term νIGV. Term φIIG
shows the possible effect of antibodies on removing infected cells. The model with the
included effects of antibodies is thus given by,

dT
dt = −β

(
1 − IG

kE+IG

)
VT

dI
dt = β

(
1 − IG

kE+IG

)
VT − δIIk −φIIG

dV
dt = pI − cV − νIGV
dIG
dt = rGIG

kG+IG
− dGIG

(3)

In total, we modeled 38 competing hypotheses assuming: (i) antibodies have no effects,
only binding effects, only neutralizing effects or both (models with prefix MP, MQ, MR,
and MS in Table S3, respectively); (ii) there is one-off stimulation, continuous stimulation,
or delayed-continuous stimulation of B cells for antibody production (models with suffix
v1–v3, v4–v6, v7–v9 in Table S3, respectively); and, (iii) non-saturated antibody production,
saturation by high levels of IgG, or saturation by high levels of viral loads (models with
suffix v1–v4–v7, v2–v5–v8, v3–v6–v9 in Table S3, respectively). In addition, we also fit two
additional models that assume that antibodies facilitate the death of infected cells (models
MT-v1 and MT-v2 in Table S3).

2.4. Fitting Procedure

On a given dataset, we fit models with competing hypotheses as listed in Tables S1 and S3
at the population level using nonlinear mixed-effects modeling in Monolix 2019R2
(www.lixoft.eu, accessed: 9 February 2021). Under this population-level fitting approach,
the value of an unknown parameter for an individual is assumed to be drawn from a
distribution with a fixed value (capturing inter-individual similarity) and a standard devia-
tion of the random effects (capturing inter-individual variability). Then the fixed and/or
the standard deviation of the random effects for all unknown parameters in our models
were estimated using the Stochastic Approximation Expectation-Maximization (SAEM)
algorithm [26].

The model selection was based on the Akaike Information Criteria (AIC) [27]. We
calculated AIC as −2LL + 2m, where m represents the number of unknown parameters in
the model and LL denotes log-likelihood. Models with lower AIC are favored and if the

www.lixoft.eu
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difference is more than 2, then there is strong support for the model with lower AIC by the
experimental data [27].

For sensitivity analysis, we employed Latin Hypercube Sampling and Partial Rank
Correlation Coefficient (LHS-PRCC). We utilized the Wilcoxon rank-sum test to compare
the differences in estimated parameter values between severe and non-severe patients while
using Pearson correlation to compute the correlation between two variables. Finally, we
employed linear-mixed models to test if levels of a specific antibody at any time point in one
severity group are higher than another. As each group was inclusive of multiple patients,
we nested patients within their respective groups in the linear-mixed model. Specifically,
for each individual antibody, we employed linear mixed-effects model “Ab~time + (1 +
time|Severity/PID)”, where Ab is the antibody level on log2 scale, time is the days since
the onset of symptoms, severity is the severity index (0: non-severe; 1: severe) of the patient
with patient ID (PID) nested. The analysis was performed using the package “lme4” and
“lmerTest” in the software R.

3. Results
3.1. Longitudinal IgG and IgM Dynamics

IgG and IgM antibody levels were recorded up to 35 days after the onset of symptoms
in 26 hospitalized SARS-CoV-2 patients in China; six of these patients developed severe
symptoms [14]. IgM and IgG levels were significantly higher in severe patients compared
to non-severe patients (0.0004 and 9.5 × 10−8, linear mixed-effects model) (Figure S2A,B).
Common characteristics in this dataset included an exponential increase in both antibodies
after some delay followed by a plateau towards steady-state levels (Figure S2C,D). The
IgG and IgM antibody levels were measured using the magnetic chemiluminescence im-
munoassay (MCLIA) values divided by the cutoff (absorbance/cut off, SCO) with peptides
derived from the amino acid sequence of ORF1a/b, spike (S) protein, and nucleocapsid (N)
protein [15].

3.2. Mathematical Model of IgG and IgM Dynamics

To capture the observed antibody expansion dynamics, we developed a mathemat-
ical model based on the process of development of humoral immunity involving B cells
(Figure 1A). The model includes the density-dependent production of IgM and IgG anti-
bodies at rates rM and rG, respectively, after a delay of τM and τG, respectively (model M3
in Table S1). The delay terms capture the lag caused due to initial phases of the develop-
ment of humoral immunity, which could not be explicitly modeled due to the lack of data.
Moreover, the production of antibodies is assumed to become saturated at high levels of
the corresponding antibody (regulated by parameters kM and kG) whereas IgM and IgG
antibodies are naturally cleared at rates dM and dG, respectively. This model is a simplifica-
tion of a complete and fully descriptive model of the development of humoral immunity
as shown in Figure S1 and the process of reduction is shown in Material and Methods.

The model described above was best supported by the data over alternative models
which assumed that the production rate of antibodies either occurs at a constant rate (model
M1, Table S1) or remains unsaturated (model M2, Table S1). The fits under the best model
are shown in Figure 1B using estimated parameter values in Table S2.
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Figure 1. The mathematical model fits SARS-CoV-2 IgG and IgM levels following infection. (A) Schematic representation
of the mathematical model reproducing longitudinal IgM and IgG dynamics, where rM and rG stand for the antibody
production rates, kM and kG regulate the saturation of antibody generation, dM and dG are the natural clearance rates of
IgM and IgG, respectively. The parameters used here correspond to the parameters in Equation (3) from the Materials and
Methods section (or, model M3 in Table S1), (B) Simulations (line), and data (markers) of IgM (red) and IgG (black) under
the best model (model M3 in Table S1). Severe and non-severe patients are labeled in blue and pink, respectively.
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3.3. Differences between SARS-CoV-2 IgG and IgM Production Rates

The model analysis revealed that it takes ~0.6 more days on average from symptoms
onset to the production of IgM (median~9.1 days, range: 3.0–16.3 days) than IgG antibodies
(median~8.5 days, range: 3.4–20.0 days) at rates 3.22 SCO (signal-to-cutoff ratio)/day
(range: 0.25–22.62 SCO/day) and 8.94 SCO/day (range: 0.66–71.69 SCO/day), respectively
(p = 0.04, Wilcoxon rank-sum test) (Table S2). IgM and IgG production rates become
half-saturated at 7.4 × 10−5 SCO and 1.3 SCO, respectively. Modeling further yields that
IgG antibodies have a longer half-life (~2.7 days) compared to IgM antibodies (~1.4 days).
Finally, production rates of IgG production are considerably higher than IgM antibodies.

3.4. SARS-CoV-2 Antibody Kinetics during Non-Severe Versus Severe Infection

The time-delay between symptom onset and the start of production of IgM and IgG
antibodies in response to infection (τM and τG, p = 0.84 and p = 0.79, Wilcoxon rank-sum
test) as well as the baseline concentration of IgM and IgG antibodies (IM0 and IG0, p = 0.44
and p = 0.13, Wilcoxon rank-sum test) were not statistically different between two groups
(Figure 2A). Only the production rate of IgG antibodies (rG) was significantly larger in
severe patients compared to non-severe patients (p = 0.04, Wilcoxon rank-sum test) while
the production rate of IgM antibodies (rM) was not significantly higher in severe patients
(p = 0.08, Wilcoxon rank-sum test). We believe that this could be because IgM responses are
more general than IgG responses as the latter are produced with the help of T cells.

We next performed a sensitivity analysis using Latin Hypercube Sampling and Partial
Rank Correlation Coefficient (LHS-PRCC) on all the parameters of our best model that had
been reduced to 2-dimension (Figure 2B). We found that the production rates of IgM and
IgG antibodies (rM and rG) had a highly positively correlated (r~1) impact on peak levels of
IgM and IgG antibodies. The baseline concentration of antibodies also positively impacted
antibody peak levels, suggesting that pre-existing immunity could accelerate antibody
response and prevent re-infection. The delay before the onset of antibody production had
almost no impact on peak levels of antibodies (Figure 2B).

3.5. Mathematical Model of SARS-CoV-2 Viral Load and Nucleocapsid IgG Dynamics in 6
Hospitalized Patients

Both nucleocapsid IgG antibodies and SARS-CoV-2 viral loads were recorded in six
hospitalized patients in Washington State [16] (Figure S3). To reproduce the observed
dynamics, we tested 38 competing mathematical models which differ according to mecha-
nisms by which antibodies can be produced in response to the SARS-CoV-2 antigen and the
subsequent effect of IgG antibodies on SARS-CoV-2 viral loads (Figure 3). We explored the
effect of viral loads on antibody production and tested models with competing hypotheses
including, (i) the presence of viral antigen early on during infection “once” triggers B cell
stimulation leading to the programmed production of antibodies (termed one-off stimu-
lation, marked v1–v3 in Table S3), (ii) the viral antigen levels throughout the course of
infection "continuously" triggers B cell stimulation in a density-dependent manner and the
antibodies are produced in response to the expansion or contraction of viral loads (termed
continuous stimulation, marked v4–v6 in Table S3), and (iii) the antibodies are produced
“continuously” in response to the expansion or contraction of viral loads but in a delayed
manner (termed delayed-continuous stimulation, marked v7–v9 in Table S3). We also
explored the effect of antibodies on virus assuming no effect, binding effects, neutralization
effects, and both binding and neutralization effects, which are represented by models
marked as MP, MQ, MR, and MS, respectively in Table S3. Neutralization is assumed
to prevent viral entry onto cells whereas binding clears the virus more rapidly from the
nasal passages. Furthermore, we investigated if antibodies exhibit “antibody-dependent
clearance of infected cells [28]” (models marked as MT in Table S3).
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Figure 2. Model parameter comparison between non-severe and severe SARS-CoV-2 cases. (A) Com-
parison of estimated parameters between severe and non-severe patients using Wilcoxon-rank sum
test under the model that best recapitulated the longitudinal IgM and IgG data of 6 severe and 20 non-
severe-patients. We compared parameters rM, log10(IM0), rG, log10(IG0), log10(τG) and log10(τG)

that represent the production rate of IgM, the log-converted concentration of IgM at t = 0, the pro-
duction rate of IgG, the log-converted concentration of IgG at t = 0, time-delay (since the onset of
symptoms) before IgG is produced and time-delay (since the onset of symptoms) before IgM is
produced, respectively. p < 0.05 represents a statistically significant difference between severe and
non-severe patients. (B) Using partial rank correlation coefficient, the sensitivity of the peak IgM
and IgG levels to the initial antibody concentration, the production rate, and the delay before the
production is induced.
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Figure 3. Mathematical model schematic of SARS-CoV-2 antibody generation and antiviral activity.
The SARS-CoV-2 viral replication and antibody generation are displayed as two compartments. The
SARS-CoV-2 viral antigen may trigger antibody immune response via one of three mechanisms:
one-off stimulation, continuous stimulation, or delayed-continuous stimulation. For each mechanism,
the antibody generation rate may proceed in 3 ways: no saturation, saturation by high levels of IgG,
or saturation by viral load. The generation of antibodies may affect viral replication through viral
binding effects, viral neutralization effects, via both mechanisms, or not at all. Two additional models
containing antibody-assisted infected cell clearance are employed. In total, these multiple options
give rise to 38 models. The components of the best-performing model are highlighted in orange
rectangle boxes.

The best-performing model was comprised of two components. The first component
addresses the viral dynamics as captured in our prior modeling [25]. In this model, SARS-
CoV-2 (V) infects susceptible cells (T) with infectivity β and converts them to infected
cells (I). Infected cells are cleared by an innate response in a density-dependent manner
at rate δIIk. More SARS-CoV-2 viruses are produced by infected cells at rate p, and rate
c indirectly stands for all the other immune responses that are not directly related to IgG
antibody but still help clear the SARS-CoV-2 viruses. Our model captured viral dynamics
well and predicted that viral RNA concentrations peak 2.3 days (min, max: 1.8, 3.4) after
the first detection, in line with the literature [29].

The dynamics of IgG were best captured by the model that also recapitulated the
antibody data in the previous section (i.e., M3 from Table S1) suggesting that there is
one-off stimulation of B cells leading to the programmed production of antibodies in
a self-saturating manner. Despite being one-off stimulation, the delay before the IgG
antibodies appear is strongly correlated with the clearance rate of SARS-CoV-2 infected
cells (r = −0.995, Pearson Correlation, Table S3).

The best performing model further suggested that IgG antibodies exhibit no effects on
the viral loads (model MP-v2 in Table S3, AIC = 196). Though the inclusion of antibody
levels into the model does not improve fit to the data, the experimental data support
that IgG antibodies are more likely to lead to a faster clearance of SARS-CoV-2 viral
loads through binding effects rather than neutralization effects (AIC = 208 with MQ-v2
vs. AIC = 214.1 with MR-v2, Table S3). The timing of the decrease in viral loads also
supports our modeling finding as binding effects but not the neutralization effects of IgG
antibodies would allow viral loads to decrease simultaneously as antibodies emerge. This
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is because neutralization effects result in the inhibition of new infections which will result
in a delay since an infected cell will still have sufficient time to produce a full round of
viral progeny [30].

The corresponding fits are shown in Figure 4 and the individual parameters estimates
are provided in Table S4. Of note, other models that performed nearly as well all included
one-off stimulation of antibody production and saturating levels of IgG meaning that these
mechanisms were most critical to fit the data.
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Figure 4. The mathematical model fits viral load and antibody levels following SARS-CoV-2 infection.
Simulations (lines) to observed SARS-CoV-2 (black markers) and IgG (red markers) under the best
model (MP-v2 in Table S3).

We further exhibit that IgG binding effects may only play a minor role in clearing
SARS-CoV-2 nasal viral loads during primary infection as our simulations suggest that
even in the absence of anti-SARS-CoV-2 IgG, the clearance would have been achieved in no
more than 5 days after the observed day of viral clearance in all patients except P5. In fact,
when binding effects are assumed, the effect of IgG only becomes prominent on SARS-CoV-
2 viral loads approximately 7 days after the day of hospitalization in almost all patients
except P5 (Figure 5). This is because IgG antibodies are detectable only after ~7 days from
the day of hospitalization (or, ~15 days after the infection, Table S4). Simulations further
suggest that IgG antibodies with strong binding effects could accelerate the clearance of
SARS-CoV-2 viral loads in those patients who do not naturally clear infection (patient P5
in Figure 5) and thus points towards the potential use of antibodies in the treatment of
SARS-CoV-2, especially if given during the early phase of infection, preferably before the
viral peak is achieved (Figure 5).

Next, we aimed to determine differences in the dynamics of anti-spike and anti-
nucleocapsid IgG and their impact on viral dynamics. For this purpose, we digitized
anti-spike IgG and SARS-CoV-2 viral loads from two mild cases of SARS-CoV-2 in Switzer-
land [18]. The best performing model from Table S3 also recapitulated the additional data
from 2 patients (Figure 6A) using estimated parameters in Table S5. Our analysis reveals
that anti-spike and anti-nucleocapsid IgG have similar effects on SARS-CoV-2 viral loads
(i.e., no effects) (Figures 5 and 6B). Modeling further suggests that anti-spike and anti-
nucleocapsid IgG dynamics are similar, except for their baseline value (p = 0.02, Wilcoxon
rank-sum test) which could be due to differences in different assays that were used to mea-
sure them. The time difference between viral load take-off and the time of production of IgG
was not statistically different between anti-spike (median = 6 days) and anti-nucleocapsid
IgG (median = 13 days) (p = 0.29, Wilcoxon rank-sum test). Similarly, we found that rate of
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antibody production was higher for anti-nucleocapsid (median = 57.5/day) than anti-spike
IgG (median = 10.9/day) but not statistically different (p = 0.14, Wilcoxon rank-sum test).
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Figure 6. (A) Mathematical model fits viral load and antibody levels following SARS-CoV-2 infection.
Simulations (lines) to observed SARS-CoV-2 (black markers) and anti-spike IgG (red markers) under
the best model (MP-v2 in Table S3). (B) Impact of binding effects of spike IgG antibodies on viral
dynamics. The solid black line represents the best fits to the observed data (using parameter values
in Table S5 estimated under model MP-v2 in Table S3), the dashed blue line representing the case
when we assume weak binding effects (ν = 0.02), and the dashed-dotted purple line represents an
enhanced strong binding efficacy of IgG antibodies (ν = 0.05). The lines all notably overlap.
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4. Discussion

Potential mitigating factors of COVID-19 severity include low inoculum dose and
effective and early immune responses. However, the components of the immune response
responsible for the elimination of SARS-CoV-2 replication are only partially understood.
Early data suggests the high importance of an effective innate response during the first
several days of infection [25,31–33]. Beyond this stage, effective acquired immune responses
are likely critical [34–40]. Humoral immunity is thought to drive the high observed efficacy
of two mRNA vaccines [41]. Therapeutic infusion of neutralizing antibodies early during
infection is associated with more rapid elimination of viral shedding as well as decreased
hospitalization [8,10,42,43].

Some studies have shown the association between anti-SARS-CoV-2 IgG and re-
duced viral loads, and a possible correlation between IgG concentration to neutralization
titers [16,44]. Our modeling suggests that circulating antibodies play a limited role in
eliminating nasal viral replication during the first exposure to the virus. This emerges from
our modeling because IgG levels surge only well after viral loads have already started to
decrease. The inclusion of a density-dependent killing term to capture peak viral load in
our model already points to the likely importance of innate responses such as type I inter-
feron responses [25]. There is ample evidence that the lack of type I interferon responses is
associated with severe COVID-19 [31,32,45,46]. Studies have further shown both IFN-I pre-
treatments of SARS-CoV-2 infection lead to 2-log10 to 4-log10 viral loads reduction [47–49],
thus supporting the likely importance of innate response in early viral clearance.

SARS-CoV-2 specific antibodies exhibit both binding and neutralization activities
in vitro [50,51]; however, their exact role during primary infection in vivo still remains
unanswered [52]. Our analysis suggests that IgG anti-spike and anti-nucleocapsid antibod-
ies may exhibit no effects on SARS-CoV-2 viral loads and that mild, late binding effects
are more likely than neutralization effects to enhance viral clearance rate during primary
infection; however, this effect is likely to be limited because the peak viral load occurs
before the production of IgG starts and IgG antibodies only reach a high enough level at
a relatively late stage of infection when viral loads are already at very low levels. Even
in the absence of IgG antibodies, the kinetics of SARS-CoV-2 are not predicted to change
dramatically. The modeling analysis also suggests that the generation of SARS-CoV-2
specific antibodies is akin to the generation of antibodies using traditional vaccines, such
as in the case of vaccination for hepatitis B virus [53]. In both scenarios, B cell stimulation
most likely occurs “once” in response to the viral antigen right after infection/vaccination
leading to the programmed production of antibodies for months or years rather than con-
tinuous stimulation of naïve B cells in response to waning and waxing of viral antigen. Our
study further suggests IgG antibody peak value is nearly significantly higher among severe
patients whereas the difference for IgM peak value is smaller. Patients with different symp-
tom severities react to SARS-CoV-2 infection with different antibody kinetics especially for
IgG [30–32], which is mainly attributed to the generation rate of these antibodies, probably
due to higher mean viral load in severe cases [54] and not to the timing of the production
(relative to the onset of symptoms) or the coefficient that allows for the saturation of the
production of these antibodies at high levels. No significant differences in the antibody
kinetics of anti-spike and anti-nucleocapsid IgG were found but that could also be because
of low sample sizes in our study.

While our results are only relevant for the first several weeks after infection, experi-
mental evidence suggests that antibody titers are relatively stable for at least a period of
5 months after symptoms onset [2,3,55], with only ~3 fold decrease in antibodies levels
in ~80–100 days [2,3]. This suggests that antibody production does not halt completely
once SARS-CoV-2 viral loads go below the detection limit, which is typical following many
viral infections.

Although IgG effects on SARS-CoV-2 infection might not be significant during primary
infection, they are likely to be critical for preventing re-infection or following vaccination.
For example, almost all individuals who were re-infected exhibited similar neutralization



Viruses 2021, 13, 516 12 of 15

antibody (NAb) titers and only developed mild to moderate symptoms during the second
infection [56]. SARS-CoV-2 rechallenge experiments with rhesus macaques also suggest
that the neutralizing antibodies generated during the first time of infection may confer
protective immunity against reinfection [57,58]. However, the protective immunity during
re-infection could be linked to more than just the presence of IgG antibodies at the time of
re-infection. For example, an analysis of a COVID-19 outbreak on a fishing vessel found that
only those with potent neutralization but not just the presence of IgG antibody, are immune
from reinfection [59]. Therefore, even if IgG antibodies may not play such a big part in
clearing viruses during the primary infection, they might form effective protection against
re-infection, and IgG levels can be an important indicator of the longevity of immunity.

There are important limitations in our study that limit the scope of our findings to
hypothesis generation. First, our model could not confirm that nasal SARS-CoV-2 viral
loads are not significantly affected by other humoral immune responses [60], which are
not included in our study. For example, IgA are detected as early as only 1 day after
symptom onset [50], which is long before IgG is detected but the influence of IgA on
SARS-CoV-2 viral loads could not be confirmed due to the absence of longitudinal data and
lack of measurement at the actual site of viral replication. Second, we did not model the
alternative hypothesis that drives viral containment, as we had no data to validate or refute
this type of model. The potentially most relevant T cells, those which are retained in tissue
at the site of infection, have yet to be assessed for SARS-CoV-2. Third, we did not model,
again for the lack of data, viral or antibody levels in the most relevant site of infection, the
lung. It is unclear whether different kinetics underlie the clearance of virus from the lower
airways [61]. Our results pertain more to viral loads that are relevant for transmission
rather than pathogenesis. Fourth, our model was validated using a small number of
patients, which could be addressed in future work by gathering more datasets. Finally,
although parameter-identifiability issues in the best model were avoided by fixing several
parameters in the fitting procedure and their non-existence is confirmed by univariate
sensitivity analysis along with low values of the relative standard error of the estimated
parameters, the same could not be performed for several other models given the lack of
data. This again could be addressed in future work by gathering rich datasets.

In summary, we conclude that antibody responses to SARS-CoV-2 do not appear to
be the primary mechanism underlying viral clearance from the nasal passages. Future
studies should gather concurrent viral load, antibody, and T cell response data to better
understand the importance of acquired immune responses in eliminating SARS-CoV-2.
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model recapitulating longitudinal viral loads and IgG dynamics, Table S5: Estimated individual
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