Skip to main content
. 2021 Mar 19;21(6):2166. doi: 10.3390/s21062166

Table 8.

State-of-the-art algorithms for emotion recognition.

Reference Signals Number of Categories Method Accuracy
Machot et al. [22] EDA 4 (Emotions) CNN 0.81
Santamaria et al. [23] ECG, EDA 2 (Valence) DCNN 0.75
2 (Arousal) 0.76
Rayatdoost et al. [24] EEG, Faces 2 (Valence) MGIF 0.75
2 (Arousal) 0.74
Siddharth et al. [25] EEG, Faces 4 (Emotions) VGG-16, LSTM 0.54
Comas et al. [27] EDA, Faces, ECG 7 (Emotions) BMMN-BAE-2 0.64
Our study EDA, Faces 8 (Emotions) DRER 0.89