Skip to main content
. 2021 Mar 21;13(6):1431. doi: 10.3390/cancers13061431

Table 3.

Summary of various algorithms applied to lung cancer diagnosis using multiple VOCs.

Algorithms Analytical Platform Patients with Cancer No. Analyzed VOC No. Sensitivity % Specificity % AUC Reference/(Year)
Stepwise Discriminant Analysis GC-MS 67 9 85.1 80.5 NR [35]/(2003)
Logistic Regression GC-MS 193 16 84.6 80.0 0.88 [50]/(2007)
Weighted Digital Sum Discriminator GC-MS 193 30 84.5 81 0.9 [32]/(2008)
Support Vector Machine GS-MS 107 5 95 89 NR * [51]/(2016)
Artificial Neural Networks GC-MS 108 88 86.36 86.36 0.86 [52]/(2019)
K-nearest Neighbor GC-MS 325 NR NR NR 0.63 [53]/(2020)
Extreme Gradient Boosting SIFT-MS 148 116 82 94 0.95 This WorkConsidering only participants’ VOCs
96 88 0.98 Considering both participants’ VOCs and environmental VOCs

Abbreviations: AUC, area under the curve; GC-MS, gas chromatography-mass spectrometry; NR, not reported; SIFT-MS, selected ion flow tube mass spectrometry; * Accuracy: 89%, Classify adenocarcinoma and squamous cell carcinoma patients.