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Abstract: Unmanned aerial vehicles (UAVs) play an important role in numerous technical and
scientific fields, especially in wilderness rescue. This paper carries out work on real-time UAV human
detection and recognition of body and hand rescue gestures. We use body-featuring solutions to
establish biometric communications, like yolo3-tiny for human detection. When the presence of
a person is detected, the system will enter the gesture recognition phase, where the user and the
drone can communicate briefly and effectively, avoiding the drawbacks of speech communication.
A data-set of ten body rescue gestures (i.e., Kick, Punch, Squat, Stand, Attention, Cancel, Walk, Sit,
Direction, and PhoneCall) has been created by a UAV on-board camera. The two most important
gestures are the novel dynamic Attention and Cancel which represent the set and reset functions
respectively. When the rescue gesture of the human body is recognized as Attention, the drone
will gradually approach the user with a larger resolution for hand gesture recognition. The system
achieves 99.80% accuracy on testing data in body gesture data-set and 94.71% accuracy on testing data
in hand gesture data-set by using the deep learning method. Experiments conducted on real-time
UAV cameras confirm our solution can achieve our expected UAV rescue purpose.

Keywords: unmanned aerial vehicles (UAVs); search and rescue (SAR); UAV human communication;
body gesture recognition; hand gesture recognition; neural networks; deep learning

1. Introduction

With the development of science and technology, especially computer vision tech-
nology, the application of unmanned aerial vehicles (UAVs) in various fields is becoming
more and more widespread, such as photogrammetry [1], agriculture [2], forestry [3],
remote sensing [4], monitoring [5], and search and rescue [6,7]. Drones are more mobile
and versatile, and therefore more efficient, than surveillance cameras with fixed angles,
proportions, and views. With these advantages, combined with the state-of-art computer
vision technology, drones are therefore finding important applications in a wide range
of fields. Increasingly researchers have made numerous significant research outcomes in
these two intersecting areas. For example, vision-based methods for UAV navigation [8],
UAV-based computer vision for an airboat navigation in paddy field [9], deep learning
techniques for estimation of the yield and size of citrus fruits using a UAV [10], drone
pedestrian detection [11], hand gesture recognition for UAV control [12]. It is also essential
to apply the latest computer vision technology to the field of drone wilderness rescue.
The layered search and rescue (LSAR) algorithm was carried out for multi-UAVs search
and rescue missions [13]. An Embedded system was implemented with the capability
of detecting open water swimmers by deep learning techniques [14]. The detection and
monitoring of forest fires have been achieved using unmanned aerial vehicles to reduce
the number of false alarms of forest fires [15]. The use of a drone with an on-board voice

Sensors 2021, 21, 2180. https://doi.org/10.3390/s21062180 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2989-0214
https://doi.org/10.3390/s21062180
https://doi.org/10.3390/s21062180
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21062180
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21062180?type=check_update&version=2


Sensors 2021, 21, 2180 2 of 21

recognition system to detect victims in earthquakes was realized in [16]. UAV has the
ability to overcome the problem of fixed coverage and it also can reach difficult access
areas. Therefore, it will provide great help to human beings in need of rescue.

Drone rescue generally takes place in a wilderness environment and there are certain
drawbacks to rescue work via speech, as speech recognition [17] is more dependent on the
external environment, however, we cannot avoid some of the noise [18] generated by the
external environment (e.g., rotor noise), which makes it impossible to carry out rescue work
effectively. Another disadvantage of speech communication between drones and humans
on the ground in noisy environments is that there are many different possible languages
spoken in touristic sites and even the same language can have different meanings in some
cases [19], making it impossible for drones to understand the questions posed by humans
in some cases. Due to these problems, a limited and well-oriented dictionary of gestures
can force humans to communicate briefly. Therefore, gesture recognition is a good way to
avoid some communication drawbacks, but in our rescue gestures, we need to choose the
most representative gestures according to the different cultural backgrounds [20].

Human gesture recognition technology [21–24] is an emerging topic in drone appli-
cations. Compared to wearable sensor-based approaches [25,26], automated methods for
video analysis based on computer vision technology are almost non-invasive. The control
of drones by gesture recognition has already been implemented [27]. However, most of
the datasets available in this field are still limited to indoor scenarios, and therefore, it is
necessary to develop more and more outdoor UAV datasets. Many researchers are currently
contributing to the lack of such outdoor drone datasets, for example, an outdoor recorded
drone video dataset for action recognition [28], an outdoor dataset for UAV control and
gesture recognition [29], and a dataset for object detection and tracking [30], among others.
However until now, there is not suitable outdoor dataset to describe some of the generic
gestures that humans make when they are in the wilderness environment. In this work,
a data-set of ten body rescue gestures (i.e., Kick, Punch, Squat, Stand, Attention, Cancel,
Walk, Sit, Direction, and PhoneCall) has been created by a UAV on-board camera. The
number 10 is an approximate number based on some of the literature cited, which is in the
range of effective communication. The two most important dynamic gestures are the novel
dynamic Attention and Cancel which represent the set and reset functions respectively.
We use this newly created dataset (detailed in Section 2.2) and the hand gesture dataset
(detailed in Section 2.3) for human gesture recognition, combining from overall body to
local hand gestures for better rescue results. The motivation for this paper is as follows:
the first step is to find human bodies, and the second step is body gesture recognition in
order to make human UAV interaction by Attention and Cancel gestures. People coming
to the foreground and making “Attention” dynamic gesture is for the further investigation.
The last step is further communication with recognizing hand only happens when the user
shows Attention body gesture.

Communication between the user and the drone is achieved through the user’s body
gesture recognition. Short and effective user feedback during this communication process
can greatly improve the efficiency of the rescue. Based on the 10 basic body rescue gestures
created in this work, we have chosen a pair of dynamic gestures: a two-handed waving
motion (Attention) and a one-handed waving motion (Cancel) [31] as the two most basic
communication vocabularies, well separated from the static gesture patterns. When the
user extends both arms to call the drone, the drone will issue a warning and go into help
mode. The system moves to the next stage where the drone slowly approaches the user in
high resolution for localized hand gesture recognition. When a human extends only one
arm, it means that the user has to cancel communication with the drone. In other words,
the user does not need any help and the system is switched off. The dynamic gestures
Attention and Cancel take on the functions of setting and resetting respectively in the
system. For people who do not want to interact with the drone, (e.g., standing people),
then no alarm will be issued. The cancellation gesture idea comes from a user-adaptive
hand gesture recognition system with interactive training [31]. These dynamic gestures
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have been introduced in our paper [31], to avoid the problems with the impossible need
for a pre-trained gesture-pattern database, since they allow the modification and restart.
In paper [32], a temporal “freezing” was used for reinforcement/cancellation procedure.
Following our earlier solution, try to make the untrained user to use our system easily
based on general gesture languages in this paper.

Novelties and main issues of the methodology in the paper:

• A limited and well-oriented dictionary of gestures can force humans to communicate
with UAV briefly during the rescue. So gesture recognition is a good way to avoid
some communication drawbacks for UAV rescue.

• A dataset of ten basic body rescue gestures (i.e., Kick, Punch, Squat, Stand, Attention,
Cancel, Walk, Sit, Direction, and PhoneCall) has been created by a UAV’s camera,
which is used to describe some of the body gestures of humans in a wilderness
environment.

• The two most important dynamic gestures are the novel dynamic Attention and
Cancel which represent the set and reset functions respectively, well separated from
the static gesture patterns.

• The combination of whole body gesture recognition at a distance and local hand
gesture recognition at close range makes drone rescue more comprehensive and
effective. At the same time, the creation and application of these datasets provide the
basis for future research.

In the subsequent sections, Section 2 presents technical background and related work,
including machine specifications, UAV connectivity, and gesture data collection strategies.
In Section 3, the proposed methodology is presented, followed by human detection, pose
extraction, human tracking and counting, body rescue gesture recognition, and proximity
hand gesture recognition, along with a description of the relevant models and training and
system information. Finally, Section 4 discusses the training results of the models and the
experimental results. Conclusions and future work are drawn in Section 5.

2. Technical Background and Related Work
2.1. Machine Specification and UAV Connection

Figure 1 shows that the practical implementation of this work was done on an on-
board UAV with Jetson Xavier GPU. Stand-alone on-board system is crucial, since in the
wilderness we do not have network to rely on. From Sabir Hossain’s experiments [33] on
different GPU systems, it was evident that Jetson AGX Xavier was powerful enough to
work as a replacement of ground station for a GPU system. This is the reason why the
Jetson Xavier GPU has been chosen. In the fourth chapter of this paper, in the experimental
session, to ensure the reliable testing conditions we could not go to the field to fly the
UAV for some external reasons, so we simulated the field environment in the lab and
prepared for UAV motion control. The system for the testing part was changed, as shown
in Figure 2. The testing part was done on a 3DR SOLO drone based on the Raspberry Pi
system [34], which relies on a desktop ground station with GTX Titan GPU. The drone
communicates with the computer through a local network. The comparison of the two
GPUs is in Table 1 [35]. In Chapter 4 we also tested the real running time of the program
on the proposed architecture.

Table 1. Comparison of NVIDIA GeForce GTX TITAN and Jetson AGX Xavier.

NVIDIA GeForce GTX TITAN Jetson AGX Xavier

Pipeline 2688 512
CUDA cores 2688 512

Core clock speed/MHz 830 854
Boost clock/MHz 876 1137
Transistor count 7080 million 9000 million

Power consumption(TDP)/Watt 250 30
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Figure 2. Training and local testing configuration of a Raspberry Pi system UAV with GPU-based
ground station for rescue.

For the testing part in the lab, the ground station computer is equipped with an
NVIDIA GeForce GTX Titan GPU and an Intel(R) Core (TM) I7-5930k CPU, which is also
used for model training. The UAV is a raspberry pi drone, which is a single-board computer
with a camera module and a 64-bit quad-core ARMv8 CPU. The type of camera is a 1080P
5MP 160◦ fish eye surveillance camera module for Raspberry Pi with IR night vision.
Table 2 presents the specification of the 3DR SOLO drone and the camera.

The resolution of the camera is to be changed according to the different steps of
operation of the system. The resolution of the drone camera is set to 640 × 480 for human
detection and body gesture recognition and 1280 × 960 for hand gesture recognition. In the
test, the drone flies at an altitude of about 3 m in the laboratory with the camera resolution
set as above. The higher the resolution of the drone’s camera, the higher the altitude
at which the drone can fly, thinking of the minimal resolution needed for recognition.
Therefore, the system can also work well at heights of more than ten meters with a high-
resolution sensor of the UAV camera.
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Table 2. Specification of the UAV and camera for testing.

System Patch Size Output Size

Fish eye surveillance camera Still picture resolution 2592 × 1944
Viewing angle 160 degrees

Video supports 1080p@30fps,720p@60fps
Size approx.23 × 22 mm/0.90 × 0.86 inch

Raspberry Pi 3 [27] CPU 1.2 GHz 64-bit quad-core ARMv8 CPU
GPU Broadcom video core 4

Memory 1G
Storage Support MicroSD

UAV-3DR SOLO Height: 10 in. (25 cm)
Motor-to-motor dimension: 18 in. (26 cm)

Payload 1.1 lbs. (500 g)
Range 0.5 miles ** (0.8 km)

Maximum altitude 328 ft. (100 m)
Estimated flight time 25 min *

** Range varies with location, antenna orientation, background noise and multi-path. * Flight time varied with payload, wind conditions,
elevation, temperature, humidity, flying style, and pilot skill. Listed flight time applies to elevations less than 2000 ft above sea level.

2.2. Body Gesture Data-Set Collection

OpenPose [36] is a real-time multi-person framework displayed by the Perceptual
Computing Lab of Carnegie Mellon College (CMU) to identify a human body, hand, facial,
and foot key points together on single images. Based on the robustness of the OpenPose
algorithm and its flexibility in extracting key points, we use it to detect the human skeleton
and obtain skeletal data in different gestures of the body, thus laying the data foundation
for subsequent recognition. The key thought of OpenPose is employing a convolutional
neural network to produce two heap-maps, one for predicting joint positions, and the other
for partnering the joints into human skeletons. In brief, the input to OpenPose is an image
and the output is the skeletons of all the people this algorithm detects. Each skeleton has
18 joints, counting head, neck, arms, and legs, as appeared in Figure 3. Each joint position
is spoken to within the image arranged with coordinate values of x and y, so there’s an
add up to 36 values of each skeleton. Figure 3 shows the skeleton data and key points
information.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 22 
 

 

  

Figure 3. OpenPose Skeleton data and joints information. 

There are no publicly available and relevant datasets in the field of the wilderness 
rescue of humans by drones. To deal with this problem, based on our preliminary work 
[37], we create a new dataset dedicated to describing brief and meaningful body rescue 
gestures made by humans physically in different situations. Considering that people in 
different countries have different cultural backgrounds, some gestures may represent dif-
ferent meanings. Therefore, we have selected and defined ten representative rescue ges-
tures that are used to convey the clear and concrete messages without ambiguity that hu-
mans make in different scenarios. These gestures include Kick, Punch, Squat, Stand, At-
tention, Cancel, Walk, Sit, Direction and PhoneCall. This dataset can of course be extended 
to a larger dataset. 

In our dataset, the emphasis is on two dynamic gestures, Attention and Cancel, well 
separated from the static gesture patterns, as these represent the setup and reset functions 
of the system. The system will only alert when these two gestures are recognized. Atten-
tion represents the need for the user to establish communication with the drone, which 
will fly toward the user for further hand gesture recognition. Conversely, Cancel sends an 
alert that the user does not need to establish contact and the system is automatically 
switched off. The system will not sound an alarm when other rescue gestures are recog-
nized. Except for Attention and Cancel, the remaining eight body gestures are considered 
as signs of normal human activity and therefore do not interact further with the drone. 
However, this is not absolute, for example, we can also set the PhoneCall gesture as an 
alarming gesture according to the actual demand, and when the user is recognized to be 
in the PhoneCall gesture, the drone quickly issues an alarm and later goes to recognize 
the phone number given by the user through the hand gesture, which can also achieve the 
rescue purposes. However, this specific function will not be discussed in this paper, be-
cause the latter hand gesture dataset we collected is limited and no recognition of numbers 
is added. From the gesture signs of usual human activity, we can build up a limited but 
effective clear vocabulary set for communicating simple semantics. It is not the task of the 
present paper, but it will be developed in the future; now the emphasis is on the gesture-
based communication. 

The datasets are collected using a 1080P 160° fish eye surveillance camera module for 
raspberry pi on the 3DR SOLO UAV system. Six people from our lab participated in UAV 
body rescue gesture data collection and real-time prediction, the genders were four males 
and two females, aged btw 22 and 32 years old. They also have performed each rescue 
gestures with all the possible variations. The proposed system recognizes the very common 
ten body rescue gestures in real-time, including the ones listed above. In these ten body 
gestures, we collected as many as possible of the two gestures of Attention and Cancel, to 
make the system’s setup and reset functions more powerful. It is important to note that this 
dataset describes the gesture signs of usual human activity that humans would make in a 
wilderness environment. Not all gestures will sound an alarm for rescue. Table 3 describes 
the details of each UAV body rescue gesture. Table 4 describes the details of the UAV 
body rescue dataset. 

Figure 3. OpenPose Skeleton data and joints information.

There are no publicly available and relevant datasets in the field of the wilderness
rescue of humans by drones. To deal with this problem, based on our preliminary work [37],
we create a new dataset dedicated to describing brief and meaningful body rescue gestures
made by humans physically in different situations. Considering that people in different
countries have different cultural backgrounds, some gestures may represent different
meanings. Therefore, we have selected and defined ten representative rescue gestures
that are used to convey the clear and concrete messages without ambiguity that humans
make in different scenarios. These gestures include Kick, Punch, Squat, Stand, Attention,
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Cancel, Walk, Sit, Direction and PhoneCall. This dataset can of course be extended to a
larger dataset.

In our dataset, the emphasis is on two dynamic gestures, Attention and Cancel, well
separated from the static gesture patterns, as these represent the setup and reset functions
of the system. The system will only alert when these two gestures are recognized. Attention
represents the need for the user to establish communication with the drone, which will fly
toward the user for further hand gesture recognition. Conversely, Cancel sends an alert
that the user does not need to establish contact and the system is automatically switched
off. The system will not sound an alarm when other rescue gestures are recognized. Except
for Attention and Cancel, the remaining eight body gestures are considered as signs of
normal human activity and therefore do not interact further with the drone. However,
this is not absolute, for example, we can also set the PhoneCall gesture as an alarming
gesture according to the actual demand, and when the user is recognized to be in the
PhoneCall gesture, the drone quickly issues an alarm and later goes to recognize the phone
number given by the user through the hand gesture, which can also achieve the rescue
purposes. However, this specific function will not be discussed in this paper, because the
latter hand gesture dataset we collected is limited and no recognition of numbers is added.
From the gesture signs of usual human activity, we can build up a limited but effective
clear vocabulary set for communicating simple semantics. It is not the task of the present
paper, but it will be developed in the future; now the emphasis is on the gesture-based
communication.

The datasets are collected using a 1080P 160◦ fish eye surveillance camera module
for raspberry pi on the 3DR SOLO UAV system. Six people from our lab participated in
UAV body rescue gesture data collection and real-time prediction, the genders were four
males and two females, aged btw 22 and 32 years old. They also have performed each
rescue gestures with all the possible variations. The proposed system recognizes the very
common ten body rescue gestures in real-time, including the ones listed above. In these
ten body gestures, we collected as many as possible of the two gestures of Attention and
Cancel, to make the system’s setup and reset functions more powerful. It is important
to note that this dataset describes the gesture signs of usual human activity that humans
would make in a wilderness environment. Not all gestures will sound an alarm for rescue.
Table 3 describes the details of each UAV body rescue gesture. Table 4 describes the details
of the UAV body rescue dataset.

Table 3. UAV body rescue gestures and corresponding key points.

Number Name Body Rescue Gesture Number Name Body Rescue Gesture

1 Kick
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Table 3. Cont.

Number Name Body Rescue Gesture Number Name Body Rescue Gesture
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2.3. Hand Gesture Data-Set Collection

Based on the description in Section 2.2, when the user sends a distress signal to the
drone, in other words, when the drone recognizes the human gesture as Attention, the
system enters the final stage for hand gesture recognition and the drone automatically
adjusts the resolution to 1280 × 960, while slowly approaching the user needs assistance.
For hand gesture recognition, there are already many widely used datasets, the dataset
for hand gesture recognition in this work is partly derived from GitHub [38] and partly
defined by ourselves. We have adapted some of the gesture meanings to the needs. An
outstretched palm means Help is needed, an OK gesture is made when the rescue is over,
the gestures Peace and Punch are also invoked. Finally, we added Nothing for completeness
of hand gesture recognition. In addition to the above four hand gestures, we also added
the category Nothing, and in the dataset we collected some blank images, arm images,
partial arm images, head images, and partial head images to represent the specific gesture
of Nothing. Table 5 shows the details of hand gesture dataset.
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Table 5. UAV hand rescue gesture dataset.

Number Name Hand Rescue Gesture Number of Images

1 Help
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We use hand gesture recognition to allow the drone to go further in discovering
the needs of the user. Whole-body gesture recognition is distant, while hand gesture
recognition is close. The combination of the whole body gesture and the partial hand
gesture can make the rescue work more adequate and meaningful. We chose the limited
gesture vocabularies for rescue gesture recognition to force the user to communicate briefly
and effectively with the drone under certain conditions. Compared to speech recognition
rescue, gesture recognition is a better way to get rid of the interference of the external
environment.

Here we have selected only five hand gestures for recognition, but of course, we could
also include more gestures such as numbers. As we discussed in Section 2.2, when the
user’s body gesture recognition in the previous phase resulted in a PhoneCall, then the user
can also give the phone number to the drone by using hand number gesture recognition.
We refer here to the result of Chen [39], what will be developed in the future phase. From
the gesture signs of usual human activity, we can build up a limited but effective clear
vocabulary set for communicating simple semantics. In the hand gesture recognition phase,
we can also capture the new hand gestures given by the user and later enter the names
of the new gestures. By retraining the network, we can get the new model of gesture
recognition with the new hand gesture of the user. Hand gesture prediction is shown in
Chapter 4 by a real-time prediction bar chart.

3. Methodology

The system framework proposed in this paper is based on rescue gesture recognition
for UAV and human communication. In this section, human detection, counting, and
tracking are described. Body gesture recognition with set and reset functions and hand
gesture recognition at close range are explained in detail. Figure 4 shows the framework
of the whole system. First, the server on the onboard action unit drone side is switched
on and the initial resolution of the drone camera is set. The input to the system is the
live video captured by the drone‘s camera and the process is as follows: in the first step
human detection is performed and when a person is detected by the drone, the system
proceeds to the next step of rescue gesture recognition. In the second step, pose estimation
is performed by OpenPose and the human is tracked and counted. The third step is
the recognition of the body rescue gestures. Feedback from the human is crucial to the
UAV rescue. The cancellation gesture idea comes from our user-adaptive hand gesture
recognition system with interactive training [31]. When the user’s body gesture recognition
results in Attention, the system proceeds to the final step of hand gesture recognition. If
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the user’s body gesture recognition is a cancellation, then the system switches off directly
and automatically. The system uses gesture recognition technology to force the user to
communicate briefly, quickly, and effectively with the drone in specific environments.
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3.1. Human Detection

YOLO [40,41] is an open-source state-of-the-art object detection framework for real-
time handling. Using a completely different approach, YOLO has a few advantages,
compared to earlier region object detection systems and classification systems, within the
way it performs detection and prediction. Region proposal classification systems perform
detection by applying the model to an image with multiple predictions in different image
regions and scales. High-scoring regions are considered as detections, however, YOLO
uses a one-stage detector methodology and its design is similar to a fully convolutional
neural network. The advantage of YOLO for real-time object detection is the improvement
of deep learning-based location method. In our system, high speed is required. Previous
YOLO versions apply a softmax work to convert scores into probabilities with an entirety
rise to 1.0. Instead, YOLOv3 [42] uses multi-label classification by replacing the softmax
function with free logistic classifiers to calculate the probability of an input belonging to
a specific label. Hence, the model makes multiple predictions over different scales, with
higher accuracy, in any case of the predicted object’s size.

Considering the real-time problem of our proposed system, this paper selects yolo3-
tiny [42] for human detection. The dataset used in this method is a widely used COCO
dataset [43], which contains a total of 80 categories of objects. Comprising a change of
YOLO, yolo3-tiny treats detection to some degree differently by predicting boxes on two
different scales whereas features are extracted from the base network. Its higher perfor-
mance compared to YOLO was the most important reason for its selection. The model’s
architecture consists of thirteen convolutional layers with an input size of 416 × 416 im-
ages. Although it can detect the 80 objects provided by the COCO dataset very well, in
our system we only need to detect people. When the object category detected by the UAV
is a person, the system will issue an alarm and then proceed to the next human gesture
recognition. The main aim of the first stage is to find the human, if no human is detected
then the system will remain in this stage until the drone detects a human.
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3.2. Body Gesture Recognition

Figure 5 shows the flowchart for the human body gesture recognition. OpenPose
algorithm is adopted to detect human skeleton from the video frames. These skeleton
data are used for feature extraction, which is then fed into a classifier to obtain the final
recognition result. We make the real-time pose estimation by OpenPose through a pre-
trained model as the estimator [44]. OpenPose is followed by Deep Neural Network (DNN)
model to predict the user’s rescue gesture. The Deep SORT algorithm [45] is used for
human tracking for the multiple people scenario. The main reasons for choosing this latest
method are as follows. Human tracking is not only based on distance and velocity but also
based on the features that a person looks like. The main difference from the original SORT
algorithm [46] is the integration of appearance information based on a deep appearance
descriptor. Deep SORT algorithm allows us to add this feature by computing deep features
for every bounding box and using the similarity between deep features to factor into the
tracking logic.
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After OpenPose skeleton extraction and Deep SORT human tracking, we can obtain
information about human beings. By counting the number of people, we finally determined
the following three scenarios: nobody, individual, and multiple people. If the drone does
not detect anyone, then the communication between the drone and the user will not
be established and the gesture recognition is fruitless. If the drone detects one or more
people, then the drone will enter the gesture recognition phase for those people and show
different recognition results based on the user’s body gesture to achieve communication
between the user and the drone to assist humans. We are mainly concerned with the two
gestures Attention and Cancel, which represent the two functions of setting and resetting
respectively, so when these two gestures appear, the system will show a warning, turn on
help mode or cancel the interaction.

Compared to other gesture recognition methods, such as using 3D convolutional
neural networks [47], we finally chose the skeleton as the basic feature for human gesture
recognition. The reason is that the features of the human skeleton are concise, intuitive,
and easy to distinguish between different human gestures. In contrast, 3DCNN is both
time-consuming and difficult to train large neural networks. As for the classifiers, we
experimented with four different classifiers, including kNN [48], SVM [49], deep neural
network [50], and random forest [51]. The implementation of these classifiers was from the
Python library “sklearn.” After testing the different classifiers the DNN was finally chosen
and the DNN showed us the best results.

The DNN model has been programmed using Keras Sequential API in Python. There
are four layers with batch normalization behind each one and 128, 64, 16, 10 units in
each dense layer sequentially. The last layer of the model is with Softmax activation and
10 outputs. The model is applied for the recognition of body rescue gestures. Based on the
establishment of the above DNN model, the next step is training. The model is compiled
using Keras with TensorFlow backend. The categorical cross-entropy loss function is
utilized because of its suitability to measure the performance of the fully connected layer’s
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output with Softmax activation. Adam optimizer [52] with an initial learning rate of 0.0001
is utilized to control the learning rate. The demonstration has been trained for 100 epochs
on a system with an Intel i7-5930K CPU and NVIDIA GeForce GTX TITAN X GPU. The
total training dataset is split into two sets: 90% for training, and 10% for testing. Specific
information such as the final body gesture recognition model accuracy and loss is described
specifically in Section 4.

3.3. Hand Gesture Recognition

Further interaction with the drone is established by the user through an Attention
body gesture. Whether it is a single person or a group of people, the drone enters help
mode whenever a user is recognized by the drone in a body gesture of Attention. The
camera resolution is automatically adjusted to 1280 × 960 as the drone slowly approaches
the user. This is the final stage of this system, which is hand gesture recognition.

Figure 6 shows the flowchart regarding this section. Hand gesture recognition is
implemented by using a convolutional neural network (CNN) [53]. The 12-layer convo-
lutional neural network model is compiled using Keras with TensorFlow backend. The
CNN model can recognize 5 pre-trained gestures: Help, Ok, Nothing (i.e., when none of
the above gestures are input), Peace, Punch. The system can guess the user’s gesture based
on the pre-trained gestures. A histogram of real-time predictions can also be drawn. The
combination of recognition of overall body gesture at a distance and hand gesture at a close
distance makes drone rescue more comprehensive and effective. Although the gestures
that can be recognized at this stage are limited, the system can also capture and define new
gestures given by the user as needed and get a new model by retraining the CNN. As an
example, we can add the recognition of numbers by human hand gestures as described
before in Section 2.3, when the body gesture recognition in the previous section results in a
PhoneCall, at which point the two can be used in combination, and the user can provide
the drone with the phone number to be dialed via hand gesture recognition, thus also
allowing for rescue purposes.
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The dataset has a total of 4015 gesture images in 5 categories, with 803 image samples
in each category. The total dataset is split into two sets: 80% for training, and 20% for
testing. After training for 20 epochs, the model achieves 99.77% precision on training data
and 94.71% accuracy on testing data.

4. Experiment

In this section, the model and performance of the proposed human detection and
rescue gesture recognition system for UAVs are described as follows. Based on the intro-
duction in Chapter 2, the testing phase of the designed system was done in the laboratory
in a simulated field environment, and Table 6 shows the real running time required for
each phase of the program to run on a proposed Jetson AGX Xavier GPU-based UAV. It
should be noted that the results below are cutting images, and the original image should
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be in a 4 to 3 ratio, as we have tried to recreate the field environment without some clutter
such as tables and chairs that we did not want to be included, so we have cut a fixed area
of the output video. Figure 7 shows the results of human detection via yolo3-tiny. It is
worth bringing up the point that we have simulated wild forest scenarios in the lab, but of
course, it can detect humans in other scenarios as well. We can see that based on the COCO
dataset, plants, squatting, and standing persons can be detected. If no person is detected,
the system will not display a warning. Immediately after the warning appears the system
goes into the recognition phase of the human rescue body gestures.

Table 6. Real running time of the proposed Jetson AGX Xavier GPU-based UAV platform.

Phase Real Running Time

Human Detection 10 ms
Body Gesture Recognition 25 ms
Hand Gesture Recognition 20 ms
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Figure 7. Human detection standing (a) and squatting (b) by using yolo3-tiny.

Based on the body rescue gesture dataset created in Table 3, we trained the model
through a deep neural network to finally obtain the accuracy and loss of the body gesture
recognition model. The changes in accuracy and loss function are shown in Figure 8
over the course of training. At first, the training and testing accuracies increase quickly.
Afterward, slow growth between 10 epochs and 20 epochs and merging happens after
25 epochs. The accuracy and loss approach to their asymptotic values were seen after
40 epochs with minor noise in between. The weights of the best fitting model with the
highest test accuracy are preserved. Both, training as well as testing loss diminished
consistently and converged showing a well-fitting model.
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Figure 8. Body gesture recognition model accuracy (a) and loss (b) over the epochs.

After training for 100 epochs, the model achieves 99.79% precision on training data and
99.80% accuracy on testing data. In Figure 9, the diagram on the left presents the confusion
matrix with predicted labels on X-axis and true labels on the Y-axis for predictions utilizing
our model tested on the training dataset. The diagram on the right presents the confusion
matrix with predicted labels on X-axis and true labels on the Y-axis for predictions utilizing
our model on the testing dataset. The high density at the diagonal shows that most of the
body rescue gestures were predicted correctly. The performance is well over and close to
perfect in most of the gestures. In the confusion matrix, we can see that the amount of data
for Attention and Cancel is relatively large. This is because, in the data collection part, we
collect the largest amount of data for Attention and Cancel. These two gestures are dynamic
body gestures and well separated from the static gesture patterns, which represent the set
and reset functions respectively. In Figure 10, the diagram on the left presents the standard
matrix with predicted labels on X-axis and true labels on the Y-axis for predictions utilizing
our model tested on the training dataset. The diagram on the right presents the standard
matrix with predicted labels on X-axis and true labels on the Y-axis for predictions utilizing
our model on the testing dataset. The standard matrix is a scale for correctly identified
gestures and mistakes, it shows that all body gestures in the training set have reached 1.00,
and in the test set, all body gestures except Punch 0.98, Attention 0.99, and Walk 0.99 also
reach 1.00. The sum of each row in a balance and normalized confusion matrix is 1.00,
because each row sum represents 100% of the elements in a particular gesture. In addition
to using the confusion matrix as an evaluation metric, we also analyzed the performance
of the model from other standard metric. we use the equations below to calculate the
macro-average. Based on the true positive (TP), false positive(FP), false negative(FN), and
true negative(TN) of the samples, we calculate the p value (Precision), and R value (Recall),
respectively, and the result macro F1 value is mostly close to 1.00.

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

macroP =
1
n

n

∑
i=1

Pi, macroR =
1
n

n

∑
i=1

Ri

macroF1 =
2 × macroP × macroR

macroP + macroR
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As communication between the drone and the GPU-based ground station in the lab
is dependent on the local network, requests sent from the client-side and accepted by the
server directly reduce the value of the FPS, causing the system to run very slowly. The
system only reaches approximately 5 FPS in a real-time operation. But running directly
on a drone loaded with a Jetson Xavier GPU would solve this problem, i.e., a practical
application scenario, as shown in Figure 1. It has a Jetson Xavier GPU as powerful as the
ground station (GTX Titan GPU) and does not need to communicate over the local network,
it will be fast enough to meet practical needs. In the laboratory tests, the drone was always
flown at an oblique position above the person, approximately 2 to 3 m away from the
user in the hand-gesture recognition (close) position. The oblique position ensures that
the entire human body can be recognized with a higher probability than flying directly
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above the user’s head and downwards vertically. Because the work is based on the human
skeleton, the flying position of the drone has some limitations on the recognition results.

Figure 11 shows the recognition of the Cancel gesture and Attention gesture with
warning messages in real-time. Figure 11 also gives information about the number of
people, time, frame, and FPS. Next are the recognition display and detailed description of
two basic gestures that we randomly selected from the dataset. In Figure 12, the diagram
on the left shows us that when a user points in a specific direction, the purpose is to alert
the drone to look in the direction the person is pointing to. For example, when the direction
pointed has someone lying on the ground, this gesture solves the problem that when
somebody lying on the ground, UAV cannot recognize the skeleton information about
the lying person well due to flight position of the drone. Direction gesture is also helpful
to the fainted or unconscious people, when there is a group of people, those who have
motion can use the Direction gesture to give instructions to the drone to save those who
cannot move. Practically, as the main issue, our proposed system is for helping people
in a bad situation, but we do not want to disturb persons who do not want or could not
interact. The on-board system may send messages to the central about non-moving people,
but we leave them in peace if they simply have a rest. In Figure 12, the diagram on the
right shows the user’s gesture to make a phone call, which can be linked to hand gesture
number recognition at a later stage. When the user poses to make a call, we can perform
hand number recognition at a later stage to get the phone number the user wants to dial.
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During the human body gesture recognition, Attention and Cancel are dynamic
gestures that function as set and reset respectively and should therefore confuse the UAV
board recognition during the frame-by-frame check. When either of these two gestures is
detected, the system will immediately give an alert. Figure 13 shows that when there are
multiple people, one of them sends an Attention gesture to the drone. At this point, the
drone sends a warning to inform that someone needs help. We can also see in Figure 12
that other people’s gestures are well recognized in addition to the person making the
Attention gesture. In our recognition system, about 10 people can be recognized at the
same time during human body gesture recognition. Figure 13 also shows the basic gesture
recognition of multiple people without warning. We can see some people standing, some
people walking, and some people kicking. Also, the number of people, time, frame, and
FPS will be displayed. It should be noted that if a person is not fully present in the drone
camera, then it will not be recognized. People’s movements are generated continuously in
real-time, and Figure 13 is a photo we took from the video, so there will be some inaccurate
skeleton information. Of course, if a person’s gesture is not in our dataset, that person’s
gesture will not be recognized and the recognition result information above it will be blank.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 22 
 

 

and true labels on the Y-axis for predictions utilizing our model on the testing dataset. 
The high density at the diagonal shows that most of the body rescue gestures were pre-
dicted correctly. The performance is well over and close to perfect in most of the gestures. 
In Figure 16, the diagram on the left presents the standard matrix with predicted labels on 
X-axis and true labels on the Y-axis for predictions utilizing our model tested on the train-
ing dataset. The diagram on the right presents the standard matrix with predicted labels 
on X-axis and true labels on the Y-axis for predictions utilizing our model on the testing 
dataset. The standard matrix shows that the corresponding values for the five categories 
of hand gestures can reach 0.99 or 1.0 on the training set and 0.9 or more on the test set. 

  
(a) (b) 

Figure 13. Multiple people with (a) and without (b) communication with UAV. 

  
(a) (b) 

Figure 14. Help hand gesture recognition (a) and Ok hand gesture recognition (b). 

Figure 13. Multiple people with (a) and without (b) communication with UAV.

When the result given by the user in the previous stage is the body gesture of Attention,
then the drone adjusts the resolution to 1280 × 960 and slowly approaches the user to
perform the recognition of the hand gesture. We selected two more representative hand
gesture recognition results to show, a Help gesture and an Ok gesture, where the user
establishes further communication with the drone through the Attention body gesture in
the previous stage. In the last close hand gesture recognition stage, the user can inform the
drone that it needs to help him/her through the Help hand gesture, and when the drone
is done helping the user, the user can inform it through the Ok hand gesture. Figure 14
shows us the results of the recognition of the Help and Ok gestures. From the displayed
results we can see that the user’s hand gesture recognition results can be well predicted
by the histogram. Of course, we can also capture and define new gestures for the user
on a case-by-case basis and add the new gestures to the gesture dataset by retraining the
network. In Figure 15, the diagram on the left presents the confusion matrix with predicted
labels on X-axis and true labels on the Y-axis for predictions utilizing our model tested
on the training dataset. The diagram on the right presents the confusion matrix with
predicted labels on X-axis and true labels on the Y-axis for predictions utilizing our model
on the testing dataset. The high density at the diagonal shows that most of the body rescue
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gestures were predicted correctly. The performance is well over and close to perfect in most
of the gestures. In Figure 16, the diagram on the left presents the standard matrix with
predicted labels on X-axis and true labels on the Y-axis for predictions utilizing our model
tested on the training dataset. The diagram on the right presents the standard matrix with
predicted labels on X-axis and true labels on the Y-axis for predictions utilizing our model
on the testing dataset. The standard matrix shows that the corresponding values for the
five categories of hand gestures can reach 0.99 or 1.0 on the training set and 0.9 or more on
the test set.
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5. Conclusions and Future Work

In this paper, we propose a real-time human detection and gesture recognition system
for onboard UAV rescue. Practical application and laboratory testing are two different
systems. The system not only detects people, tracks them, and counts the number of people,
but also recognizes human rescue gestures in a dynamic system. First of all, the drone
detects the human at a longer distance with a resolution of 640 × 480, and the system issues
an alarm to enter the recognition stage when a person is detected. A dataset of ten basic
body rescue gestures (i.e., Kick, Punch, Squat, Stand, Attention, Cancel, Walk, Sit, Direction,
and PhoneCall) has been created by a UAV’s camera. The two most important dynamic
gestures are the novel dynamic Attention and Cancel which represent the set and reset
functions respectively, through which users can generate communication with the drone.
After the Cancel gesture is recognized, the system automatically shuts down, and after the
Attention gesture is recognized, the user can establish further communication with the
drone. People coming to the foreground and making “Attention” dynamic gesture is for
further investigation. The system enters the final hand gesture recognition stage to assist
the user. At this point, the drone will automatically adjust the resolution to 1280 × 960
and gradually approach the user for close hand gesture recognition. From a drone rescue
perspective, we did a good job of getting feedback from users. This work lays some
groundwork for subsequent user rescue route design.

The detection of the human body is achieved through yolo3-tiny. A rescue dataset of
10 gestures is collected by using a fisheye surveillance camera for 6 different individuals
in our lab. OpenPose algorithm is used to capture the user’s skeleton and detect their
joints. We built a deep neural network (DNN) to train and test the model. After training for
100 epochs, the framework achieves 99.79% precision on training data and 99.80% accuracy
on testing data. For the final stage of hand gesture recognition, we use data collected
online combined with our definitions to obtain a relevant dataset, which is trained by
a convolutional neural network to obtain a model to achieve hand gesture recognition.
Gestures can also be added or removed as required. The drone flies at an altitude of
approximately 3 m and is flown diagonally above the user, rather than directly above
the user. However, there are some difficulties and limitations when the system applies
to the real wildness. In practice, the proposed system is subject to some extreme weather
conditions and resolution issues. Another limitation is the flying position of the UAV. The
system proposed in this paper requires drones fly over people at an angle in order to detect
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the human body gestures more accurately, rather than in a vertical user overhead position.
For gathering enough experiment data we need more time and battery life-time limits the
real-life data-gathering. For this reason, real-life data are only used for demonstration in
Figure 1, while the exhaustive testing needed laboratory-based environment.

The main innovations and contributions of this paper are as follows: First, it is worth
affirming that gesture recognition for wilderness rescue can avoid the interference of the
external environment, which is the biggest advantage compared to voice recognition for
rescue. A limited and well-oriented dictionary of gestures can force humans to communi-
cate briefly. So gesture recognition is a good way to avoid some communication drawbacks.
Second, a dataset of ten basic body rescue gestures (i.e., Kick, Punch, Squat, Stand, Atten-
tion, Cancel, Walk, Sit, Direction, and PhoneCall) has been created by a UAV’s camera,
which is used to describe some of the body gestures of humans in the wild. For the gesture
recognition dataset, not only the whole body gestures but also the local hand gestures were
combined to make the recognition more comprehensive. Finally, the two most important
dynamic gestures are the novel dynamic Attention and Cancel which represent the set and
reset functions respectively. It should confuse the UAV-board recognition when checking
frame-by-frame with a system warning. The system switches to a warning help mode
when the user shows Attention to the UAV, and the user can also cancel the communication
with the UAV at any time as needed.

In future work, more generic rescue gestures and larger hand gesture data sets could
be included. The framework can be executed in real-time recognition with self-training.
The system can automatically retrain the model based on the new data in a very short time
to get a new model with new rescue gestures. Last but not the least, we also needed to
conduct outdoor tests on a drone carrying a Jetson Xavier GPU.

The interpretation of the gesture based communication without predetermined vocab-
ulary and unknown users will be a great challenge to linguistic research. Attention and
Cancellation dynamic gestures will have a main role in generating a dynamic linguistic
communication.
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