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Abstract

Objective: To estimate instantaneous oxygen uptake (VO2) with a small, low-cost wearable 

sensor during exercise and daily activities in order to enable monitoring of energy expenditure 

(EE) in uncontrolled settings. We aim to do so using a combination of seismocardiogram (SCG), 

electrocardiogram (ECG) and atmospheric pressure (AP) signals obtained from a minimally 

obtrusive wearable device.

Methods: In this study, subjects performed a treadmill protocol in a controlled environment and 

an outside walking protocol in an uncontrolled environment. During testing, the COSMED K5 

metabolic system collected gold standard breath-by-breath (BxB) data and a custom-built 

wearable patch placed on the mid-sternum collected SCG, ECG and AP signals. We extracted 

features from these signals to estimate the BxB VO2 data obtained from the COSMED system.
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Results: In estimating instantaneous VO2, we achieved our best results on the treadmill protocol 

using a combination of SCG (frequency) and AP features (RMSE of 3.68±0.98 ml/kg/min and R2 

of 0.77). For the outside protocol, we achieved our best results using a combination of SCG 

(frequency), ECG and AP features (RMSE of 4.3±1.47 ml/kg/min and R2 of 0.64). In estimating 

VO2 consumed over one minute intervals during the protocols, our median percentage error was 

15.8% for the treadmill protocol and 20.5% for the outside protocol.

Conclusion: SCG, ECG and AP signals from a small wearable patch can enable accurate 

estimation of instantaneous VO2 in both controlled and uncontrolled settings. SCG signals 

capturing variation in cardio-mechanical processes, AP signals, and state of the art machine 

learning models contribute significantly to the accurate estimation of instantaneous VO2.

Significance: Accurate estimation of VO2 with a low cost, minimally obtrusive wearable patch 

can enable the monitoring of VO2 and EE in everyday settings and make the many applications of 

these measurements more accessible to the general public.
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I. INTRODUCTION

Oxygen uptake (VO2) is an important physiological parameter for numerous reasons. VO2 

max, an individual’s maximum rate of oxygen uptake during incremental exercise, is 

commonly used as a measurement of cardiorespiratory fitness (CRF) for both clinical and 

non-clinical purposes. Athletes frequently measure their VO2 max to assess their endurance. 

Medical professionals measure CRF with cardiopulmonary exercise testing (CPET) to 

quantify disease progression in patients with conditions such as heart failure (HF) and 

chronic obstructive pulmonary disease [1]–[4]. Submaximal VO2 measurement also has 

many applications. It can be used along with a subject’s weight to calculate energy 

expenditure, a critical ingredient in the calculation of energy balance, which quantifies the 

relationship between an individual’s caloric intake and expenditure. Energy balance is 

important for the management of many illnesses such as diabetes, obesity, cardiovascular 

disease, and cancer, as well as for maintaining a generally healthy lifestyle [5], [6].

Measuring VO2 is largely limited to clinical environments due to extensive equipment 

requirements and the need for professionally trained technicians. The ability to test more 

ubiquitously could enable many desirable applications such as more consistent fitness 

tracking, closer monitoring of disease progression, and more precise weight-loss 

management. To this aim, companies such as COSMED, VO2 Master, and VacuMed have 

developed portable calorimetry systems capable of providing accurate VO2 measurements in 

outdoor environments [7], [8]. However, these systems are both prohibitively expensive for 

use by the general public and still involve highly obtrusive components (e.g. masks etc), 

making them unsuitable for ubiquitous monitoring. For this reason, there have been many 

attempts to achieve similar readings from minimally obtrusive wearable devices [9]. 

Commercially available examples include FitBit, Apple Watch, and Samsung Gear S2. 

However, studies have repeatedly shown that while these devices produce accurate heart rate 
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(HR) measurements in laboratory settings, their EE measurements do not meet acceptable 

standards [10]–[14]. These studies warn against using any of these commercial systems for 

weight or disease management programs.

Many research efforts have thus sought to obtain superior portable VO2 estimation from 

minimally obtrusive wearable devices. As far back as 1981 [15], studies have demonstrated 

the ability to obtain reasonable estimations of EE with various methods involving 

accelerometry [15]–[17] and, more recently, gyroscopes [17]. However, accelerometry-based 

approaches often err when motion does not involve the body part where the sensor is placed, 

causing accuracy to vary significantly according to activity and/or placement location [9], 

[18]. As a result, other recent efforts have demonstrated improved results combining 

accelerometry with HR and electrocardiogram (ECG) sensors to incorporate cardiac 

information [19]. Another study showed the potential of utilizing an additional physiological 

measurement–ventilation–to produce accurate estimations of VO2 [20].

While most studies were conducted only in laboratory settings with protocols involving 

treadmill-based exercise and/or standardized activities, several studies of note showed results 

in free-living conditions. Participants in a study by Lester et al. conducted a field protocol 

involving stairs, inclines, elevators, object lifting, and sweeping, both indoors and outdoors 

[21]. While this study, which incorporates grade using barometric pressure and GPS, 

achieved considerable accuracy, the use of regression formulas developed by the American 

College of Sports Medicine (ACSM) necessitates the restrictive and error-prone sub-task of 

five-class activity recognition. Additionally, in two separate studies, Bouarfa et al. [22] and 

Brage et al. [23] achieved low error in estimating EE over 14 days of free-living [24]. 

Bouarfa et al. [22] used a single ear-worn sensor and Brage et al. [23] used the combined 

HR and accelerometry Actiheart system, both comparing their results against ground truth 

from doubly-labeled water. However, neither study could assess instantaneous results as 

their target value for each subject was a single energy expenditure reading totaled over the 

full trial period.

Our study introduces the combination of state-of-the-art machine learning algorithms with 

seismocardiogram (SCG)–the measure of thoracic vibrations produced by cardio-ventricular 

contraction and blood ejection into the vascular tree [25]–for estimating instantaneous VO2 

in indoor and outdoor settings. Recent studies [26]–[28] involving patients with HF have 

shown that VO2 max and the clinical status of a patient with HF can be estimated from the 

electrocardiogram (ECG) and SCG signals using a small wearable patch. All of these studies 

were conducted with HF patients in controlled clinical settings by trained professionals. In 

this study, rather than obtaining the singular VO2 max parameter in clinical settings for 

disease monitoring purposes, we seek to estimate instantaneous sub-maximal VO2 in healthy 

individuals in both controlled and uncontrolled environments with advanced machine 

learning algorithms.

We fitted subjects with two simultaneously recording data collection systems in this study. 

We placed a small wearable patch that collects ECG, SCG, and atmospheric pressure (AP) 

measurements on a subject’s mid-sternum. This patch is an improvement upon our previous 

version [29]. A triaxial accelerometer contained within the patch measures SCG. We 
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measure gold standard VO2 using the COSMED K5 wearable metabolic system. While 

previous studies measuring EE and VO2 with single wearable sensors have also used 

accelerometry-based methods, the accelerometer is commonly placed in distal locations such 

as the waist [19], [21], [30] or ear [22]. In our case, we place an accelerometer on the chest 

to capture SCG signals that specifically relate to cardio-mechanical activity in ways that 

remotely placed accelerometers are not able to. As a result, we avoid the problem of having 

to determine placement location and potentially reduce variability across activities. We 

compare the efficacy of different environmental, ECG, and SCG-based feature sets 

generated from the wearable patch in combination with models of varying levels of 

complexity to explore how these different types of signals relate to oxygen uptake during 

physical activity, ultimately arriving at a global regression model.

II. METHODS

A. Experimental Protocol

We conducted this study under a protocol (H18452) approved by the Georgia Institute of 

Technology Institutional Review Board. A total of 17 healthy subjects (9 females and 8 

males) participated in the study (Age: 26.8 ± 4.1 years, Weight: 67.5 ± 14.1 kg and Height: 

170.5 ± 9.9 cm). All subjects provided written informed consent before experimentation and 

reported no cardiopulmonary issues.

Fig. 1(a) shows the placement of both sensors: our custom-built wearable patch and the 

COSMED K5 (COSMED, Rome, Italy) metabolic system. Fig. 1(b) shows the custom-built 

wearable sensor hardware, which measures ECG, triaxial SCG, and environmental features 

(atmospheric pressure, temperature and humidity). For each subject, we placed the wearable 

sensor evenly between the suprasternal notch and xiphoid process on the mid-sternal line, 

using three ECG electrodes (model 2670, 3M, Saint Paul, MN, USA). For the COSMED K5 

system, we fitted subjects with a gas exchange mask on their face and the K5 system on their 

back. We situated a heart rate belt from the K5 system just below the chest line. After fitting 

subjects with all the sensors and systems, we asked them for confirmation of their comfort 

before testing. At the start of each trial, we synchronized both the wearable sensor and K5 

system to a smart mobile phone in order to record timestamps throughout the protocol.

Fig. 1(d) shows the outline of the study protocol, which we divided into two parts: a 

treadmill walking portion in a laboratory setting and an outdoor walking portion in an 

uncontrolled setting. For the treadmill part of the protocol, subjects first stood still for two 

minutes to record baseline data. Then, subjects walked on a treadmill at five different speed 

settings (0.75, 1, 1.25, 1.5 and 1.75 meters/second, roughly 1.7, 2.2, 2.8, 3.4 and 4 miles/

hour) for six minutes at each speed, totaling 30 minutes of walking. After completing the 

treadmill walk, subjects stood still for 5 minutes to record a recovery period. Including this 

recovery period, subjects performed the treadmill protocol continuously for a total of 37 

minutes.

After the treadmill part, subjects rested for 15 minutes before starting the outside walking 

protocol. They began this section standing still for 2 minutes at the “Start/Stop” location of 

the route marked in Fig. 1(c). Then, subjects walked the route shown in Fig. 1(c), arriving 
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back at the same ”Start/Stop” point. The route contains a mixture of level ground, uphill and 

downhill walkways (with significant slopes), two uphill stairs climbing and four traffic 

signals along the way. The terrain is marked in Fig. 1(c). Subjects completed this walk at 

their own chosen speed and followed normal pedestrian traffic laws. After completing the 

route, subjects stood still for 3 minutes to record a recovery period. This part of the protocol 

took approximately 20-30 minutes depending on each subject’s speed as well as traffic 

conditions during their testing. Of 17 subjects, two females were not able to perform the 

outside walk due to precipitation. For that reason, we obtained data from 17 treadmill 

protocols and 15 outdoor protocols.

B. Sensing Hardware

We recorded gold standard breath-by-breath (BxB) metabolic data with the COSMED K5 

system (COSMED, Rome, Italy). Subjects wore the COSMED heart rate probe (i.e. belt) 

which provided a HR reading corresponding to the ground-truth metabolic data.

We collected ECG and triaxial SCG (axes: head-to-foot (HtoF), dorso-ventral (DV), and 

lateral (Lat)), with a novel wearable patch as shown in Fig. 1(b). This patch is an 

improvement upon our previous version as described in [29]. It contains an ATSAM4LS 

microcontroller (Atmel Corporation, San Jose, CA), whereas the previous version used an 

ATmega1284P microcontroller (Microchip Technology, Chandler, AZ). The ECG sensor 

uses an analog-front-end-integrated circuit with an on-board analog-to-digital converter 

ADS1291 (Texas Instruments, Dallas, TX). The accelerometer in the present patch that 

acquires triaxial SCG signals is the ADXL355 (Analog Devices, Norwood, MA), which has 

a low noise floor of 25 μg/ Hz compared to the triaxial accelerometer BMA280 (Bosch 

Sensortech GmbH, Reutlingen, Germany) used in the previous version [29] with a noise 

floor of 120 μg/ Hz. The patch also contains a BME280 (Bosch Sensortech GmbH, 

Reutlingen, Germany) environmental sensor which records atmospheric pressure (AP), 

ambient temperature and relative humidity, whereas the previous version [29] had only 

pressure sensing capability using the MS5611-01BA03 (Measurement Specialties, Fremont, 

CA). The patch used in this work has a diameter of 7 cm and weight of 38.2 gm. When fully 

charged, it can record continuously for approximately 45 hours, which is more than 

sufficient for constant remote monitoring. Initially it samples the ECG signal at 1kHz, the 

accelerometer signals at 500 Hz and the environmental signals at 20 Hz, and saves the data 

into a SD card in the patch. A custom-built graphical user interface accesses all the data into 

a computer and resamples the accelerometer and environmental signals at 1 kHz to have the 

same sampling frequency of 1 kHz for all the signals.

C. Signal Processing and Feature Extraction

1) Pre-processing and Linear Filtering—To assess VO2 estimation ability in 

controlled and uncontrolled settings independently, data from the treadmill and outside 

protocols were processed and analyzed separately. Later, the models trained on the data from 

one protocol were validated on the data from the other protocol and vice versa, to evaluate 

the generalizability of the models.
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Fig. 2(a) illustrates the signal processing and feature extraction procedures used for the 

wearable signals (ECG, SCG and AP) and the BxB COSMED K5 data. We synchronized all 

signals from the wearable patch with the BxB data from the COSMED K5 system and took 

relevant timestamps with a mobile phone to be used in subsequent analysis. We filtered The 

raw ECG and SCG signals from the wearable patch with finite impulse response (FIR) 

Kaiser window band-pass filters (cut-off frequencies: 10-30 Hz for the ECG and 1-40 Hz for 

the SCG signals). We chose these cut-off frequencies for the ECG signal to reduce the T-

wave interference and amplify the R-wave for better R-peak detection in the subsequent 

signal processing step [31], [32]. We used the cut-off frequencies for the SCG signals to 

remove out-of-band noise without distorting the shape of the SCG signals [33]. After the 

filtering step, we computed a fourth SCG signal representing the accelerometer magnitude 

(SCGMag) using the three SCG axes already obtained (SCGHtoF, SCGLat, SCGDV) according 

to the following formula:

SCGMag = SCGHtoF
2 + SCGLat

2 + SCGDV
2 (1)

As further processing depends on high quality ECG signals, we used an automated artifact 

detection algorithm to identify motion artifacts in the ECG signal and excluded these 

corrupted segments from further analysis, as shown in Fig. 2(b). We initially segmented all 

the wearable signals into 30 second windows. For each window, we detected the upper (Eu) 

and lower (El) envelope of the data and computed a difference Ed (= Eu − El). We then 

calculated the mean (μ) and standard deviation (σ) of Ed throughout the 30 second frame. 

We deemed an ECG signal segment to contain artifacts when the Ed of that specific portion 

was greater or less than 3σ from the μ [34]. We removed frames containing artifact from all 

wearable signals using the timestamps for the affected segments. The artifact removal 

technique removed approximately 5% heartbeats in two subjects for the treadmill protocol 

and 5% heartbeats in one subject for the outside walking protocol. For other subjects, it 

removed less than 1% of the heartbeats.

2) Moving Ensemble Averaging—After removing sections with artifacts, we 

amplitude normalized the ECG (in the 30 second frame) and used the Pan Tompkins method 

[35], [36] to detect the R-peaks of the ECG signal. We segmented the wearable signals 

(ECG, four axes of SCG, AP signal) into individual heartbeats using the R-peaks of the ECG 

signal. We cropped each heartbeat to a duration of 500 ms after the R-peak. For heartbeats 

where the heart rate was greater than 120 beats per minute (and thus a second heartbeat 

appeared in the 500 ms window), we zero-padded the portion of the second heartbeat, to 

nullify the effect of the second heartbeat in the feature extraction process later. We chose the 

duration of 500 ms based on our previous experience with SCG signals and generic feature 

extraction processes [33], as most of the relevant systolic cardiac events of interests (e.g., 

aortic valve opening and closing) occur within this time frame from the corresponding R-

peak of ECG. We chose a constant time window to crop the ECG, SCG, and AP signals to 

have a repeatable generic feature extraction process (explained in later section).

For all signals in each heartbeat, we averaged ten consecutive heartbeats in order to reduce 

noise and motion artifacts [37], obtaining ensemble averaged heartbeat frames across the 
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whole recording. With a step-size of one heartbeat, this process resulted in a total of 64,349 

ensemble averaged heartbeats from 17 subjects for the treadmill protocol and 37,485 

ensemble averaged heartbeats from 15 subjects for the outside walk protocol. We calculated 

the R-to-R interval for each heartbeat and averaged this value across 10 heartbeats in the 

same way. We used R-to-R interval as a feature in subsequent modeling steps. We also 

calculated a mean AP signal value for each heartbeat and similarly averaged this value 

across 10 measurements. We used this value as an AP signal feature for modeling. Fig 2(c) 

shows an overview of the ensemble averaging technique for a single axis of SCG.

3) Feature Extraction from the SCG signals—Using an automated algorithm, we 

extracted 28 time domain, 17 amplitude and 17 frequency domain features (62 total) from 

the ensemble-averaged waveforms for each of the four SCG signals. The list of extracted 

features is provided in Table I. We extracted the amplitude and time domain features from 

the time-domain representation of the SCG signals, and the frequency domain features from 

the power spectral density (PSD) estimate of the SCG signals. Peaks and valleys in the 

averaged frames were ranked according to their amplitudes, and the highest and second 

highest amplitude were used. Location was calculated as the distance from the 

corresponding R-peak in ms. Width was calculated as the width of the peak or valley at half-

prominence, in ms. For prominent frequencies in the PSD, peaks in the PSD of the frame 

were ranked according to their amplitudes, and the highest, second highest and third highest 

amplitude were used to locate the first, second and third prominent frequency accordingly. 

We evaluated different combinations of feature sets for performance in estimating VO2, 

which is further explained in details in Section III.A.

4) Feature Extraction from the ECG Signal—We calculated the R-to-R interval and 

instantaneous heart rate for each heartbeat and averaged them with the same ensemble 

averaging method described in the “Moving Ensemble Averaging” sub-section. We used 

both of these as ECG signal features.

5) Feature Extraction from the AP signal—For each protocol, we selected AP signal 

values corresponding to the first 50 averaged heartbeats for each subject as baseline values 

for that subject. Averaging these, we obtained a single baseline AP value (APBL) for each 

subject. For all AP values for each subject, we obtained a delta pressure (δP) measurement 

using the following formula:

δP i = AP i − APBL (2)

where, i=1:number of averaged heartbeats for a particular subject. δP was the only feature 

from the AP signal used. With 62 features from each SCG signal, two features from ECG 

and one feature from AP, we had a total of 251 features per ensemble averaged heartbeat.

6) Parameter Estimation from the BxB Data—First, we smoothed the time-

synchronized BxB data with a 5 point moving average window to reduce noise [38]. We 

computed averaged VO2 measurements corresponding to each ensemble averaged waveform 

with the time-stamps taken during recording. These VO2 values functioned as the target 
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variable in the regressor for each ensemble averaged heartbeat. We used Matlab® to conduct 

all signal processing and feature extraction steps.

D. Machine Learning and Regression

1) Regression Model—In previous work, researchers used linear regression [39], 

multiple linear regression [30] and non-linear regression [19] models to estimate VO2 and/or 

EE. In our prior work with pre-ejection period (PEP) estimation from SCG [33], we have 

demonstrated that non-linear ensemble methods outperform linear regression models in 

developing global regression models for PEP estimation from wearable SCG sensors. For 

that reason, we have explored different linear and non-linear ensemble regression models in 

our initial analysis to estimate VO2 from wearable signals. From our initial analysis, we 

chose ensemble regression models over linear regression models.

Before training a regression model to estimate VO2, we removed outlying heartbeats from 

the ensemble averaged SCG waveforms. For each subject, we designated the first 50 

averaged heartbeat frames from the signals measured at rest as baseline heartbeat frames and 

averaged all the features (for a particular feature set consisting of f features from SCG, ECG 

and AP signals) of the 50 frames to create a baseline feature distribution. We calculated the 

Mahalanobis distance [40] between the baseline feature distribution and each averaged 

heartbeat frame for a particular subject. Our underlying hypothesis was that the wearable 

signals would change morphologically with various intensities of exercise. We expected 

greatest morphological changes compared to baseline at peak exercise and expected the 

Mahalanobis distance to capture this variation. We deemed a particular heartbeat frame an 

outlier based on the interquartile range criteria described in [34] and excluded these frames 

from the dataset. One thing to note is that the previous outlier removal step for the ECG 

signal using an envelope-based detection technique was used to remove artifact-affected 

ECG segments, which did not involve SCG artifacts in the decision-making process, but 

rather focuses on the ECG alone. Nevertheless, some of the SCG heartbeats could also be 

heavily affected by motion artifacts and thus a second outlier removal step was required 

based on SCG characteristics. We used the Mahalanobis distance calculated for each frame 

as a feature in the regression model, which makes the total number of features equal to f+1. 

This outlier heartbeat removal technique removed approximately 5% heartbeats for the 

outside walking protocol and 10% heartbeats for the treadmill protocol.

After removing outlier heartbeats, we trained different regression models to estimate the 

target variables from the features extracted in the Method section. From our initial analysis, 

Extreme Gradient Boosting (XGBoost) [41] regression outperformed other regression 

methods. For that reason, we chose XGBoost regression for detailed analysis in this work. 

XGBoost is a decision-tree based ensemble algorithm that uses a gradient boosting [42] 

framework. It is an example of an ensemble method [43] that is computationally efficient, 

parallelizable, able to handle missing values, and able to be pruned/regularized to avoid 

overfitting. We fit an XGBoost regressor on the extracted features for all ensemble averaged 

heartbeats to estimate corresponding target VO2 values. We then used this model to estimate 

VO2 values for unseen heartbeat frames as represented by the same feature sets. We 

performed this process with different combinations of feature sets extracted from the SCG, 
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ECG, and AP signals, optimizing hyper-parameters with a grid search. The final hyper-

parameters are as follows: learning rate=0.05, max_depth=10, subsample=0.6, 

colsample_bytree=0.7, n_estimators=100, min_child_weight=2, gamma=0.3. We used 

Python 3.6 for all machine learning techniques.

2) Cross-validation and Model Evaluation—We used leave-one-subject-out (LOSO) 

cross-validation for n subjects for both protocols. At each fold we trained an XGBoost 

regressor on the data from n-1 subjects, leaving one subject out. We then predicted VO2 for 

the left-out subject, repeating this n-1 more times with a different subject excluded each 

time. As a result, we obtained predictions for all ensemble averaged heartbeats. We 

calculated a root mean squared error (RMSE) between the estimated target variable (VO2,e) 

and the ground truth target variable acquired from the BxB data (VO2,a):

RMSE = 1
N i = 1

N
V O2, e i − V O2, a i

2 (3)

where N is the number of ensemble average heartbeats for a particular subject. We 

calculated the cross-validated RMSE as the average of the RMSE scores from n folds. In this 

way, we trained two different global regression models for two exercise protocols. We also 

calculated coefficients of determination (R2) between the true values and the cross validated 

predictions of VO2 across all subjects.

3) Regression for Different Feature Sets—Repeating this regression and cross-

validation approach for 15 different combinations of feature sets (shown in Table II), we 

compared the resulting cross-validated RMSE scores to see which performed better in 

estimating VO2, using an XGBoost regressor. We performed statistical analysis on the cross-

validation results from the different feature sets.

In literature, researchers have used HR to estimate VO2 using simple correlation analysis 

and linear regression with/without cross-validation [19], [44]–[46]. To compare the 

performance of our proposed algorithm with HR-based models, we trained a simple linear 

regression model with LOSO cross-validation to estimate VO2 from HR only for the two 

protocols separately and calculated the RMSE and R2 (also reported in Table II). We later 

compared the results obtained from this HR-based linear regression model with our 

proposed algorithm (using XGBoost). Additionally, we performed simple correlation 

analysis (without any cross-validation) between instantaneous HR and VO2 for the two 

protocols and calculated subject-wise R2 and global R2 (with all data for a particular 

protocol) to compare our proposed algorithm with a simple HR-based model.

4) Regression with Feature Selection—We performed different feature selection 

techniques to select K (=25) features out of 251 (SCG, ECG, and AP) features for the 

estimation of VO2, to explore how a subset of selected features can perform compared to 

different feature sets described in the section above. Based on our initial analysis, we chose 

the feature selection technique using sequential forward selection (SFS) [47] for detailed 

analysis. We performed the SFS method on the whole dataset separately for the two 

protocols and used those selected features to train an XGBoost regression model per 
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protocol. We calculated the RMSE and R2 following the same LOSO cross-validation 

approach described above and compared the results to the best-performing feature set for the 

two protocols respectively.

5) Cross-Evaluation of Regression Models—For cross-evaluation of the two 

models generated from the two protocols, we trained an XGBoost regressor on all the data 

from the treadmill protocol and predicted VO2 for the data from the outside protocol and 

vice versa. We calculated subject-wise RMSE and overall R2 (as described before) to 

compare the estimation accuracy and generalizability of the two models. We used only the 

best-performing feature set from the combination of SCG and ECG features to implement 

this cross-evaluation.

E. Comparison with Similar Studies

We compared the performance of our proposed algorithm to the performance of similar 

studies [10], [21]. Besides RMSE and R2 for instantaneous VO2 estimation, we calculated 

percentage estimation error for VO2 consumed over one minute intervals using the equation 

below, following the works reported in [10], [21].

error = ∑V O2, e − ∑V O2, a
∑V O2, a

× 100 (4)

For each subject, we calculated subject-wise mean of the percentage errors and calculated 

the median percentage error (MPE) following [10] for all subjects. We calculated the MPE 

using the best performing feature sets for the two protocols.

F. Statistical Analysis

We performed statistical analysis on cross-validated RMSE results of different feature sets. 

We used multiple comparison tests on the RMSE results from the n cross validation folds. 

We employed the Friedman test to detect if statistical differences existed between our results 

and the Wilcoxon signed rank test for post-hoc testing. Additionally, for the post-hoc testing, 

we applied the Benjamini-Hochberg correction for multiple comparisons on the p-values. To 

explore the importance of the single AP feature, we performed Wilcoxon signed rank test on 

the subject-wise RMSE results with and without the AP feature. Details on these statistical 

tests and the reasons behind their use are discussed in [48]. In this work, we considered p-

values below 0.05 statistically significant.

III. RESULTS AND DISCUSSION

Fig. 3(a) shows the wearable signals (filtered ECG, filtered SCGDV and raw AP signals) and 

the VO2 target variable for both protocols for one subject. Fig 3(b) and (c) show the 

averaged SCGDV waveform at different exercise intensity levels for treadmill and outside 

walking exercise respectively. SCGDV waveforms exhibit changes in amplitude with 

incremental changes in exercise during treadmill walking as shown in Fig. 3(a) (left) and (b). 

VO2 also exhibits incremental changes during treadmill exercise as expected in Fig. 3(a). AP 

signals seem somewhat stable in general during treadmill exercise. In the case of outdoor 

Shandhi et al. Page 10

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



walking in Fig. 3(a) (right), AP signals track the altitude of the terrain well. As expected, 

VO2 changes with the gradation. In contrast, changes in SCGDV waveforms shown in Fig. 

3(a) (right) and (c) are not very apparent.

Overall, Fig. 3 shows that the SCG signal amplitude changes significantly with the intensity 

of exercise, which results from physiological changes as well as motion artifacts. However, 

we believe movement artifacts were not synchronized to the heartbeat timings and the 

impacts of motion artifacts on the SCG heartbeats (and extracted features from them) were 

reduced accordingly using a moving ensemble average of 10 heartbeats. Future analysis 

should look into component analysis of the signals to isolate the relevant cardiac and motion 

information from the signals. As the SCG signal varies among subjects, we refrained from 

putting any emphasis on the signal shape and peaks to correlate with underlying cardiac 

events [33]. Rather we wanted to explore how generic time, frequency and amplitude 

features extracted from SCG at various exercise/movement intensities can be used to develop 

a global regression model to estimate instantaneous VO2 in both controlled and uncontrolled 

settings. This reduces the complexity of the signal processing by avoiding the inter-subject 

variability and enables repeatable feature extraction and estimation of VO2 in a population-

level model.

Upon inspection of Fig. 3, it is apparent that the addition of cardio-mechanical (i.e. SCG) 

and environmental signals (i.e. AP) to HR-based models has the potential to improve 

estimations of instantaneous VO2 during both controlled and uncontrolled activity. The 

details of estimation results are given in the following sections.

A. Comparison of Different Feature Sets of SCG with ECG

Table II shows the RMSE in ml/kg/min and R2 values for different combinations of feature 

sets extracted from the wearable signals. statistically significant differences existed in these 

results according to the Friedman test (p<0.05). We performed Wilcoxon signed rank tests 

on the different feature sets to investigate the significance of their differing accuracy values. 

All the feature sets described in this table included an AP signal feature (except HR-based 

linear regression model) in addition to the features explicitly stated.

As shown in table II, of the single SCG feature sets, frequency domain features achieved the 

lowest RMSE and highest R2 for the treadmill protocol. Amplitude features were slightly 

worse (p>.05) and time domain features performed the poorest (p<.05 compared to both 

frequency and amplitude). For the outdoor protocol, frequency features achieved the best R2 

and had an RMSE only slightly above (p>.05) that of amplitude features (with a narrower 

confidence interval). Time domain features once again performed the worst, though not 

significant (p>.05). From these results it appears that frequency domain features provided 

the most salient information for estimating VO2 from SCG in both settings.

Better performance of frequency domain features in the estimation of VO2 is understandable 

as exercise leads to substantial changes in the shape and timing of waveforms. For example, 

the shortening of isovolumetric contraction time associated with increased sympathetic tone 

compresses the SCG waveform in time and thus increases high frequency components [29]. 

VO2 relates to Stroke Volume [49] which has been shown to have a relation with the 
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amplitude features of the SCG signal [25]. This result is consistent with [28], [50], where 

researchers have used frequency domain features of the SCG signal to assess clinical state 

for patients with HF. When comparing frequency and amplitude features, frequency features 

performed slightly (p>0.05) better. Our results show that exercise induced changes of VO2 

not only change the amplitude of the SCG signals but also the signal power at different 

frequency bands. Frequency domain features captured these changes better than amplitude 

features.

ECG features alone performed worse than all three SCG features alone in both protocols 

(p<0.05 compared to all three feature sets of SCG for the treadmill protocol and p<0.05 

compared to amplitude and frequency feature sets of SCG for the outside walking protocol), 

using XGBoost regression algorithm. As other studies have demonstrated high linear 

correlations between HR and VO2 [19], [44]–[46], the comparatively poor performance of 

ECG features (instantaneous HR and R-to-R interval) in our approach is likely attributable to 

the overly-complex nature of an XGBoost regression model and/or the addition of the R-to-

R interval feature. To compare our results with the common HR-based approach, we also fit 

a simple linear regression model with HR only to estimate instantaneous VO2 using the 

same LOSO cross-validation approach, which achieved an RMSE of 6.31±1.72 and R2 of 

0.44 for the treadmill protocol and an RMSE of 5.94±1.76 and R2 of 0.35 for the outside 

walking protocol. Still these results are significantly poorer (p<0.05) compared to the 

amplitude and frequency domain features of SCG. Separate from the HR-based simple linear 

regression model with LOSO cross-validation, we also performed a simple correlation 

analysis between instantaneous HR and VO2 across all subjects, which resulted in an overall 

R2 of 0.49 and 0.42 for treadmill and outside walking protocol respectively. A similar 

analysis on each subject individually resulted in a higher R2 of 0.73±0.11 and 0.71±0.16 for 

treadmill and outside walking protocol respectively. The lower value of the global R2 

compared to the subject-wise R2 is in agreement with existing literature [45], [46]. For this 

reason, researchers often use %VO2-max and %HR-max when attempting to show 

population-level relationships between VO2 and HR rather than their raw values directly 

[45], [46], [51]–[53]. Overall, these results show the benefit of incorporating cardio-

mechanical information from SCG into a complex machine learning algorithm for the 

development of a global regression model to estimate instantaneous VO2 compared to 

simple linear models involving only HR-based information.

When combining different feature sets of SCG with ECG in XGBoost regressors, we 

achieved our best results (i.e. lowest RMSE and highest R2) on the treadmill protocol using 

amplitude and frequency features of SCG (RMSE of 3.78±0.98 ml/kg/min and R2 of 0.78), 

which is significantly lower (p<0.05) than amplitude features alone. Still the lowest RMSE 

for the treadmill protocol was obtained using frequency domain features alone (RMSE of 

3.68±0.98 ml/kg/min with frequency domain features alone vs. 3.78±0.98 with amplitude 

and frequency domain features together, p>0.05). For the outdoor protocol, we obtained our 

best results using frequency features of SCG and ECG features (RMSE of 4.30±1.47 

ml/kg/min and R2 of 0.64). These results were significantly better (p<0.05) than those from 

frequency, amplitude, time and ECG features alone. Best results in RMSE and R2 values for 

each protocol are shown in bold in Table II. Fig. 4 provides a correlation analysis and Bland-

Altman analysis of actual VO2 values and estimated VO2 values, using the feature set with 
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the lowest RMSE for each protocol. It is apparent that regression models can generally 

estimate instantaneous VO2 well on a heartbeat by heartbeat basis.

Fig. 5 shows examples of best and worst estimations of VO2 compared to actual VO2 for 

both protocols. The same model used in Fig. 4 generated the VO2 estimations here. Even 

when achieving the worst results in both protocols as shown in Fig. 5 (b) and (d), the 

algorithm still tracks relative changes well despite overestimating overall VO2 values. 

Hence, we see a consistent offset between actual and predicted values in both cases.

From Table II in the case of the treadmill protocol, adding ECG features independently to 

both the amplitude feature set and the frequency feature set increased the error in both cases. 

This is as expected because performance of ECG features was the worst among all the 

feature sets for the treadmill protocol. For the outside walking protocol, adding ECG 

features reduced the RMSE for these same two feature sets (p<0.05). For better VO2 

estimation, the selection of feature sets for a global model should incorporate domain 

knowledge of cardio-electromechanical responses to ranges of exercise and activity.

Overall from Table II, the estimation results were better for the treadmill protocol than for 

the outside walking protocol. This is expected as the treadmill protocol took place indoors 

with standardized speeds and conditions whereas the outside walking protocol was 

completed at the subject’s pace with variable atmospheric conditions depending on the day. 

Future studies should examine wider varieties of exercise with subjects of broader age range 

and health status to apply this methodology in estimating instantaneous VO2 throughout 

daily activities.

B. Quantification of Additional Benefit from AP Signal

To assess the addition of environmental features in estimating VO2, we compared results 

from the best performing feature set for both protocols with and without features from the 

AP signal. We conducted statistical analysis using a Wilcoxon signed rank test on the paired 

RMSE values with and without features from AP signal. For the treadmill protocol, there 

were no significant changes (p>0.05) in RMSE from adding features from AP signal. In the 

case of the outside protocol, adding features from the AP signal significantly reduced 

(p<0.05) the RMSE from 4.72±1.59 to 4.30±1.40 ml/kg/min. This result is as expected from 

Fig. 3(a), where it can be clearly seen that the AP signal captures valuable information 

regarding altitude during the outside walk. This result is consistent with the work of Lester 

et al. [21] when they showed that incorporating grade from barometric pressure and/or GPS 

improved their accuracy in estimating caloric expenditure in outside settings. Thus, the 

combination of cardiac electro-mechanical parameters and environmental (AP) context, 

presented for the first time in this paper, outperforms physiological measurements alone in 

estimating VO2.

C. Regression with Feature Selection

The list of the selected features using the SFS algorithm is provided in the appendix section. 

Of the 25 selected features for treadmill protocol, one feature was ECG, 11 were SCG 

amplitude, 6 were SCG frequency, and 7 were SCG time-domain features (10 were from 

SCGHtoF, 4 were from SCGLat, one was from SCGDV, and 9 were from SCGMag). In the 
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case of the outside walking protocol, one feature was ECG, one was AP, 8 were SCG 

amplitude, 10 were SCG frequency, and 5 were SCG time-domain features (10 features were 

from SCGHtoF, 4 were from SCGLat, 4 were from SCGDV, and 5 were from SCGMag). 

Comparatively higher number of SCGHtoF features in the selected features are in accordance 

with our previous experience in PEP estimation from the SCG features [33], [54].

The regression models with the top 25 features achieved an RMSE of 3.76±1.15 ml/kg/min 

and R2 of 0.77 for the treadmill exercise and an RMSE of 4.28±1.44 ml/kg/min and R2 of 

0.63 for the outside walking exercise. These results are very similar (p>0.05) with the ones 

we obtained using the best-performing feature sets for the two protocols respectively. 

Overall, these results show the importance of different amplitude, frequency, and time-

domain features of SCG as well as the importance of features from different SCG axes over 

the typical use of features from SCGDV only. Future work should verify these initial findings 

from this pilot study in a larger, more diverse population.

D. Cross-Evaluation of Regression Models

The model trained on all the data from the treadmill protocol and tested on the data from the 

outside protocol resulted in an RMSE of 5.8±1.62 and R2 of 0.49, whereas, the model 

trained on all the data from the outside walking protocol and tested on the data from the 

treadmill protocol resulted in an RMSE of 5.26±1.92 and R2 of 0.66. The higher accuracy 

with the model trained using data from the outside walking protocol compared to the model 

trained using the data from the treadmill protocol is expected, as the outside protocol 

includes a variety of activities (rest, uphill/downhill walking, stairs and recovery) whereas 

the treadmill protocol only covers incremental exercise. The model trained on treadmill data 

was not exposed to the variety of activities and their corresponding physiological changes 

(which resulted in the changes in SCG and ECG signals) that it encountered during testing 

on the outside walking protocol and thus could not estimate instantaneous VO2 as well in 

these unseen conditions. This cross-evaluation was performed using the combination of 

frequency features of SCG and ECG. Overall, this cross-evaluation showcases the 

generalizability of our approach and demonstrates the necessity of training models on data 

collected in uncontrolled settings to estimate instantaneous VO2 in daily life environments. 

These results suggest that training models on data from uncontrolled settings has the 

potential to additionally improve performance for specific exercise applications, yet data 

from controlled laboratory environments do not suffice for deploying the system 

ubiquitously.

E. Comparison with Similar Studies

Our MPE when estimating VO2 over one minute intervals was 15.8% for the treadmill 

protocol and 20.5% for the outside protocol. Compared to results from Shcherbina et al. [10] 

on commercial devices in controlled laboratory settings, these results are good (MPE of 

15.8% in our case compared to MPE of 27.4% in [10]). Similarly, if converted to percentage 

accuracy (100%-MPE), they are comparable with the work of Lester et al. [21] for both 

protocols (our work: 84.2% and 79.5% for controlled and uncontrolled settings respectively, 

Lester et al.: 89.52% and 79.8% respectively). However, it is important to note that these 

studies and ours all differ in their activity protocols, subject populations, and output 
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granularities (instantaneous readings vs averages over intervals, output for entire protocols 

vs only select segments etc.) and are thus not directly comparable. In our case, we have used 

the data from the whole protocol and estimated instantaneous VO2 for the full duration. We 

report our error for both instantaneous estimation as well as over one minute intervals. As 

mentioned earlier, our study involves a population of 17 relatively homogeneous subjects for 

the treadmill protocol and 15 for the outdoor protocol.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have estimated instantaneous VO2 during controlled treadmill and 

uncontrolled outside walking exercise using features from SCG, ECG and AP signals 

captured with a wearable patch placed on a subject’s mid-sternum. We have developed a 

global regression model for VO2 estimation using state-of-the-art machine learning 

algorithms validated with leave-one-subject-out cross-validation. We have demonstrated that 

adding cardio-mechanical and environmental sensing modalities to traditional HR-based 

models improves estimation accuracy significantly. Regarding SCG features, frequency 

domain features provided the most valuable information for VO2 estimation. Overall, this 

work demonstrates the capability of an unobtrusive wearable patch to track VO2 and EE 

continuously in daily life and exercise activities. Success in this regard represents a 

considerable step towards the vision of personalized, ubiquitous monitoring of fitness levels, 

weight-loss programs, and lifestyle habits in healthy individuals. It additionally suggests 

potential applications to the tracking of disease progression and recovery progress for 

clinical purposes. The low-cost nature of our system could make these benefits accessible to 

the full general public.

As we collected data from healthy young subjects only, future studies should increase the 

number of subjects and broaden diversity in age and exercise ability. Additionally, we 

collected data during treadmill and outside walking exercise only for this proof of concept 

study. Future work should investigate the use of the sensing system and VO2 estimation 

algorithm for different and more complex daily life activities, which will potentially enable 

the use of the device in ubiquitous monitoring of EE. We extracted generic time, frequency 

and amplitude features of the SCG signals, and have not considered how the features can be 

affected by motion and exercise intensities. Future work should investigate the effect of the 

number of steps, step length, stride time, and velocity on the SCG signals, and 

corresponding features. We removed portions of the signals corrupted with motion artifact 

with an outlier detection algorithm. Future studies should approach the reduction of motion 

artifact from both a hardware and signal processing perspective to potentially improve 

estimation. Our only environmental feature in this study was measurement of pressure 

changes. Future studies should evaluate the potential benefits of incorporating temperature, 

humidity and other environmental features in the global model, as well as instantaneous 

velocity and respiration-related features. We explored the relationship between SCG features 

and VO2. Future studies should investigate the mechanisms that underlie these relationships. 

Finally, this study demonstrated an approach for measuring VO2 with a wearable device at 

sub-maximal effort levels. Future studies should investigate how a similar approach might 

function at all levels of exertion to potentially enable estimation of VO2 max and CRF.
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Appendix

A. Selected Wearable Features using SFS

For treadmill protocol: R-to-R interval, amplitude of first peak, valley and absolute maxima 

(0-200 ms) of SCGHtoF, amplitude of second maxima, second peak and first valley (0-200 

ms) of SCGMag, AUS (0-100 ms) of SCGDV, AUS (0-100, 200-300, 300-400, 400-500 ms) 

of SCGMag, SCGLat band Power (15-18 Hz), SCGHtoF band Power (12-15 Hz), most 

prominent and second prominent frequency in PSD of SCGHtoF, amplitude of second 

prominent frequency in PSD of SCGHtoF and SCGMag, location of second minima and first 

valley (0-200 ms) of SCGLat, width of first absolute maxima (200-500 ms) of SCGLat, width 

of second minima, location and width of second peak (0-200 ms) of SCGHtoF, and location 

of first absolute maxima (0-200 ms) of SCGMag.

For outside walking protocol: R-to-R interval, delta pressure, amplitude of first maxima, 

minima and absolute maxima (200-500 ms) of SCGHtoF, amplitude of first maxima, absolute 

first maxima, first peak (0-200 ms) of SCGMag, AUS (200-300 ms) of SCGHtoF and SCGDV, 

SCGLat band power (12-15 Hz), SCGHtoF band power (15-18, 18-21, 21-24, 27-30 Hz), 

SCGDV band power (21-24 Hz), SCGMag band power (24-27 Hz), most prominent frequency 

in PSD of SCGHtoF, amplitude of second prominent frequency in PSD of SCGLat and 

SCGDV, location of first maxima and width of second minima (0-200 ms) of SCGLat, width 

of first maxima (200-500 ms) of SCGHtoF, number of valleys (0-200 ms) of SCGDV, and 

location of first minima 200-500 ms of SCGMag.
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Fig. 1. 
(a) A subject configured with both the wearable patch and the COSMED K5 system, with 

inset showing a zoomed-in image of the ECG electrodes. (b) The wearable patch top, 

bottom, and inside. The microSD (1), microUSB (2), and battery (3) are shown. (c) A map 

of the outdoor walking route across Georgia Institute of Technology with marked terrain. (d) 

An outline of the study protocol.
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Fig. 2. 
(a) Functional block diagram of signal processing and feature extraction procedure: 

Wearable ECG, SCG and AP signals were synchronized with breath-by-breath (BxB) data 

from COSMED K5 system. Wearable ECG and SCG signals were filtered and sections 

corrupted with motion artifacts were removed from the signals. The ECG signal was 

normalized and the R-peaks of the ECG signal were detected, and the SCG and AP signals 

were segmented into heartbeats using corresponding R-peaks. SCG and AP heartbeats were 

averaged to get ensemble averaged heartbeats and features were extracted from the averaged 

beats. The wearable features were fed into regressor as estimators. VO2 from the BxB data 

corresponding to each averaged heartbeats were computed and fed into regressor as target 

variables. (b) Visual representation of ECG artifact removal (with legends showing different 

lines for the figure in the middle). (c) Visual representation of heartbeat segmentation, 

ensemble averaging and feature extraction of SCGDV signal.
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Fig. 3. 
(a) Illustration of wearable signals (ECG, SCG and AP) with corresponding VO2 from 

COSMED K5 system at different exercise intensity level for both (left) treadmill exercise 

and (right) outside walking exercise. (b) Ensemble averaged heartbeats of SCGDV signal at 

different exercise intensity levels during treadmill exercise. (c) Ensemble averaged 

heartbeats of SCGDV signal at different exercise intensity levels during outside walking 

exercise.
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Fig. 4. 
(a) Correlation analysis for VO2 predicted vs VO2 actual (b) Bland-Altman analysis for VO2 

predicted and VO2 actual for treadmill exercise. (c) Correlation analysis for VO2 predicted 

vs VO2 actual (d) Bland-Altman analysis for VO2 predicted and VO2 actual for outside 

walking exercise. In the Bland-Altman plots, the solid black line indicates the mean while 

the blue dashed lines indicate mean ± 1.96 x standard deviation.
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Fig. 5. 
Example of subject-wise VO2 prediction for both exercise tasks: (a) Best case scenario and 

(b) worst case scenario for treadmill exercise. (c) Best case scenario and (d) worst case 

scenario for outside walking exercise.
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TABLE I

SCG FEATURES EXTRACTED

Signals Feature Names
Number of Features

Ampl. Time Freq.

SCG (0-200 ms) Highest and second highest peak (Ampl., Loc. and Width) 2 4

Lowest and second lowest valley (Ampl., Loc. And Width) 2 4

Number of peaks and valleys 2

First and second peak (Ampl., Loc. And Width) 2 4

First and second valley (Ampl., Loc. And Width) 2 4

Highest peak of absolute signal (Ampl., Loc. And Width) 1 2

SCG (200-500 ms) Highest peak (Ampl., Loc. and Width) 1 2

Lowest valley (Ampl., Loc. And Width) 1 2

Number of peaks and valleys 2

Highest peak of absolute signal (Ampl., Loc. And Width) 1 2

SCG AUS (0-100 ms), …, (400-500 ms) 5

SCG PSD Band Power (0-3 Hz), (3-6 Hz), …, (27-30 Hz) and (0-500 Hz) 11

SCG PSD First, second and third prominent frequency (Ampl. and Freq.) 6

Single Axis Total 17 28 17

4-Axes Total 68 112 68

Ampl: amplitude, Freq: frequency, Loc: location, AUS: area under signal, PSD: power spectral density.
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TABLE II

RMSE (ml/kg/min) AND R2 FOR VO2 ESTIMATION FROM DIFFERENT FEATURE SETS OF SCG (AMPLITUDE, Ampl, 

FREQUENCY, Freq AND TIME, Time) AND ECG USING XGBoost, AND HR USING LINEAR REGRESSION MODEL

Treadmill Protocol Outside Walking Protocol

Feature Set RMSE R2 RMSE R2

Ampl 4.06±1.06 0.76 4.8±1.53 0.52

Freq 3.68±0.98 0.77 4.85±1.31 0.57

Time 5.42±1.39 0.45 5.13±1.18 0.45

ECG 7.48±1.83 0.17 5.81±1.07 0.4

Ampl+ECG 4.24±1.18 0.72 4.46±1.56 0.58

Freq+ECG 3.99±1.28 0.71 4.30±1.47 0.64

Time+ECG 5.07±1.79 0.5 4.89±1.66 0.47

Ampl+Freq 3.78±0.98 0.78 4.79±1.53 0.54

Ampl+Time 4.04±1.27 0.68 4.93±1.62 0.47

Freq+Time 3.9±1.33 0.67 4.92±1.41 0.48

Ampl+Freq+ECG 3.98±1.27 0.75 4.52±1.52 0.59

Ampl+Time+ECG 4.27±1.54 0.64 4.81±1.67 0.48

Freq+Time+ECG 4.27±1.61 0.61 4.69±1.65 0.51

Ampl+Freq+Time 3.87±1.18 0.73 4.95±1.57 0.47

Ampl+Freq+Time+ECG 4.12±1.4 0.68 4.75±1.66 0.5

HRa 6.31±1.72 0.44 5.94±1.76 0.35

Selected 25 Featuresb 3.76±1.15 0.77 4.28±1.44 0.63

a
A simple linear regression model was used for HR only. For other feature sets, XGBoost regression model was used to generate the reported 

results.

b
Selected using SFS method
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