Skip to main content
. Author manuscript; available in PMC: 2022 Mar 5.
Published in final edited form as: IEEE J Biomed Health Inform. 2021 Mar 5;25(3):634–646. doi: 10.1109/JBHI.2020.3009903

TABLE II.

RMSE (ml/kg/min) and R2 for VO2 estimation from different feature sets of SCG (Amplitude, Ampl, Frequency, Freq and Time, Time) and ECG using XGBoost, and HR using linear regression model

Treadmill Protocol Outside Walking Protocol
Feature Set RMSE R2 RMSE R2
Ampl 4.06±1.06 0.76 4.8±1.53 0.52
Freq 3.68±0.98 0.77 4.85±1.31 0.57
Time 5.42±1.39 0.45 5.13±1.18 0.45
ECG 7.48±1.83 0.17 5.81±1.07 0.4
Ampl+ECG 4.24±1.18 0.72 4.46±1.56 0.58
Freq+ECG 3.99±1.28 0.71 4.30±1.47 0.64
Time+ECG 5.07±1.79 0.5 4.89±1.66 0.47
Ampl+Freq 3.78±0.98 0.78 4.79±1.53 0.54
Ampl+Time 4.04±1.27 0.68 4.93±1.62 0.47
Freq+Time 3.9±1.33 0.67 4.92±1.41 0.48
Ampl+Freq+ECG 3.98±1.27 0.75 4.52±1.52 0.59
Ampl+Time+ECG 4.27±1.54 0.64 4.81±1.67 0.48
Freq+Time+ECG 4.27±1.61 0.61 4.69±1.65 0.51
Ampl+Freq+Time 3.87±1.18 0.73 4.95±1.57 0.47
Ampl+Freq+Time+ECG 4.12±1.4 0.68 4.75±1.66 0.5
HRa 6.31±1.72 0.44 5.94±1.76 0.35
Selected 25 Featuresb 3.76±1.15 0.77 4.28±1.44 0.63
a

A simple linear regression model was used for HR only. For other feature sets, XGBoost regression model was used to generate the reported results.

b

Selected using SFS method