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Abstract

Recent Transformer-based contextual word representations, including BERT and XLNet, have 

shown state-of-the-art performance in multiple disciplines within NLP. Fine-tuning the trained 

contextual models on task-specific datasets has been the key to achieving superior performance 

downstream. While fine-tuning these pre-trained models is straight-forward for lexical 

applications (applications with only language modality), it is not trivial for multimodal language (a 

growing area in NLP focused on modeling face-to-face communication). Pre-trained models don’t 

have the necessary components to accept two extra modalities of vision and acoustic. In this paper, 

we proposed an attachment to BERT and XLNet called Multimodal Adaptation Gate (MAG). 

MAG allows BERT and XLNet to accept multimodal nonverbal data during fine-tuning. It does so 

by generating a shift to internal representation of BERT and XLNet; a shift that is conditioned on 

the visual and acoustic modalities. In our experiments, we study the commonly used CMU-MOSI 

and CMU-MOSEI datasets for multimodal sentiment analysis. Fine-tuning MAG-BERT and 

MAG-XLNet significantly boosts the sentiment analysis performance over previous baselines as 

well as language-only fine-tuning of BERT and XLNet. On the CMU-MOSI dataset, MAG-XLNet 

achieves human-level multimodal sentiment analysis performance for the first time in the NLP 

community.

1 Introduction

Human face-to-face communication flows as a seamless integration of language, acoustic, 

and vision modalities. In ordinary everyday interactions, we utilize all these modalities 

jointly to convey our intentions and emotions. Understanding this face-to-face 

communication falls within an increasingly growing NLP research area called multimodal 

language analysis (Zadeh et al., 2018b). The biggest challenge in this area is to efficiently 

model the three pillars of communication together. This gives artificial intelligence systems 

the capability to comprehend the multi-sensory information without disregarding nonverbal 

factors. In many applications such as dialogue systems and virtual reality, this capability is 

crucial to maintain the high quality of user interaction.
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The recent success of contextual word representations in NLP is largely credited to new 

Transformer-based (Vaswani et al., 2017) models such as BERT (Devlin et al., 2018) and 

XLNet (Yang et al., 2019). These Transformer-based models have shown performance 

improvement across downstream tasks (Devlin et al., 2018). However, their true downstream 

potential comes from fine-tuning their pre-trained models for particular tasks (Devlin et al., 

2018). This is often done easily for lexical datasets which exhibit language modality only. 

However, this fine-tuning for multimodal language is neither trivial nor yet studied; simply 

because both BERT and XLNet only expect linguistic input. Therefore, in applying BERT 

and XLNet to multimodal language, one must either(a) forfeit the nonverbal information and 

fine-tune for language, or (b) simply extract word representations and proceed to use a state-

of-the-art model for multimodal studies.

In this paper, we present a successful framework for fine-tuning BERT and XLNet for 

multimodal input. Our framework allows the BERT and XLNet core structures to remain 

intact, and only attaches a carefully designed Multimodal Adaptation Gate (MAG) to the 

models. Using an attention conditioned on the nonverbal behaviors, MAG essentially maps 

the informative visual and acoustic factors to a vector with a trajectory and magnitude. 

During fine-tuning, this adaptation vector modifies the internal state of the BERT and 

XLNet, allowing the models to seamlessly adapt to the multimodal input. In our experiments 

we use the CMU-MOSI (Zadeh et al., 2016) and CMU-MOSEI (Zadeh et al., 2018d) 

datasets of multimodal language, with a specific focus on the core NLP task of multimodal 

sentiment analysis. We compare the performance of MAG-BERT and MAG-XLNet to the 

above (a) and (b) scenarios in both classification and regression sentiment analysis. Our 

findings demonstrate that fine-tuning these advanced pre-trained Transformers using MAG 

yields consistent improvement, even though BERT and XLNet were never trained on 

multimodal data.

The contributions of this paper are therefore summarized as:

• We propose an efficient framework for fine-tuning BERT and XLNet for 

multimodal language data. This framework uses a component called Multimodal 

Adaptation Gate (MAG) that introduces minimal overhead to both the models.

• MAG-BERT and MAG-XLNet set new state of the art in both CMU-MOSI and 

CMU-MOSEI datasets, when compared to scenarios(a) and (b). For CMU-

MOSI, MAG-XLNet achieves performance on par with reported human 

performance.

2 Related Works

The studies in this paper are related to the following research areas:

2.1 Multimodal Language Analyses

Multimodal language analyses is a recent research trend in natural language processing 

(Zadeh et al., 2018b) that helps us understand language from the modalities of text, vision 

and acoustic. These analyses have particularly focused on the tasks of sentiment analysis 

(Poria et al., 2018), emotion recognition (Zadeh et al., 2018d), and personality traits 
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recognition (Park et al., 2014). Works in this area often focus on novel multimodal neural 

architectures (Pham et al., 2019; Hazarika et al., 2018) and multimodal fusion approaches 

(Liang et al., 2018; Tsai et al., 2018).

Related to content in this paper, we discuss some of the models in this domain including 

TFN, MARN, MFN, RMFN and MulT. Tensor Fusion Network (TFN) (Zadeh et al., 2017) 

creates a multi-dimensional tensor to explicitly capture all possible interactions between the 

three modalities: unimodal, bimodal and trimodal. Multi-attention Recurrent Network 

(MARN) (Zadeh et al., 2018c) uses three separate hybrid LSTM memories that have the 

ability to propagate the cross-modal interactions. Memory Fusion Network (Zadeh et al., 

2018a) synchronizes the information from three separate LSTMs through a multi-view gated 

memory. Recurrent Memory Fusion Network (RMFN) (Liang et al., 2018) captures the 

nuanced interactions among the modalities in a multi-stage manner, giving each stage the 

ability to focus on a subset of signals. Multimodal Transformer for Unaligned Multimodal 

Language Sequences (MulT) (Tsai et al., 2019) deploys three Transformers – each for one 

modality – to capture the interactions with the other two modalities in a self-attentive 

manner. The information from the three Transformers are aggregated through late-fusion.

2.2 Pre-trained Language Representations

Learning word representations from large corpora has been an active research area in NLP 

community (Mikolov et al., 2013; Pennington et al., 2014). Glove (Pennington et al., 2014) 

and Word2Vec (Mikolov et al., 2013) contributed to advancing the state-of-the-art of many 

NLP tasks. A major setback of these word representations is their non-contextual nature. 

Recently, contextual language representation models trained on large text corpora have 

achieved state of the art results on several NLP tasks including question answering, 

sentiment classification, part-of-speech (POS) tagging and similarity modeling (Peters et al., 

2018; Devlin et al., 2018). The first two notable contextual representation based models 

were ELMO (Peters et al., 2018) and GPT (Radford et al., 2018). However, they only 

captured unidirectional context and therefore, missed more nuanced interactions among 

words of a sentence. BERT (Bidirectional Encoder Representations from Transformers) 

(Devlin et al., 2018) outperforms both ELMO and GPT since it can provide better 

representation through capturing bi-directional context using Transformers. XLNet (Dai et 

al., 2019) gives new contextual representations through building an auto-regressive model 

capable of capturing all possible factorizations of the input. Fine-tuning pretrained models 

for BERT and XLNet has been a key factor in achieving state of the art performance for 

downstream tasks. Even though previous works have explored using BERT to model 

multimodal data (Sun et al., 2019), to the best of our knowledge, directly fine-tuning BERT 

or XLNet for multimodal data has not been explored in previous works.

3 BERT and XLNet

To better understand the proposed multimodal framework in this paper, we first present an 

overview of both the BERT and XLNet models. We start by quickly formalizing the 

operations within Transformer and Transformer-XL models, followed by an overview of 

BERT and XLNet.
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3.1 Transformer

Transformer is a non-recurrent neural architecture designed for modeling sequential data 

(Vaswani et al., 2017). The superior performance of Transformer model is largely credited to 

a Multi-head Self-Attention module. Using this module, each element of a sequence is 

attended by conditioning on all the other sequence elements. Figure 2 summarizes internal 

operations of a Transformer layer (for M such layers). Commonly, a Transformer uses an 

encoder-decoder paradigm. A stack of encoders is followed by a stack of decoders to map an 

input sequence to an output sequence. An additional embedding step with Positional Input 

Embedding is applied before the input goes through the stack of encoders and decoders.

3.2 Transformer-XL

Transformer-XL (Dai et al., 2019) is an extension of the Transformer which offers two 

improvements: a) it enhances the capability of the Transformer to capture long-range 

dependencies (specifically for the case of context fragmentation), and b) it improves the 

capability to better predict first few symbols (which are often crucial for the rest of the 

sequence). It does so with a recurrence mechanism designed to pass context information 

from one segment to the next and a relative positional encoding mechanism to enable state 

reuse without causing temporal confusion.

3.3 BERT

BERT is a successful language model that provides rich contextual word representation 

(Devlin et al., 2018). It follows an auto-encoding approach – masking out a portion of input 

tokens and predicting those tokens based on all other non-masked tokens – and thus learning 

a vector representation for the masked out tokens in that process. We use the variant of 

BERT used for Single Sentence Classification Tasks. First, input embeddings are generated 

from a sequence of word-piece tokens by adding token embeddings, segment embeddings 

and position embeddings. Then multiple Encoder layers are applied on top of these input 

embeddings. Each Encoder has a Multi-Head Attention layer and a Feed Forward layer, each 

followed by a residual connection with layer normalization. A special [CLS] token is 

appended in front of the input token sequence. So, for a N length input sequence, we get N + 

1 vectors from the last Encoder layer – the first of those vectors is used to predict the label of 

the input after that vector undergoes an affine transformation.

3.4 XLNet

XLNet (Yang et al., 2019) sets out to improve two critical aspects of the BERT model: a) 

independence among the masked out tokens and b) pretrain-finetune discrepancy in training 

vs inference, since inference inputs do not have masked out tokens. XLNet is an auto-

regressive model and therefore, is free from the need of masking out certain tokens. 

However, auto-regressive models usually capture the unidirectional context (either forward 

or backward). XLNet can learn bidirectional context by maximizing likelihood over all 

possible permutations of factorization order. In essence, it randomly samples multiple 

factorization orders and trains the model on each of those orders. Therefore, it can model 

input by taking all possible permutations into consideration (in expectation).
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XLNet utilizes two key ideas from Transformer-XL (Dai et al., 2019): relative positioning 

and segment recurrence mechanism. Like BERT, it also has a Input Embedder followed by 

multiple Encoders. The Embedder converts the input tokens into vectors after adding token 

embedding, segment embedding and relative positional embedding information. Each 

encoder consists of a Multi-Head attention layer and a feed forward layer – each followed by 

a residual addition and normalization layer. The embedder output is fed into the encoders to 

get a contextual representation of input.

4 Multimodal Adaptation Gate (MAG)

In multimodal language, a lexical input is accompanied by visual and acoustic information - 

simply gestures and prosody co-occurring with language. Consider a semantic space that 

captures latent concepts (positions in the latent space) for individual words. In absence of 

multimodal accompaniments, the semantic space is directly conditioned on the language 

manifold. Simply put, each word falls within some part of this semantic space, depending 

only on the meaning of the word in a linguistic structure (i.e. sentence). Nonverbal behaviors 

can have an impact on the meaning of words, and therefore on the position of words in this 

semantic space. Together, language and nonverbal accompaniments decide on the new 

position of the word in the semantic space. In this paper, we regard to this new position as 

addition of the language-only position with a displacement vector; a vector with trajectory 

and magnitude that shifts the language-only position of the word to the new position in light 

of nonverbal behaviors. This is the core philosophy behind the Multimodal Adaptation Gate 

(MAG).

A particularly appealing implementation of such displacement is studied in RAVEN (Wang 

et al., 2018), where displacements are calculated using cross-modal self-attention to 

highlight relevant non-verbal information. Figure 1 shows the studied MAG in this paper. 

Essentially, a MAG unit receives three inputs, one is purely lexical, one is visual, and the last 

one is acoustic. Let the triplet (Zi, Ai, Vi) denote these inputs for ith word in a sequence. We 

break this displacement into bimodal factors [Zi;Ai] and [Zi; Vi] by concatenating lexical 
vector with acoustic and visual information respectively and use them to produce two gating 

vectors giv and gia:

giv = R W gv Zi; V i + bv (1)

gia = R W ga Zi; Ai + ba (2)

where Wgv, Wga are weight matrices for visual and acoustic modality and bv and ba are 

scalar biases. R(x) is a non-linear activation function. These gates highlight the relevant 

information in visual and acoustic modality conditioned on the lexical vector.

We then create a non-verbal displacement vector Hi by fusing together Ai and Vi multiplied 

by their respective gating vectors:
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Hi = gia ⋅ W aAi + giv ⋅ W vV i + bH (3)

where Wa and Wv are weight matrices for acoustic and visual information respectively and 

bH is the bias vector.

Subsequently, we use a weighted summation between Zi and its nonverbal displacement Hi 

to create a multimodal vector Zi:

Zi = Zi + αHi (4)

α = min
Zi 2
Hi 2

β, 1 (5)

where β is a hyper-parameter selected through the cross-validation process. ∥Zi∥2 and ∥Hi∥2 

denote the L2 norm of the Zi and Hi vectors respectively. We use the scaling factor α so that 

the effect of nonverbal shift Hi remains within a desirable range. Finally, we apply a layer 

normalization and dropout layer to Zi.

4.1 MAG-BERT

MAG-BERT is a combination of MAG applied to a certain layer of BERT network (Figure 2 

demonstrates the structure of MAG-BERT as well as MAG-XLNet). Essentially, at each 

layer, BERT contains lexical vectors for ith word in the sequence. For the same word, 

nonverbal accompaniments are also available in multimodal language setup. MAG 

essentially forms an attachment to the desired layer in BERT; an attachment that allows for 

multimodal information to leak into the BERT model and displace the lexical vectors. The 

operations within MAG allows for the lexical vectors within BERT to adapt to multimodal 

information by changing their positions within the semantic space. Aside from the 

attachment of MAG, no change is made to the BERT structure.

Given an N length language sequence L = [L1, L2, … LN] carrying word-piece tokens, a 

[CLS] token is appended to L so that we can use it later for class label prediction. Then, we 

input L to the Input Embedder which outputs E = [ECLS, E1, E2, … EN] after adding token, 

segment and position embeddings. Then, we input E to the first Encoding layer and then 

apply j Encoders on it successively. After that encoding process, we get the output 

Zj = ZCLS
j , Z1

j, Z2
j, …ZN

j  which denotes the Lexical Embeddings after j layers of 

Encoding.

For injecting audio-visual information into these embeddings, we prepare a sequence of 

triplets Zi
j, Ai, V i : ∀i ∈ CLS, [1, N]  by pairing Zi

j with the corresponding (Ai, Vi). Each 

of these triplets are passed through the Multimodal Adaptation Gate which transforms the 

ith triplet into Zi
j – a unified multimodal representation of the corresponding Lexical 

Embedding.
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As there exists M = 12 Encoder layers in our BERT model, we input Zj = Z1
j , Z2

j , …ZN
j  to 

the next Encoder and apply M – j Encoder layers on it successively. At the end, we get ZM

from the Mth Encoder layer. As the first element ZCLS
M  represents the [CLS] token, it has 

the information necessary to make a class label prediction. Therefore, ZCLS
M  goes through an 

affine transformation to produce a single real-value which can be used to predict a class 

label.

4.2 MAG-XLNet

Like MAG-BERT, MAG-XLNet also has the capability of injecting audio-visual information 

at any of its layers using MAG. At each position j of any of its layer, it holds the lexical 

vector corresponding to that position. Utilizing the audio-visual information available for 

that position, it can invoke MAG to get an appropriately shifted lexical vector in multimodal 

space. Although it mostly follows the general paradigm presented in Figure 2 verbatim, it 

uses the XLNet specific Embedder and Encoders. One other key difference is the position of 

the [CLS] token. Unlike BERT, the [CLS] token is appended at the right end of the input 

token sequence, and therefore in all the intermediate representations, the vector 

corresponding to the [CLS] will be the rightmost one. Following the same logic, the output 

from the final Encoding layer will be ZM = Z1
M, Z2

M, …ZN
M, ZCLS

M  The last item, ZCLS
M

can be used for class label prediction after it goes through an affine transformation.

5 Experiments

In this section we outline the experiments in this paper. We first start by describing the 

datasets, followed by description of extracted features, baselines, and experimental setup.

5.1 CMU-MOSI Dataset

CMU-MOSI (CMU Multimodal Opinion Sentiment Intensity) is a dataset of multimodal 

language specifically focused on multimodal sentiment analysis (Zadeh et al., 2016). CMU-

MOSI contains 2199 video segments taken from 93 Youtube movie review videos. The 

dataset has real-valued high-agreement sentiment intensity annotations in the range [−3, +3]

5.2 Computational Descriptors

For each modality, the following computational descriptors are available:

Language: We transcribe the videos using Youtube API followed by manual correction.

Acoustic: COVAREP (Degottex et al., 2014) is used to extract the following relevant 

features: fundamental frequency, quasi open quotient, normalized amplitude quotient, glottal 

source parameters (H1H2, Rd, Rd conf), VUV, MDQ, the first 3 formants, PSP, HMPDM 0–

24 and HM-PDD 0–12, spectral tilt/slope of wavelet responses (peak/slope), MCEP 0–24.

Visual: For the visual modality, the Facet library (iMotions, 2017) is used to extract a set of 

visual features including facial action units, facial landmarks, head pose, gaze tracking and 

HOG features.
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For each word, we align all three modalities following the convention established in (Chen et 

al., 2017). Firstly, the word alignment between language and audio is obtained using forced 

alignment (Yuan and Liberman, 2008). Afterwards, the boundary of each word denotes the 

co-occurring visual and acoustic features (FACET and COVAREP). Subsequently, for each 

word, the co-occurring acoustic and visual features are averaged across each feature – thus 

achieving Ai and Vi vectors corresponding to word i.

5.3 Baseline Models

We compare the performance of MAG-BERT and MAG-XLNet to a variety of state-of-the-

art models for multimodal language analysis. These models are trained using extracted 

BERT and XLNet word embeddings as their language input:

TFN (Tensor Fusion Network) explicitly models both intra-modality and inter-modality 

dynamics (Zadeh et al., 2017) by creating a multi-dimensional tensor that captures 

unimodal, bimodal and trimodal interactions across three modalities.

MARN (Multi-attention Recurrent Network) models view-specific interactions using 

hybrid LSTM memories and cross-modal interactions using a Multi-Attention Block (MAB) 

(Zadeh et al., 2018c).

MFN (Memory Fusion Network) has three separate LSTMs to model each modality 

separately and a multi-view gated memory to synchronize among them (Zadeh et al., 2018a).

RMFN (Recurrent Memory Fusion Network) captures intra-modal and inter-modal 

information through recurrent multi-stage fashion (Liang et al., 2018).

MulT (Multimodal Transformer for Unaligned Multimodal Language Sequence) uses 

three sets of Transformers and combines their output in a late fusion manner to model a 

multimodal sequence (Tsai et al., 2019). We use the aligned variant of the originally 

proposed model, which achieves superior performance over the unaligned variant.

We also compare our model to fine-tuned BERT and XLNet using language modality only 

to measure the success of the MAG framework.

5.4 Experimental Design

All the models in this paper are trained using Adam (Kingma and Ba, 2014) optimizer with 

learning rates between {0.001, 0.0001, 0.00001}. We use dropouts of {0.1, 0.2, 0.3, 0.4, 0.5} 

for training each model. LSTMs in TFN, MARN, MFN, RMFN, LFN use latent size of {16, 

32, 64, 128}. For MulT, we use {3, 5, 7} layers in the network and {1, 3, 5} attention heads. 

All models use the designated validation set of CMU-MOSI for finding best hyper-

parameters.

We perform two different evaluation tasks on CMU-MOSI datset: i) Binary Classification, 

and ii) Regression. We formulate it as a regression problem and report Mean-absolute Error 

(MAE) and the correlation of model predictions with true labels. Besides, we convert the 

regression outputs into categorical values to obtain binary classification accuracy (BA) and 

F1 score. Higher value means better performance for all the metrics except MAE. We use 
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two evaluation metrics for BA and F1, one used in (Zadeh et al., 2018d) and one used in 

(Tsai et al., 2019).

6 Results and Discussion

Table 1 shows the results of the experiments in this paper. We summarize the observations 

from the results in this table as following:

6.1 Performance of MAG-BERT

In all the metrics across the CMU-MOSI dataset, we observe that performance of MAG-

BERT is superior to state-of-the-art multimodal models that use BERT word embeddings. 

Furthermore, MAG-BERT also performs superior to fine-tuned BERT. This essentially 

shows that the MAG component is allowing the BERT model to adapt to multimodal 

information during fine-tuning, thus achieving superior performance.

6.2 Performance of MAG-XLNet

A similar performance trend to MAG-BERT is also observed for MAG-XLNet. Besides 

superior performance than baselines and fine-tuned XLNet, MAG-XLNet achieves near-

human level performance for CMU-MOSI dataset. Furthermore, we train MulT using the 

fine-tuned XLNet embeddings and get the following performance: 83.6/85.3, 82.6/84.2, 

0.810, 0.759 which is lower than both MAG-XLNet and XLNet. It is notable that the p-value 

for student t-test between MAG-XLNet and XLNet in Table 1 is lower than 10e − 5 for all 

the metrics.

The motivation behind the experiments reported in Table 1 is as follows: we extracted word 

embeddings from pre-trained BERT and XLNet models and trained the baseline models 

using those embeddings. Since BERT and XLNet are often perceived to provide better word 

embeddings than Glove, it is not fair to compare MAG-BERT/MAG-XLNet with previous 

models trained with Glove embeddings. Therefore, we retrain previous works using BERT/

XLNet embeddings to establish a more fair comparison between proposed approach in this 

paper, and previous work. Based on the information from Table 1, we observe that MAG-

BERT/MAG-XLNet models outperforms various baseline models using BERT/XLNet/Glove 

models substantially.

6.3 Adaptation at Different Layers

We also study the effect of applying MAG at different encoder layers of the XLNet. 

Specifically, we first apply the MAG to the output of the embedding layer. Subsequently, we 

apply the MAG to the layer j ∈ {1, 4, 6, 8, 12} of the XLNet. Then, we apply MAG at all the 

XLNet layers. From Table 2, we observe that earlier layers are more suitable for application 

of MAG.

We believe that earlier layers allow for better integration of the multimodal information, as 

they allow the word shifting to happen from the beginning of the network. If the semantics 

of words should change based on the nonverbal accompaniments, then initial layers should 

reflect the semantic shift, otherwise, those layers are only working unimodally. Besides, the 

Rahman et al. Page 9

Proc Conf Assoc Comput Linguist Meet. Author manuscript; available in PMC 2021 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



higher layers of BERT learn more abstract and higher-level information about the syntactic 

and semantic structure of linguistic features (Coenen et al., 2019). Since, the acoustic and 

visual information present in our model corresponds to each word in the utterance, it will be 

more difficult for the MAG to shift the vector extracted from a later layer since that vector’s 

information will be very abstract in nature.

6.4 Input-level Concatenation and Addition

From Table 2, we see that both input-level concatenation and addition of modalities perform 

poorly. For Concatenation, we simply concatenate all the modalities. For Addition, we add 

the audio and visual information to the language embedding after mapping both of them to 

the language dimension. These results demonstrate the rationale behind using an advanced 

fusion mechanism like MAG.

6.5 Results on Comparable Datasets

We also perform experiments on the CMU-MOSEI dataset (Zadeh et al., 2018d) to study the 

generalization of our approach to other multimodal language datasets. Unlike CMU-MOSI 

which has sentiment annotations at utterance level, CMU-MOSEI has sentiment annotations 

at sentence level. The experimental methodology for CMU-MOSEI is similar to the original 

paper. For the sake of comparison, we suffice1 to comparing the binary accuracy and f1 

score for the top 3 models in Table 1. In BERT category, we compare the performance of 

MulT (with BERT embeddings), BERT and MAG-BERT which are respectively as follows: 

[83.5, 82.9] for MulT, [83.9, 83.9] for BERT, and [84.7, 84.5] for MAG-BERT. Similarly for 

XLNET category, the results for MulT (with XLNet embeddings), XLNet and MAG-XLNet 

are as follows: [84.1, 83.7] for MulT, [85.4, 85.2] for XLNet and [85.6, 85.7] for MAG-

XLNet. Therefore, superior performance of MAG-BERT and MAG-XLNet also generalizes 

to CMU-MOSEI dataset.

6.6 Fine-tuning Effect

We study whether or not the superior performance of the MAG-BERT and MAG-XLNet is 

related to successful finetuning of the models, or related to other factors e.g. any transformer 

with architecture like BERT or XLNet would achieve superior performance regardless of 

being pretrained. By randomly initializing the weights of BERT and XLNet within MAG-

BERT and MAG-XLNet, we get the following performance on BA for the CMU-MOSI:70.1 

and 70.7 respectively. This indicates that the success of the MAG-BERT and MAG-XLNet is 

due to successful fine-tuning. Even on the larger CMU-MOSEI dataset we get BA of 76.8 

and 78.4 for MAG-BERT and MAG-XLNet, which further substantiates the fact that fine-

tuning is successful using MAG framework.

6.7 Qualitative Analysis

In Table 3, we present some examples where MAG-XLNet adjusted sentiment intensity 

properly by taking into account nonverbal information. The examples demonstrate that 

MAG-XLNET can successfully integrate the non-verbal modalities with textual information.

1Since Transformer based models take a long time to train for CMU-MOSEI
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In both Example-1 and Example-2, XLNet correctly predicted the polarity of the displayed 

emotion. However, additional information was present in the acoustic and visual domain 

which XLNet could not utlize. Given those information, MAG-XLNet could better predict 

the magnitude of emotion displayed in both cases.

Although the emotion in the text of Example-3 can be portrayed as a bit positive, the tense 

voice and frown expression helps MAG-XLnet reverse the polarity of predicted emotion. 

Similarly, the text in Example-4 is mostly neutral, but MAG-XLNet can predict the negative 

emotion through the sarcastic vocal and frustrated facial expression.

7 Conclusion

In this paper, we introduced a method for efficiently finetuning large pre-trained 

Transformer models for multimodal language. Using a proposed Multimodal Adaptation 

Gate (MAG), BERT and XLNet were successfully fine-tuned in presence of vision and 

acoustic modalities. MAG essentially poses the nonverbal behavior as a vector with a 

trajectory and magnitude, which is subsequently used to shift lexical representations within 

the pre-trained Transformer model. A unique characteristic of MAG is that it makes no 

change to the original structure of BERT or XLNet, but rather comes as an attachment to 

both models. Our experiments demonstrated the superior performance of MAG-BERT and 

MAG-XLNet. The code for both MAG-BERT and MAG-XLNet are publicly available here2
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Figure 1: 
Multimodal Adaptation Gate (MAG) takes as input a lexical input vector, as well as its 

visual and acoustic accompaniments. Subsequently, an attention over lexical and nonverbal 

dimensions is used to fuse the multimodal data into another vector, which is subsequently 

added to the input lexical vector (shifting).
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Figure 2: 
Best viewed zoomed in and in color. The Transformer architecture of BERT/XLNet with 

MAG applied at jth layer. We consider a total of M layers within the pretrained Transformer. 

MAG can be applied at different layers of the pretrained Transformers.
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Table 1:

Sentiment prediction results on CMU-MOSI dataset. Best results are highlighted in bold. MAG-BERT and 

MAG-XLNet achieve superior performance than the baselines and their language-only finetuned counterpart. 

BA denotes binary accuracy (higher is better, same for F1), MAE denotes Mean-absolute Error (lower is 

better), and Corr is Pearson Correlation (higher is better). For BA and F1, we report two numbers: the number 

on the left side of “/” is measures calculated based on (Zadeh et al., 2018c) and the right side is measures 

calculated based on (Tsai et al., 2019). Human performance for CMU-MOSI is reported as (Zadeh et al., 

2018a).

Task Metric BA↑ F1↑ MAE↓ Corr↑

Original (glove)

TFN 73.9/− 73.4/− 0.970/− 0.633/−

MARN 77.1/− 77.0/− 0.968/− 0.625/−

MFN 77.4/− 77.3/− 0.965/− 0.632/−

RMFN 78.4/− 78.0/− 0.922/− 0.681/−

LFN 76.4/− 75.7/− 0.912/− 0.668/−

MulT −/83.0 −/82.8 −/0.871 −/0.698

BERT

TFN 74.8/76.0 74.1/75.2 0.955 0.649

MARN 77.7/78.9 77.9/78.2 0.938 0.691

MFN 78.2/79.3 78.1/78.4 0.911 0.699

RMFN 79.6/80.7 78.9/79.1 0.878 0.712

LFN 79.1/80.2 77.3/78.1 0.899 0.701

MulT 81.5/84.1 80.6/83.9 0.861 0.711

BERT 83.5/85.2 83.4/85.2 0.739 0.782

MAG-BERT 84.2/86.1 84.1/86.0 0.712 0.796

XLNet

TFN 78.2/80.1 78.2/78.8 0.914 0.713

MARN 78.3/79.5 78.8/79.6 0.921 0.707

MFN 78.3/79.9 78.4/79.1 0.898 0.713

RMFN 79.1/81.0 78.6/80.0 0.901 0.703

LFN 80.2/82.9 79.1/81.6 0.862 0.701

MulT 81.7/84.4 80.4/83.1 0.849 0.738

XLNet 84.7/86.7 84.6/86.7 0.676 0.812

MAG-XLNet 85.7/87.9 85.6/87.9 0.675 0.821

Human 85.7/− 87.5/− 0.710 0.820
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Table 2:

Results of variations of XLNet model: MAG applied at different layers of the XLNet model, input-level 

concatenation and addition of all modalities. “E” denotes application of MAG immediately after embedding 

layer of the XLNet and “A” denotes applying MAG after the embedding layer and all the subsequent 

Encoding layers. ⊕ and ⊙ denote input-level addition and concatenation of all modalities respectively. MAG 

applied at initial layers performs better overall.

Model E 1 4 6 8 12 A ⊕ ⊙

MAG-XLNet 80.1 85.6 84.1 84.1 83.8 83.6 64.0 60.0 55.8
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