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Abstract

Despite successful research efforts aimed at understanding pain mechanisms, there is still no 

adequate treatment for many patients suffering from chronic pain. The contribution of 

neuroinflammation to chronic pain is widely acknowledged. Here we summarize findings 

indicating that T cells play a key role in the suppression of pain. An active contribution of the 

immune system to resolution of pain may explain why immunosuppressive drugs are often not 

sufficient to control pain. This would also imply that dysregulation of certain immune functions 

promote transition to chronic pain. Conversely, stimulating the endogenous immune-mediated 

resolution pathways may provide a potent approach to treat chronic pain.

Why study mechanisms underlying resolution of pain?

Pain in response to tissue damage or inflammation represents an important warning signal 

and often serves a protective purpose. Short term treatment with non-steroidal anti-

inflammatory drugs (NSAIDs) and/or opioids is usually enough to manage this transient 

pain.

Pain control becomes much more challenging when acute pain does not resolve and 

transitions into a state of chronic pain (see Glossary). According to a 2016 report from the 

Centers for Disease Control (CDC), 20.4% of adults in the United States experienced 

chronic pain, and 8% suffered from high impact chronic pain (https://www.cdc.gov/mmwr/

volumes/67/wr/pdfs/mm6736a2-H.pdf). Chronic pain not only reduces quality of life, but 

also represents a real financial burden to society since it comes with an estimated $560 

billion per year in medical costs, lost productivity and disability programs (2016 estimates; 

https://www.cdc.gov/mmwr/volumes/67/wr/pdfs/mm6736a2-H.pdf ). Chronic pain is 

frequently reported after nerve damage caused by e.g. traumatic injury or diabetes, or during 

chronic inflammation as is the case in patients with e.g. inflammatory bowel disease, 

rheumatoid arthritis, or multiple sclerosis. Often the cause of chronic pain is not or only 
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partially understood, for example in patients suffering from chronic regional pain syndrome, 

fibromyalgia, low back pain, or recurrent headache.

In most patients, pain caused by a transient insult such as infection, surgery or 

chemotherapy, resolves when the tissues heal, or chemotherapy is completed. However, in a 

subgroup of patients, transition to chronic pain takes place. Chemotherapy-induced 
peripheral neuropathy resolves in 70–75% of affected patients within weeks after 

completion of treatment, but in the other 25–30% of patients, the pain persists for months to 

years [1, 2]. Similarly, depending on the methodology used to assess pain, 20- >50% of 

patients develop chronic pain after surgery [3–6].

Irrespective of the cause of chronic pain, for many patients the current treatments only 

provide partial relief at best. In addition, even when these interventions are effective at 

providing symptom relief, they do not eliminate the underlying cause of the persistent or 

recurring pain [7, 8]. Therefore, long-term treatment is often needed with increased risk of 

serious side effects as well as drug-induced aggravation of pain. In addition, opioids, often 

the treatment of choice in case of chronic pain, represent a huge additional health risk in 

view of the addictive properties [9].

Despite overwhelming evidence from rodent models for a role of (neuro)inflammation in the 

induction and maintenance of multiple forms of chronic pain (Box 1), clinically, suppression 

of inflammation with NSAIDs or steroids is not sufficient to control it [7, 10]. Pain also 

often persists even when inflammation is successfully controlled by treatment with e.g. 

inhibitors of cytokine signaling in patients with autoimmune disorders such as rheumatoid 

arthritis [11].

Here, we explore the concept that pharmacological immunosuppression is not enough to 

resolve pain because the immune system actively contributes to the pathways regulating the 

resolution of pain. We focus on studies indicating that T cells can promote resolution of pain 

and on the potential contribution of macrophages, the anti-inflammatory cytokine 

interlueukin-10 (IL10), and endogenous opioids (Figure 1, Key figure).

Resolution of pain is an active process

One may think that resolution of pain that occurs after resolution of the insult that caused the 

pain, e.g. infection, surgery or chemotherapy is a passive process in which the nervous 

system returns to its basal state when the tissues have healed and the driver of pain has 

dissipated (Figure 1). However, the existing evidence indicates that after an episode of pain 

hypersensitivity the nervous system does not readily return to its basal state, but transitions 

into a novel state coined as ‘latent sensitization’ [12, 13] or ‘hyperalgesic priming’ [14, 15]. 

When endogenous opioid signaling is inhibited during the phase of latent sensitization, e.g. 
after apparent resolution of inflammatory hyperalgesia, the pain hypersensitivity re-emerges 

[12]. Pain hypersensitivity also can re-emerge when mice are exposed to a mild stressor 

during the phase of latent sensitization, while the same stressor does not affect pain 

sensitivity in control mice [13, 16, 17]. Exposure of mice to a second stimulus, e.g. an 

inflammatory mediator during the state of hyperalgesic priming results in a prolonged and/or 
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increased response [15]. These studies reveal that when the driver of pain (in this example 

inflammation) dissipates, the nervous system does not return to its basal state, but rather 

transitions to a novel state phase that is associated with long lasting changes in gene 

expression [18].

Role of T cells in the resolution of pain.

T cells are a key component of the adaptive immune system that provide help to B cells, kill 

virus-infected cells, regulate the activity of other T cell subsets, B cell subsets and innate 

immune cells, and can develop immunologic memory. All T cells express the cell surface 

marker CD3, and specific CD3+ subpopulations can be identified by cell surface and 

intracellular markers, and cytokine profiles (Box 2). Studies in mice lacking cells of the 

adaptive immune system, such as severe combined immunodeficient (SCID) mice, Rag1−/−, 
or Rag2−/− mice, or wild type mice depleted from (specific subsets of) T cells, have 

identified pain promoting as well as pain suppressing effects of CD3+ T cells. A pain 

promoting role of T cells has been reported in models of neuropathic pain induced by 

surgical damage to nerves and this is likely mediated at least in part by production of the 

cytokine interferon-γ by T helper1 (Th1) cells [19]. Some other studies did not detect a 

contribution of T cells (for review see [20]). These studies were mostly conducted in males. 

A more recent set of studies indicated that CD3+ T cells contribute to neuropathic pain 

response to spared nerve injury or chronic constriction injury in females but not in males 

[21]. However, this female T cell dependency only became apparent when at the same time 

the activity of microglia and macrophages was suppressed [21]. Further studies will be 

needed to fully characterize the potential pain promoting effects of (specific subsets of) T 

cells in male and female mice in multiple models.

Here we will focus on the role of (subsets of) CD3+ T cells in suppressing or counteracting 

pain. Extensive studies in models of inflammatory bowel disease have demonstrated that 

CD4+ Th1 and Th17 cells in the inflamed gut produce endogenous opioids that are released 

to suppress pain as well as local inflammation [22, 23]. Regulatory T cells (Treg) identified 

as CD4+FoxP3+ T cells can suppress neuropathic pain induced by peripheral nerve ligation 

and inflammatory pain in a model of neuritis [24–26]. Expansion of the CD4+ Treg cell 

population by treatment with CD28 superantigen reduced both the severity of neuritis and 

mechanical pain hypersensitivity [24]. These pain suppressing effects of Tregs are thought to 

be directly related to their capacity to downregulate the pro-inflammatory response in the 

peripheral nerve, dorsal root ganglion and/or spinal cord [24]. Studies in the antigen- and-

collagen-induced model of rheumatoid arthritis showed that depletion of CD8+ T cells 

increased pain, indicating that not only CD4+, but also CD8+ T cells can suppress pain 

during chronic inflammation. Interestingly, the increase in pain in arthritic mice depleted of 

CD8+ T cells was independent of changes in inflammatory activity in the joint [27]. A 

dissociation between inflammation and pain was also reported in a model of colitis [28].

CD3+ T cells also play a key role in the resolution of pain after completion of peripheral 

inflammation. In WT mice, complete Freund’s adjuvant (CFA)-induced mechanical 

hypersensitivity resolves within 2–3 weeks. In contrast, in male and female Rag2−/− mice 

that do not have mature T and B cells, inflammatory pain induced by CFA is markedly 
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prolonged [29]. Reconstitution of these Rag2−/− mice with CD3+ T lymphocytes normalizes 

resolution of the inflammatory pain. In line with what has been described for suppression of 

pain in a model of arthritis as described above [27], CD3+ T cells were required to resolve 

pain hypersensitivity, but not for resolution of CFA-induced paw inflammation [29]. This 

finding supports the hypothesis that resolution of inflammation is not sufficient to resolve 

pain.

Recent studies identified the contribution of CD3+ T cells to the resolution of pain after 

completion of chemotherapy. Treatment of WT mice with a short 2–3-day course of 

chemotherapeutic drugs like paclitaxel or cisplatin induces signs of peripheral neuropathy 

(CIPN) including mechanical allodynia, spontaneous pain, and loss of intraepidermal nerve 

fibers that resolve within two weeks [30, 31]. In contrast, these signs of CIPN persist for 

weeks to months in male and female Rag2−/− mice. Resolution is normalized when these 

mice are reconstituted with CD3+ T cells or CD8+ T cells. Importantly, reconstitution of 

Rag2−/− mice with CD4+ T cells did not normalize resolution of CIPN [30, 31]. Collectively, 

the findings summarized above indicate that different subsets of T cells suppress pain in 

different models.

Additional support for a potential key role of CD3+ T cells in the resolution of pain comes 

from studies on the mechanisms underlying the resolution of pain in response to several 

pharmacological interventions. For example, treatment of mice with neuropathic pain as 

induced by chronic constriction injury of the sciatic nerve (CCI) with three doses of a tumor 

necrosis factor receptor 2 (TNRF2) agonist, leads to resolution of mechanical allodynia 

without relapse for at least 3 weeks [32]. The beneficial effects of this TNFR2 agonist 

critically depend on the activity of CD4+ Tregs producing IL10. CD4+ Tregs also play a 

critical role in the suppression of mechanical allodynia in response to intrathecal 

administration of IL35 to mice with experimental autoimmune encephalomyelitis, a mouse 

model of multiple sclerosis [33]. Supporting the notion that resolution of inflammation and 

resolution of pain are not directly linked, the suppression of pain in response to IL35 was 

independent of its effect on disease severity. CD3+ T cells are also required for the reversal 

of CIPN in response to treatment with an inhibitor of histone de-acetylase 6 (HDAC6), a 

cytosolic member of the family of histone de-acetylases [34]. In WT mice, two weeks of 

treatment with an HDAC6 inhibitor after completion of chemotherapy normalized 

mechanical allodynia and spontaneous pain [34, 35]. However, treatment of Rag2−/− mice 

with the HDAC6 inhibitor only resolved mechanical allodynia when these mice had been 

reconstituted with CD3+ T cells. Importantly, the need for T cells in spontaneous resolution 

of pain or resolution of pain in response to the pharmacological interventions summarized 

here did not differ between sexes [29, 31, 32].

In summary, the existing evidence indicates that multiple subsets of T cells are part of a 

common regulatory pathway that promotes the resolution of pain (Figure 1). Which T cell 

subset and associated cytokine profile is needed for pain resolution will likely depend on 

model specific variables. These variables include (but are not limited to) the nature of the 

insult that initiated the pain (e.g. inflammation in models of inflammatory bowel disease 

(IBD) versus tissue damage in models of CIPN) leading to activation of T cell subsets by 

specific antigens, damage signals and/or other co-stimulatory factors. Other determining 
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factors are the location of the insult, the involvement of other inflammatory cells such as 

microglia and monocytes/macrophages, the chemotactic activity of the microenvironment, 

and the migration pattern of the T cells in each situation. Future studies should identify how 

the different subsets of T cells that promote pain resolution are triggered, how they mediate 

their effect after specific activation, and where they exert their pain suppressive effects in 

various models of pain.

Role of opioid peptides in T cell-dependent control of pain

As mentioned above, there is a key role of endogenous opioid signaling in preventing the re-

emergence of pain during the state of latent sensitization. Multiple subsets of leukocytes, 

including T cells and macrophages, can produce the opioid peptides such as enkephalins and 

endorphins [36–40]. Already in 1990, Stein and colleagues proposed that stress-induced 

analgesia is mediated by release of opioid peptides from leukocytes at sites of inflammation 

[41]. More recently, an elegant study in a model of neuropathic pain, showed that repeated 

application of IL4 at the site of nerve damage promoted differentiation of M2 macrophages 

and analgesia via production of endogenous opioids by these M2 macrophages [42].

The role of opioid production by T cells in pain control in inflammatory bowel disease is 

well-established (Figure 2). Effector CD4+ T cells in the inflamed gut suppress visceral pain 

in models of inflammatory bowel disease by production and release of enkephalins [22, 23]. 

These CD4+ T cells are activated by ‘classical’ major histocompatibility complex (MHC) 

class II-dependent exposure to bacterial antigens in the draining lymph nodes of the gut to 

produce and release opioid peptides upon re-exposure to these antigens in the inflamed 

intestinal mucosa [22, 23].

Corticotropin releasing hormone (CRH) not only induces production and release of 

endorphins by the pituitary but also by peripheral leukocytes [36, 43]. Local administration 

of CRH at the site of nerve injury or at the site of paw inflammation, reverses mechanical 

hypersensitivity in wild type mice via a CD3+T cell and β-endorphin-mediated pathway [36, 

43–45]. Opioid peptides produced by CD3+ T cells have also been implicated in the 

suppression of pain during pregnancy [46]. During late pregnancy, female mice showed no 

evidence of chronic inflammatory pain induced by CFA, or neuropathic pain induced by 

spared nerve injury. Intrathecal naloxone rapidly reversed pregnancy-induced analgesia 

indicating ongoing engagement of endogenous opioid receptor-mediated pain suppressing 

pathways. In other words, interruption of ongoing analgesic activity of endogenous opioids 

by naloxone unmasked the existing pain hypersensitivity as a result of the previous exposure 

to CFA or to the spared nerve injury (SNI) model of neuropathic pain. Notably, pregnancy 

analgesia did not develop in mice that are deficient of CD3+ T cells and was re-instated by 

transfer of either CD4+ or CD8+ T cells from late pregnant mice, indicating that both T cell 

subsets can produce opioids during inflammatory conditions or nerve damage [46]. It 

remains to be determined whether production of endogenous opioid peptides by CD8+ T cell 

contributes to the role of these cells in resolution of pain in models of CIPN.
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Role of macrophages in the resolution of pain

T cells are potent regulators of the activity and differentiation state of other cells of the 

immune system. In the context of the regulation of pain, macrophages deserve special 

attention. Macrophages can polarize into two major functional subsets: M1 and M2 (Box 2), 

and cytokines produced by various subsets of T cells can regulate this polarization process 

[47]. M1 pro-inflammatory macrophages have anti-microbial properties while M2 

macrophages are involved in tissue remodeling and wound healing [47, 48]. The 

contribution of pro-inflammatory macrophages to chronic pain Is well established (Box 1). 

Recent findings indicate that M2 type macrophages can contribute to pain resolution [49, 

50]. Depletion of mice from peripheral monocytes/macrophages after onset of inflammatory 

pain delays resolution of thermal hyperalgesia induced by intraplantar injection of the pro-

inflammatory cytokine IL1β or carrageenan from 1–3 days to more than one week without 

affecting maximum severity of hyperalgesia [49]. Preliminary data from Eijkelkamp’s team 

recently showed that M2 type or tissue repair macrophages are key for the resolution of pain 

in these models [50]. This study showed that depletion of mice from all macrophages and 

monocytes prolonged mechanical allodynia, thermal hyperalgesia and spontaneous pain. 

Adoptive transfer of M2-type macrophages normalized resolution whereas transfer of M1-

type macrophages had no effect on the resolution. An exciting and provocative finding in 

this study was that the M2 macrophages transfer their mitochondria to dorsal root ganglion 

(DRG) neurons. The transfer of mitochondria reversed neuronal metabolism from the more 

glycolytic state to a more respiratory state and thereby normalized neuronal excitability. In 

addition to this exciting novel pathway it is likely that cytokines produced by in particular 

M2 macrophages such as IL10 can also contribute to resolution of pain [49].

Role of endogenous IL10 production in the resolution of pain

It has been known for a long time that IL10 when provided from an exogenous source is a 

potent suppressor of pain, but due to poor bioavailablity even when administered locally a 

single injection of IL10 only provides transient pain relief [51]. The seminal work by 

Watkins and coworkers showed that local administration of vectors that encode IL10 lead to 

long term suppression of pain in multiple models and in dogs with pain due to the 

spontaneous development of osteoarthritis [52, 53]. A fusion protein consisting of IL10 

coupled to IL4 with a linker sequence (IL4/IL10 synerkine) reversed CFA-induced 

inflammatory pain and four doses were sufficient to induce resolution of pain relieve without 

relapse [54].

Subsets of CD4+ and CD8+ T cells and macrophages are all capable of producing the anti-

inflammatory cytokine IL10 (Box 2). At least some of the beneficial effects of CD4+ T cells 

(including T reg) in models of neuropathic pain induced by surgical damage to the nerve and 

in some of the inflammatory models, depends on their capacity to produce IL10 [26, 32, 55–

57]. However, although resolution of CIPN is delayed when IL10 signaling is interrupted, 

CD8+ T from IL10 deficient mice do promote resolution of CIPN, indicating that other cells 

(possibly M2 macrophages) than the CD8+ T cells are the source of IL10 promoting 

resolution of pain in this model [30, 32, 33].
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Regular exercise reduces the risk of developing chronic pain and reduces pain in individuals 

with a variety of chronic pain conditions [58]. Preclinical studies show similar beneficial 

effects of exercise on pain that are associated with increases in the percentage of M2 type 

macrophages in muscle [59]. Inhibition of IL10 signaling reduces the beneficial effect of 

exercise in a model of muscle pain [58–60]. Strenuous exercise can induce muscle pain and 

this is exacerbated in IL10-deficient mice [61]. IL10 produced by CD4+ Tregs mediates the 

long lasting suppression of neuropathic pain in response to a TNFR2 agonist [32], an 

adenosine 2 A (A2A) receptor agonist, or a sphingosine receptor 1 agonist [55–57]. It is very 

well possible that increased IL10 production by M2 macrophages contributes to the effects 

of these interventions on pain as well.

The most widely proposed mode of action for the beneficial effects of IL10 on pain is 

through suppression of inflammation. Indeed, the beneficial effects of IL10 expressing 

vectors on neuropathic pain in models using surgical damage to nerves, is associated with 

suppression of the activity of spinal cord microglia and reductions in the levels of pro-

inflammatory cytokines [51, 54, 62, 63]. Notably, inhibition of IL10 signaling through 

intrathecal injection of a neutralizing antibody prolonged pain induced by intraplantar 

administration of carrageenan, whereas intraplantar administration of the anti-IL10 had no 

effect [64]. These findings indicate a key role for IL10 signaling at the level of the spinal 

cord or DRG in resolution of pain, not at the level of the peripheral site of inflammation. 

Consistently, knockdown of IL10 receptors in DRG and spinal cord by intrathecal injection 

of antisense oligonucleotides prevents exercise-induced muscle analgesia and this was 

attributed to a decrease in IL10 receptor expression in DRG neurons [60]. Resolution of 

CIPN is delayed in mice with nociceptor specific deletion of IL10R1, the ligand binding 

component of the heterodimer that constitutes the IL10 receptor [65]. These findings support 

a model in which IL10 signaling to receptors on nociceptive neurons plays promotes the 

normal resolution of pain induced by chemotherapy. The mechanism via which IL10 

signaling to nociceptors promotes resolution of pain remains to be elucidated. In vitro, 

exposure of DRG neurons to IL10 for 12 hours reduced the expression of voltage gated 

sodium channels and reduced the density of tetratoxin (TTX) sensitive and Nav1.8 currents 

in DRG neurons [66]. Short term (10 min) ex vivo exposure of DRG neurons from cisplatin-

treated mice suppresses the abnormal spontaneous activity of these neurons [65]. This effect 

is likely too rapid to be explained by changes in ion channel expression and may be 

mediated by post translational modification, redistribution of ion channels, or metabolic 

changes within neurons. IL10 has been shown to reverse the switch to the glycolytic 

pathway in macrophages as induced by pro-inflammatory stimuli thereby preserving 

oxidative respiration and maintaining an M2-type ‘wound healing’ state and this could 

contribute to pain resolution [67]. In addition, IL10 promotes mitophagy which prevents 

production of oxygen radicals, restores mitochondrial membrane potential, and oxidative 

respiration in macrophages [67]. If IL10 would have the same effects on mitochondrial 

health in nociceptors this may well be an important contributing mechanism for the 

resolution of pain.
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Targeting T cells to promote pain resolution

The role of T cells in resolution of pain is interesting because of the capacity of T cells to 

develop memory that forms the basis for development of vaccination strategies. Indeed, 

immunization of mice with ovalbumin followed by local administration of ovalbumin to re-

activate memory T cells, suppressed visceral pain in a model of colitis [68]. This 

suppression of visceral pain in response to re-exposure to the immunizing antigen was 

mediated via increased recruitment of opioid producing CD4+ effector T lymphocytes to the 

inflamed colon. In the same model, vaccination with Bacillus Calmette–Guérin (BCG), 

followed by local administration of Mycobacterium bovis also strongly reduced visceral 

pain without aggravating colitis [68]. This is interesting in view of the potential clinical 

translation because BCG vaccination is already widely used to protect against tuberculosis.

In contrast to the antigen-mediated activation of CD4+ T cells that is needed for the 

suppression of pain in models of IBD, the CD8+ T cell-mediated resolution of CIPN is not 

mediated via ‘classical’ MHC class I-mediated antigen dependent activation of these T cells. 

Transfer of transgenic CD8+ T cells that can only recognize an antigen (chicken ovalbumin 

peptide that is not present in mice) to Rag2−/− mice normalizes CIPN resolution as 

effectively as transfer of wild type CD8+ T cells [31]. Even though T cells do not need to be 

capable of recognizing a relevant antigen to promote resolution of CIPN, transfer of CD8+ T 

cells from mice that had already recovered from cisplatin-induced pain to Rag2−/− mice 

accelerated resolution or could even prevent development of cisplatin-induced pain (Figure 

3). These results indicate that antigen-independent “education” of CD8+ T cells improves 

their capacity to promote resolution of pain [31]. If this “education” of CD8+ T cells could 

be performed ex vivo, it may open the possibility to develop an intervention to prevent CIPN 

in patients scheduled for chemotherapy. It remains to be determined whether these educated 

CD8+ T cells also promote resolution of other forms of pain.

Concluding remarks

We presented evidence for a role of T cells, M2 macrophages, IL10 signaling and production 

of endogenous opioids by T cells in the resolution or suppression of pain. We conclude that 

the immune system does not only contribute to the onset and maintenance of chronic pain, 

but also plays a key role in pain suppression or resolution. If T cell activation contributes to 

pain resolution, it is perhaps not surprising that pharmacologic immunosuppression is often 

not enough to resolve pain. Better understanding of the mechanisms via which (subsets of) T 

cells promote pain resolution would allow for development of novel strategies to control 

pain through engaging these T cell dependent pathways. Critical studies in inflammatory 

bowel disease have already shown that immunization strategies may be feasible. In addition, 

there are already some exciting examples summarized above indicating that pharmacological 

interventions that act via T cell-dependent pathways may have long lasting beneficial effects. 

There are also still many Outstanding questions. For example, does the immune system 

contribute to preventing re-emergence of pain during the state of latent sensitization? [12, 

16, 17]. It is tempting to speculate that what we call ‘resolution of pain’ by T cells and 

macrophages reflects a new homeostatic balance in which re-instatement of pain is actively 

prevented (Figure 1).
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Multiple fundamental questions also remain to be addressed, for example: how are the CD4+ 

or CD8+ T cells that promote resolution of pain activated to produce and release endogenous 

opioids, IL10 and/or other pain suppressing factors? Are these activation signals specific for 

each form of chronic pain? What is the nature of the chemotactic signal(s) that recruit T 

cells to the site of inflammation or tissue damage, or to the DRG, nerve, spinal cord or other 

sites of action? Are the effects of T cells on the nervous system direct or indirect? Do 

macrophages play and additional role or do they mediate or increase the pain suppressing 

effects of T cells? It also remains to be determined whether the activity of T cells contributes 

to the state of latent sensitization by releasing endogenous opioids or (promoting production 

of) cytokines like IL10. Once we more clearly understand which and how specific subsets of 

T cells are activated to promote pain resolution, we may also use these parameters as a 

predictive biomarker to identify individuals at risk for chronic pain e.g. before surgery or 

chemotherapy (see Clinicians Corner). These patients could then be selected for 

interventions that boost the activity of these endogenous T cell-mediated pain resolution 

pathways before exposing them to chemotherapy or surgery to prevent transition to chronic 

pain.
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Glossary:

Allodynia
pain due to a stimulus that does not normally provoke pain

CD4+ or CD8+ T cells
CD4 and CD8 are cell surface markers on subsets of T cells that have specific functions. 

CD4 cells are also known as helper T cells, while CD8 cells are cytotoxic and suppressor T 

cells. Regulatory T cells are identified within both the CD4 and CD8 subsets

Chronic pain
pain that lasts or recurs for more than three months

Chemotherapy-induced peripheral neuropathy
pain, numbness and tingling that develops in a glove-and-stocking distribution in response to 

treatment of cancer patients with chemotherapeutics

Dorsal root ganglion
contains the cell bodies of primary pain sensing neurons

Neuropathic pain
pain caused by a lesion or disease of the somatosensory nervous system

Nociceptor
a central or peripheral neuron of the somatosensory nervous system that is capable of 

encoding noxious stimuli
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Pain
an unpleasant sensory and emotional experience associated with actual or potential tissue 

damage, or described in terms of such damage

Rag1 or 2−/− mice
mice genetically deficient in the enzyme Rag1 or Rag2 do not develop mature T and B 

lymphocytes because both enzymes are required for rearrangement of antigen receptors

SCID mice
Severe combined immunodeficient mice: these mice do not have mature T and B cells due to 

a genetic deletion on chromosome 16

Sensitization
Increased responsiveness of pain sensing neurons to their normal input, and/or recruitment 

of a response to normally subthreshold inputs. Latent sensitization refers to the concept that 

pain can re-emerge after apparent resolution when silencing pathways are interrupted, e.g. 
by inhibiting opioid receptor signaling
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Clinician’s Corner

• In most cases pain caused by surgery, chemotherapy or infection resolves 

when tissues heal, inflammation resolves, or treatment is completed. 

However, a significant subgroup of patients transitions to chronic pain.

• Treating a chronic pain condition still represents a major clinical challenge. It 

is widely accepted that persistent (neuro)inflammation drives chronic pain. 

However, treatment with immunosuppressive drugs like NSAIDs is often not 

sufficient to treat chronic pain.

• The finding that pain often persists even when inflammatory activity is 

successfully controlled, supports the hypothesis that active immune regulation 
is needed for resolution of pain. If so, combining anti-inflammatory therapies 

with interventions that activate this pain resolving immune circuitry may well 

be key to developing novel treatments for chronic pain. Such combined 

interventions may well address the underlying cause of the persistence of the 

pain state rather than targeting only the symptom.

• The immune system promotes resolution of pain through the activity of T 

cells and macrophages. These cells can produce anti-inflammatory cytokines 

like IL10 and opioid peptides including enkephalins and endorphins. We 

propose that chronic pain may develop when these immune resolution 

mechanisms fail. If so, predictive biomarkers for the risk of developing 

chronic pain could be developed by assessing the capacity of immune cells, 

including T cells and monocytes in the peripheral circulation, to produce pro-

resolution factors like IL10 and opioids.

• Studies in models of inflammatory bowel disease have shown that developing 

immunization strategies to suppress pain may be possible.

• With respect to chemotherapy-induced peripheral neuropathies, future studies 

should determine whether ex vivo “education” of T cells by chemotherapy 

could accelerate resolution of this debilitating side effect of cancer treatment.
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Outstanding questions:

• Can we activate the endogenous immune mediated resolution pathways to 

treat chronic pain? Transfer of T cells from mice that had recovered from 

CIPN to T cell deficient recipient mice before the start of chemotherapy 

prevents development of chemotherapy-induced mechanical allodynia [31]. 

This points to the interesting possibility that transfer of autologous T cells 

educated ex vivo by chemotherapy could be developed as an intervention to 

prevent chronic pain after cancer treatment.

• Does the immune system contribute to resolution of pain-related changes in 

affect, such as anxiety and depression? T cells and IL10 signaling are not only 

required for resolution of inflammatory pain but also for resolution of 

depression-like behavior in response to transient peripheral inflammation 

[76]. In addition, transfer of T cells from mice that had been exposed to a 

stressor to T cell deficient mice protected the recipients against stress-induced 

depression-like behavior [77].

• Can we develop ways to promote IL10 signaling or (endogenous) IL10 

production to control chronic pain. Studies by Watkins and co-workers show 

that IL10 encoding vectors increase IL10 levels in the spinal cord and results 

from studies in dogs provide promising results for control of osteoarthritis 

related pain [53, 78]. Can this strategy be used to prevent or treat chronic 

pain? For how long is increased IL10 signaling needed, and is this safe?

• Can the capacity of the peripheral blood leukocytes to produce IL10 or 

endogenous opioids be used to identify individuals at risk for chronic pain 

e.g. before surgery or chemotherapy? Will this help select patients who would 

benefit most from novel preventive or therapeutic interventions hat target the 

immune system?

• Does persistent IL10 signaling to sensory neurons contribute to keeping the 

nervous system under control during the state of latent sensitization? Do 

disturbances in the immune system lead to re-emergence of pain?
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Highlights:

• A better understanding of how resolution of acute pain is regulated uncovers 

novel therapeutic strategies urgently needed by patients with chronic pain.

• A key role of the immune system in pain resolution may explain why anti-

inflammatory drugs are often not sufficient to treat chronic pain.

• T cells promote resolution of pain in males and females and there is a key 

contribution of M2-type macrophages and signaling by IL10 and opioids 

produced by these cells.

• The prediction is that failure of immune-mediated resolution will lead to 

chronic pain. If so, stimulating endogenous immune-mediated resolution 

pathways should provide a novel approach to eliminate the cause of chronic 

pain rather than providing temporary symptom relief.
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Figure 1, Key Figure: Contribution of T cells and macrophages to the resolution of pain
Top Panel: Pain induced by transient insults such as tissue damage, inflammation, or drug 

treatment, does not resolve spontaneously once the driver is gone. Resolution of pain is an 

active regulatory process that requires the activity of T cells (T) and wound healing M2 

macrophages (M2). When this resolution fails, M1 macrophages remain active and promote 

chronic pain. The apparent resolution of pain is the result of a novel homeostatic balance 

that requires active suppression, a situation known as latent sensitization.

Bottom Panel: Potential pathways contributing to T cell-mediated suppression or resolution 

of pain. CD4+ or CD8+ T cells suppress pain or promote the resolution of pain after recovery 

from inflammation, surgery or completion of chemotherapy via multiple pathways. T cells 

can produce the anti-inflammatory cytokine IL10 and promote the differentiation of M1 pro-

inflammatory macrophages into M2 wound healing macrophages. Both T cells and M2 
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macrophages can release IL10 and opioid peptides that can signal to sensitized pain sensing 

neurons in the peripheral and central nervous system to reverse or control sensitization and 

resolve pain. In addition, M2 macrophages can transfer mitochondria to sensory neurons in 

dorsal root ganglia thereby contributing to resolution of pain. T cells and macrophages likely 

produce additional currently unknown factors (?) that contribute to pain resolution.
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Figure 2: CD4+ T cells suppress pain in models of inflammatory bowel disorder (IBD) via release 
of enkephalins
Bacterial antigens presented by antigen presenting cells via MHC class II activate CD4+ T 

cells to produce enkephalins. Upon exposure to the antigen in the gut, CD4+ T cells release 

these enkephalins that subsequently suppress pain sensitivity.
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Figure 3: Education of CD8 T cells to prevent chemotherapy-induced neuropathy
Wild type (WT) mice treated with cisplatin develop mechanical hypersensitivity that 

resolves after completion of chemotherapy. Rag2−/− mice that do not have mature T and B 

cells develop persistent in mechanical hypersensitivity in response to the same course of 

cisplatin (cis). Adoptive transfer of CD8+ T cells from saline (sal) treated mice to Rag2−/− 

mice prior to treatment with cisplatin normalizes resolution of CIPN. Adoptive transfer of 

CD8+ T cells obtained from WT mice that have recovered from cisplatin-induced 

neuropathy (Educated CD8+ T cells) prevents development of cisplatin-induced mechanical 

hypersensitivity in the recipient Rag2−/− mice.
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Box 1:

Contribution of neuroinflammation to chronic pain

Much of the research effort on chronic pain has focused on understanding the mechanisms that are responsible for maintaining pain and 
multiple key pathways have been identified. There are clear changes in the gene expression pattern in peripheral pain sensing neurons that have 
their cell bodies in the dorsal root ganglia [18]. These nociplastic changes contribute to the hyperexcitability of these neurons that is responsible 
for increased sensitivity to pain and can also lead to spontaneous firing. Blocking the activity of these peripheral pain sensing neurons 
suppresses pain, indicating their key role in chronic pain.

The excitability of these peripheral neurons and of second order pain sensing neurons in the spinal cord is regulated by multiple other cell types, 
including microglia and astrocytes in the spinal cord, Schwann cells in the peripheral nerve, keratinocytes in the skin, macrophages infiltrating 
dorsal root ganglia, nerve and spinal cord, and infiltrating lymphocytes [69]. All these cells produce mediators that can increase neuronal 
excitability and many of these mediators can also inhibit the activity of descending inhibition pathways. Pain promoting molecules produced 
and released by these cells include inflammatory mediators such as cytokines, reactive oxygen species, bradykinin, growth factors and 
prostaglandins, but also so-called gliotransmitters such as ATP, and glutamate that can rapidly activate neurons [69]. Preclinical studies have 
shown that targeting the signaling pathways engaged by these mediators can at least temporarily suppress pain, but in most cases pain does not 
fully resolve and continuous treatment is required [70]. We also want to emphasize that there is clear evidence for a key role of M1-type 
macrophages in the onset and maintenance of chronic pain in multiple models. Local depletion of the DRG/spinal cord from macrophages has 
been shown to prevent chronic neuropathic pain multiple models [71–73].
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Box 2:

Major cytokine-based subsets of T cells and macrophages

CD4+ T cell subsets

Positive Negative

Th1 IFNγ, IL2, TNFα IL4

Th2 IL4, IL5, IL9, IL10, IL13, TNFα IFNγ

Treg IL4, IL10, TGFβ

Th9 IL9

Th17 IL9, IL17, IL21, IL22 IL4, IFNγ

Th22 IL22 IL4, IFNγ, IL9, IL17

CD8+ T cell subsets

Tc1 IFNγ, IL2,TNFα IL4, IL5

Tc2 IL5, IL13 IFNγ

Treg IL10, TGFβ

Tc9 IL9, IL10

Tc17 IL17, IL21

Macrophages

M1 TNFα, IL1β, IL6, IL12, IL23, IL-27

M2a IL10, TGFβ

M2b TNFα, IL1β, IL6, IL10

M2c IL10, TGFβ

M2d IL10

Overview of the major subsets of CD3+ T cells and macrophages based on cytokine production based on references [74] and [75]. There are 
additional subsets of T cells, including γδ T cells and T cell subsets can be further divided on the basis of e.g. their function as memory, effector or 
effector memory T cells, but this is beyond the scope.
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