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Abstract
Hospital-associated infections are a major concern for global public health. Infections with antibiotic-resistant pathogens can 
cause empiric treatment failure, and for infections with multidrug-resistant bacteria which can overcome antibiotics of “last 
resort” there exists no alternative treatments. Despite extensive sanitization protocols, the hospital environment is a potent 
reservoir and vector of antibiotic-resistant organisms. Pathogens can persist on hospital surfaces and plumbing for months 
to years, acquire new antibiotic resistance genes by horizontal gene transfer, and initiate outbreaks of hospital-associated 
infections by spreading to patients via healthcare workers and visitors. Advancements in next-generation sequencing of 
bacterial genomes and metagenomes have expanded our ability to (1) identify species and track distinct strains, (2) compre-
hensively profile antibiotic resistance genes, and (3) resolve the mobile elements that facilitate intra- and intercellular gene 
transfer. This information can, in turn, be used to characterize the population dynamics of hospital-associated microbiota, 
track outbreaks to their environmental reservoirs, and inform future interventions. This review provides a detailed overview 
of the approaches and bioinformatic tools available to study isolates and metagenomes of hospital-associated bacteria, and 
their multi-layered networks of transmission.
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Introduction

Over the course of several days, the owner of the quintes-
sentially gloomy Gothic mansion, the House of Usher [1], 
quietly confesses to the Narrator his belief that the source 
of the mysterious illness which has plagued him and his 

family for generations—is the house itself. He is possessed 
by the idea that his house is alive and has exerted its “silent, 
yet importunate and terrible influence” by repeatedly infect-
ing his family with an unexplainable disease. While such 
supernatural forces are securely confined to the pages of 
Poe’s short stories, it is possible for a building to repeatedly 
infect people with the same pathogens. Fortunately, this is a 
problem which can be addressed far less dramatically than 
dumping the building into a lake.

Nosocomial, or hospital-acquired infections (HAI, also 
referred to more generally as “healthcare-associated infec-
tions”) are caused by pathogens whose source is within the 
hospital [2]. These pathogens can contaminate and persist 
on high-contact surfaces such as light switches, call but-
tons, and bedside rails, as well as the building’s plumbing, 
and they can be transmitted between patients via healthcare 
workers and visitors [3] (Fig. 1a). In United States (US) 
acute care hospitals, 4% of patients have one or more HAIs, 
with 11.5% of these patients dying during hospitalization 
[4]. Critically-ill and immunocompromised patients in inten-
sive care units (ICU) are the most vulnerable to HAIs due 
to severe underlying diseases and indwelling devices that 
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provide an entryway for pathogens [5–7]. A study of 15,202 
patients worldwide reported that 21% of ICU patients had an 
ICU-acquired infection, and ICU-acquired infections were 
independently associated with higher risk of in-hospital 
mortality compared with community-acquired infection [8].

Of special concern are HAIs caused by antibiotic-resist-
ant (AR) organisms [9, 10]. The widespread use of antibiot-
ics and antimicrobials in hospitals, with 50% of hospital-
ized patients and 70% of ICU patients receiving at least one 
antibiotic during their stay [4, 8], make these buildings a 
hotspot for the evolution of antibiotic and multidrug-resist-
ant (MDR) pathogens [11]. In the US, more than 2.8 mil-
lion AR infections occur each year, resulting in more than 
35,000 deaths [12]. Between 2007 and 2015, the European 
Union saw a 2.5-fold increase in the number of infections 

and deaths attributed to AR organisms [13]. Central to the 
efforts to combat AR is the recognition that it is a product 
of selective pressures present in nearly all ecological habi-
tats, driven by diverse bacterial taxa via multiple molecular 
mechanisms [14].

Studies of hospital-associated microbiota are guided 
by three main questions: (1) What species are present? (2) 
What AR genes do they have? and (3) Can those genes be 
mobilized? These questions can be targeted to isolates of 
known HAI-causing pathogens, or comprehensively sur-
veyed using patient and hospital environment metagenomic 
samples. Further, longitudinal sampling coupled with com-
parative genomics can track transmission of MDR bacteria 
(Fig. 1a), as well as the mobilization of their AR features 
between species and genetic elements (Fig. 1b), allowing 
researchers to track the multiple layers of strain and gene 
transmission during HAI outbreaks. Recent developments 
in next-generation DNA sequencing (NGS) technologies 
as well as question-specific approaches have empowered 
researchers to analyze genomic and metagenomic datasets 
at the high-resolution needed to accurately track the trans-
mission of MDR bacteria and their genetic elements. This 
work can, in turn, inform infection prevention practices and 
gauge future outbreak risks [3].

In this review, we will summarize the approaches and 
bioinformatic tools available to study hospital-associated 
MDR bacteria, evaluate their strengths and weaknesses, and 
provide examples of their successful use.

Surveying taxonomy and tracking strains

Global public health organizations prioritize HAI-causing 
and MDR bacteria in different ways, but they all include 
the same key players. The Infectious Disease Society of 
America terms the pathogens responsible for the majority 
of HAIs, ESKAPE pathogens [15, 16]. ESKAPE stands for 
Enterococcus faecium, Staphylococcus aureus, Klebsiella 
pneumoniae, Acinetobacter baumannii, Pseudomonas aer-
uginosa, and Enterobacter species. It also refers to these spe-
cies’ abilities to “escape” killing by antibiotics [17]. (Some 
groups also include Escherichia coli, making the acronym 
ESKAPEE). The US Centers for Disease Control (CDC) 
prominently features ESKAPE pathogens in its list of 18 
AR pathogens [12], categorized based on level of concern 
to human health—urgent, serious, or concerning—as does 
the World Health Organization’s (WHO) priority list of 12 
pathogens [18], categorized based on the need for new anti-
biotics to treat them—critical, high, or medium. Given their 
propensity for causing HAIs, hospital surveillance efforts 
should pay special attention to ESKAPE pathogens.

However, ESKAPE and other nosocomial pathogens 
represent only a small fraction of the microbial diversity in 
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Fig. 1  Multi-layered transmission networks of nosocomial pathogens 
and AR genes. During outbreaks of HAIs, a MDR pathogens can be 
spread between patients via healthcare workers and visitors, and/or 
persistent reservoirs of hospital-associated microbiota such as high-
touch surfaces and plumbing. Additionally, b AR genes can be spread 
intracellularly (e.g., chromosome to plasmid, or plasmid to plasmid) 
or intercellularly between bacteria of different taxa via plasmids and 
other MGEs.
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the hospital environment (relative abundance < 0.5%) [19]. 
While regular cleaning and disinfecting protocols keep the 
microbiota in the built environment of the hospital much less 
taxonomically diverse than other environments, hospitals are 
far from sterile [20, 21]. Metagenomics have quickly altered 
the field of microbiology by shifting focus from bacteria as 
isolated players, to members of a dynamic community which 
actively exchanges genetic materials and competes against 
one another. Here, we refer to the hospital microbiome as the 
microorganisms inhabiting the hospital environment (e.g., 
surfaces, plumbing). This includes non-pathogenic “environ-
mental” bacteria which may not be the root cause of clini-
cal infections, but can influence the pathogens that do. The 
hospital microbiome is a reservoir of AR genes that can 
be exchanged between environmental and disease-causing 
pathogens via conjugative plasmids [20], and can facilitate 
the persistence of MDR bacteria through the formation of 
biofilms [22]. Another potent reservoir of AR genes and 
hotspot for genetic exchange is patient-associated microbi-
omes (e.g., gut and skin microbiomes). These can seed the 
hospital environment with MDR bacteria, which can then 
be transmitted to other patients [21], making the hospital 
environment is both a reservoir and vector of AR genes and 
HAI-causing pathogens (Fig. 1a). Therefore, any survey of 
the taxonomic and functional diversity of hospital-associated 
microbiota is woefully incomplete if it does not consider the 
complete hospital and patient microbiomes.

Historically, technological limitations forced researchers 
to choose between one group or the other—a detailed picture 
of key pathogens without consideration for the “unculturable 
majority,” or a complete but low-resolution sketch of the 
patient or hospital microbiome. However, by applying mul-
tiple approaches and technologies in parallel, recent studies 
have been able to construct the most complete picture of 
hospital-associated microbiota, paying appropriate attention 
to both the pathogenic and environmental bacteria. Below, 
we describe each of these technologies, the kinds of ques-
tions they can be applied to, and their limitations.

Identification of single taxon isolates

The most basic method of identifying a bacterial species is 
through selective culture. Here, a clinical or environmental 
sample is streaked onto agar-based media containing spe-
cific nutrients and/or antibiotics, and then incubated aero-
bically or anaerobically. The combination of these factors 
supports the growth of specific species, with a heavy bias 
for ESKAPE and other human pathogens. Selective cultur-
ing alone can be used to identify species, or as a preliminary 
step before more in-depth characterization. However, selec-
tive culture assays are fundamentally limited by the growth 
rate of the bacteria, thereby forcing microbiologists, clini-
cians, and patients to wait for the results, and subsequent 

modifications to treatment. This delay can be extended by 
days or weeks if further testing (e.g., antibiotic susceptibility 
or biochemical testing) is needed. Additionally, species that 
are slow-growing, at low abundance, or simply cannot grow 
in the conditions tested will be overlooked by this method. 
Alternatively, for fastidious microorganisms whose culture 
is either impractical or unreliable (e.g., pathogens associated 
with sexually transmitted diseases), nucleic acid amplifica-
tion testing (NAAT) targets specific genetic sequences for 
amplification by polymerase chain reaction (PCR) and fluo-
rescent probe-based detection [23, 24].

Within the past decade, clinical microbiology labora-
tories have begun a revolutionary shift away from solely 
relying on selective culture-based identification to adopting 
matrix-assisted laser desorption/ionization time-of-flight 
mass spectrometry (MALDI-TOF MS) [25]. MALDI-TOF 
takes advantage of the fact that each species has a unique 
assortment and composition of cell products. This results 
in a distinct mass-to-charge (m/z) ratio pattern, which 
can then be compared to a large database of characterized 
organisms to match the sample with a known species. This 
approach enables the rapid identification of genera and 
species from isolates or even direct clinical samples. For 
example, Mycobacterium are notoriously slow and fastidious 
growers, typically taking 7–21 days to grow by conventional 
culture-based identification methods, but MALDI-TOF has 
reduced the time to identification from weeks to hours [26]. 
However, the principal crux of MALDI-TOF is its reliance 
on a pre-defined database. This is not a problem for well-
studied species, such as HAI pathogens, but it can lead to the 
misidentification of rarer or less characterized species. For 
example, in one study MALDI-TOF misidentified 27/289 
isolates, including isolates belonging to a novel genus of 
MDR Enterobacteriaceae, Superficieibacter electus [21]. To 
overcome such limitations, the databases for MALDI-TOF 
MS are constantly undergoing updates and expansions for 
improved characterization of diverse taxa and environments 
[27–29].

While the above methods can identify taxa using growth 
phenotypes, unique DNA fragments, or biophysical proper-
ties, the most high-resolution picture of a microorganism 
comes from sequencing its genome. The ever-decreasing 
costs of NGS technologies [30] have enabled their adop-
tion by microbiology labs for isolate identification. Whole 
genome sequencing (WGS) enables the de novo assembly 
of bacterial isolate genomes, and study of their genetic con-
tents and architectures [31, 32]. Briefly, DNA is extracted 
from the isolate sample, fragmented into the appropriate 
length for the sequencing platform, tagged with unique bar-
codes, and sequenced. Each sequenced fragment constitutes 
a read, and overlapping reads can be assembled into longer 
stretches of contiguous DNA sequences, called contigs. 
Assembly of this WGS data into genomes is accomplished 
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using bioinformatic tools such as Velvet [33], SPAdes [34], 
and Unicycler [35]. Other tools, such as Quast [36], can then 
assess the quality of an assembly by looking at several fac-
tors including the length distribution of contigs, percentage 
of unresolved bases, and overall coverage of the genome. 
Species assignments can then be made in silico using MASH 
[37], or, for more in-depth characterization (e.g., if MASH 
doesn’t agree with the MALDI-TOF assignment), RNAm-
mer to identify the 16S sequence [38] (described in detail in 
the next section) followed by submission to the EzBioCloud 
taxonomic database [39]. The genome’s open reading frames 
can then be identified and annotated using Prokka [40].

WGS has been used to track multiple outbreaks of MDR 
organisms, including vancomycin-resistant E. faecium 
(VREfm) [41], MDR Sphingomonas koreensis [42], and K. 
pneumoniae carbapenemase (KPC)-producing E. coli [43]. 
Additionally, WGS can be a powerful tool to confirm or 
re-evaluate species identifications of clinical samples made 
by more traditional methods. For example, K. variicola, 
a relative of the more well-known ESKAPE pathogen K. 
pneumoniae, has quickly become recognized as an emerging 
pathogen in its own right, and K. variicolia-infected patients 
have a higher mortality than K. pneumoniae-infected [44]. 
However, WGS analyses revealed that 2–10% of isolates des-
ignated as K. pneumoniae by selective culture and MALDI-
TOF had been misidentified, and were actually K. variicola 
[45–47].

Studies of isolate genomes are more accurate—and 
therefore more useful for strain tracking (see later sec-
tion)—if the reads can be assembled into a complete, con-
tiguous sequence. However, the process of fully assembling 
a genome using short-read WGS data alone is notoriously 
difficult because of highly repetitive elements that exist at 
multiple sites throughout the chromosome. These challenges 
can be mitigated through the use of long-read sequencing 
technologies. Platforms such as single-molecule real-time 
sequencing (SMRT or PacBio) and nanopore sequencing, 
can produce reads of > 10 kb to over 100 kb [48, 49]. As a 
result, they generate fewer, longer contigs per genome, which 
span the repeat elements that confound WGS assembly. As 
of the time of writing, long-read sequencing of a bacterial 
genome is about twice as expensive as short-read. While still 
affordable for a small subset of genomes, long read sequenc-
ing can become prohibitively expensive for large-scale pro-
jects involving hundreds of isolates. For this reason, most 
researchers choose to perform long-read sequencing on sub-
sets of isolates—a decision typically guided by first perform-
ing WGS or antibiotic susceptibility test (AST) (described 
in detail in a later section) to identify isolates of interest. 
Long-read technologies are characteristically less accurate 
(75–90%) than short-read Illumina sequencing (99.8%) [48, 
50]. While the errors of PacBio sequencing are random and 
therefore can be corrected by increasing the coverage, the 

errors of nanopore sequencing are non-random (i.e. occur 
in specific nucleotide patterns) [51]. Nevertheless this can 
be mitigated with hybrid assembly which uses both short- 
and long-reads, or where long-read assembly is followed 
by short-read error correction [52] using tools like Unicy-
cler [35] and hybridSPADES [53], respectively. Even with 
low coverage, long-read hybrid assembly is able to resolve 
repetitive elements and gaps in the relatively inexpensive 
short reads, resulting in a cost-effective mode of obtaining 
high-quality, closed genomes [54].

Metagenomic approaches for community surveys

To survey the entire taxonomical landscape of the hospi-
tal microbiome including the unculturable majority, many 
studies have turned to metagenomic techniques. The 16S 
rRNA gene is highly conserved within bacterial species [55], 
making it an ideal candidate for phylogenetic studies [56]. 
In 16S rRNA gene amplicon (16S) sequencing [57, 58], con-
served regions of this gene are amplified through PCR and 
then sequenced. Sequenced reads are assigned to bacterial 
taxa by comparing reads against known databases [59], or 
by grouping similar sequences into Operational Taxonomic 
Units (OTU) [60]. However, using 16S data to estimate the 
relative abundances of taxa can be potentially misleading, 
as DNA extraction and PCR amplification steps are prone 
to bias [61]. This can be mitigated through the use of ampli-
con sequence variants (ASV), which can denoise sequencing 
data of the amplification and sequencing errors, and then be 
organized into OTUs or be used as their own unit of analysis 
[62]. Moreover, by only sequencing a small fragment of the 
bacterial genome (i.e. the rRNA gene), 16S sequencing is 
limited to species-level resolution and is blind to other gene 
functions of interest, such as AR. Some of the earliest efforts 
to characterize hospital-associated microbiota using high-
throughput metagenomic sequencing involved the use of 
16S rRNA in neonatal intensive care units (NICU) [63]. For 
example, a study examining the guts of premature infants 
showed that the dominating taxa were similar to those on 
hospital surfaces, especially feeding and intubation tubing 
[64].

While WGS is limited to single-genome isolates, and 
16S sequencing only sequences small fragments of the 
metagenome, whole metagenome shotgun (WMS) sequenc-
ing conducts short-read sequencing on all DNA present in 
a sample. This facilitates the characterization of both the 
taxonomic and functional makeup of complex metagenomes. 
The resolution of a WMS dataset depends on the number 
of sequenced reads and the complexity of the sample (i.e. 
the higher the resolution and/or the greater the complexity, 
the more reads that are required). However, the more reads 
generated per sample, the more expensive the sequencing 
becomes. Deep-whole metagenome shotgun sequencing can 
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resolve strain-level taxonomic and functional information, 
but the number of reads required (e.g., 2.5 billion reads for 
“ultradeep” sequencing) may be prohibitively expensive for 
large-scale studies [65]. On the other hand, “shallow” shot-
gun sequencing uses as few as 0.5 million reads, but can 
still resolve species-level taxonomic information and func-
tional profiling [65]. The cost of shallow shotgun sequencing 
is comparable to 16S, but provides more information, at a 
higher resolution, with better reliability. After sequencing, 
taxonomic profiling of the metagenomic sample (such as 
composition and relative abundances) can then be deter-
mined using tools such as MetaPhlAn2 [66] or Kraken [67], 
and functional profiling of the metagenome at the species 
level with HUMAnN2 [68].

WGS and WMS sequencing are not mutually exclusive 
and can be used in concert. For example, WGS and WMS 
have been used together to identify the gut microbiota as the 
source of several blood-stream infections in immunocom-
promised hematopoietic cell transplantation recipients [69]. 
Here, the genomes of infection-causing blood isolates of 
E. coli and K. pneumoniae were matched to closely-related 
strains in the patients’ stool—in one instance, with zero sin-
gle nucleotide polymorphisms (SNPs) between the blood-
stream isolate and stool strain—strongly suggesting the gut 
was the source of this pathogen.

Taking a step further, the de novo assembly of metage-
nome-assembled genomes (MAG) has been a longstanding 
goal in microbiome research. Assembly using WMS data 
is more complicated than for single-isolate WGS because 
the algorithms need to account for unknown abundances of 
different organisms with unknown phylogenetic relation-
ships [70]. To overcome these challenges, several metagen-
ome-specific assemblers have been developed for use with 
short-read sequencing data, including MEGAHIT [71], 
MetaSPAdes [72] and MetaVelvet [73, 74]. However, the 
limitations of short reads coupled with microbiome chal-
lenges—low species abundance, high strain diversity, and 
low recovery rates for some phyla—means this approach 
usually generates incomplete draft genomes of varying 
quality [75] by binning similar contigs based on sequence 
composition and coverage [76, 77]. However, as binning 
quality relies on the size and contiguity of the assembly 
(i.e. fewer longer contigs per genome increases sensitivity 
and specificity), this effort can be improved with long-read 
sequencing. For example, Lathe is a workflow for extract-
ing high molecular weight DNA from stool, followed by 
long-read assembly with short-read error correction [78]. 
Alternatively, hybrid metagenomic assemblers which com-
bine long reads with short reads, such as OPERA-MS [79], 
have been shown to provide strain-resolved genomes with 
greater base pair accuracy and contiguity than non-hybrid 
assemblies, and may be preferred where low-coverage long-
read sequencing data is available.

Despite the advantages of metagenomic sequencing over 
the laborious process of large-scale isolation of culturable 
pathogens, it often cannot provide detailed genomic char-
acterization of the key pathogens that drive HAIs because 
these are generally present at low relative abundances 
(< 0.5% on hospital surfaces) [19]. The middle-ground 
between these approaches is culture-based enrichment (aka 
quasi-metagenomics, sweep metagenomics), whereby a 
metagenomic sample is first enriched for target organisms 
or phenotypes using growth medium, and sweeps from agar 
plates are sequenced—as opposed to single colonies. To 
shift the distribution of a metagenomic sample away from 
abundant environmental or commensal species and toward 
low-abundance drug-resistant pathogens, samples can first 
be enriched in broth and then the mixed culture be plated 
on antibiotic-containing media [19]. Alternatively, to infer 
the population structure of a target organism, samples can 
be plated directly onto antibiotic-free agar [80]. Culture-
based enrichment and nanopore sequencing has been used 
on hospital surface samples, generating 2,347 high-conti-
guity genomes, 1,693 phage sequences, and 5,910 closed 
plasmid sequences (1,400 containing AR genes), > 60% 
of which were novel [19]. This led to the observation that, 
while MDR organisms were widely distributed and persis-
tent across sites, the bacterial communities associated with 
high-touch surfaces (e.g., bed rail, bedside locker, cardiac 
table) are taxonomically distinct from hospital plumbing 
(e.g., sink traps and aerators), which are known reservoirs of 
outbreak-associated pathogens [20, 81, 82]; however, many 
specific pathogens and AR genes are more common in the 
high-touch sites. Further, the two community types harbor 
distinct AR genes, with the high-touch surfaces carrying 
a wider diversity at lower frequencies—underscoring the 
distinctness of hospital environments as AR gene reservoirs.

Tracking strains across samples

Studies of HAI outbreaks are not only motivated by ques-
tions about the identity or composition of individual sam-
ples, but also by how they compare to samples from other 
sites or patients, and change over time. Once the identity 
or composition of a sample is determined using the above 
methods, comparative genomics can then be used to evalu-
ate their similarity to other samples. Further, as outbreaks 
can be caused either by the repeated transmission of a single 
strain or the sporadic introduction of several distinct strains, 
determining the level of relatedness between genomes sam-
pled from different sites and patients at different timepoints 
can provide insights into the epidemiology of an outbreak 
and inform decisions about how to best intervene.

Evaluating genome similarity at the species level typi-
cally involves pairwise comparisons and quantification of 
average nucleotide identity (ANI), the average percentage 
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of nucleotides which are identical between two genomes. 
An ANI of least 96% is considered the minimum thresh-
old for two samples to be considered the same species [83], 
and ever more stringent thresholds have been used to define 
strains (> 99.9% ANI) [42], strain derivatives (> 99.99% 
ANI) [20], and direct strain transfers (> 99.999%) [84]. 
However, at these sub-species levels, the resolution of ANI 
diminishes and thus may no longer be appropriate. While 
there is no defined consensus, most studies rely on some 
form of genomic distance cutoff—a maximum threshold for 
mutational divergence between two samples. (Table 1 is a 
list of studies and their selected methods for identifying and 
tracing strains.)

A fundamental question for determining mutational dis-
tance is whether to compare the whole genome or just the 
core genes. The core genome refers to the subset of genes 
that are shared among most or all strains of a species [85]. 
Because they are evolutionarily conserved, mutations in 
core genes often reflect true phylogenetic relationships [86]. 
Tools such as Roary [87] allow this core gene/accessory 
gene distinction, which can then be applied using other tools 
for downstream analyses such as RAxML [88] to construct 
phylogenetic trees, and fastGEAR [89] and BAPS [90] to 
distinguish strains. However, core genome distance alone 
is somewhat limited in that it willfully ignores intergenic 
regions and any gene that is not present in all samples, 
potentially losing information about accessory genes and 
intergenic regions which can be important for phylogeny. 
Nevertheless, core- and whole-genome alignments are sig-
nificantly correlated [21], making core genome alignment 
a computationally efficient mode of comparing conserved 
functions.

Once a method for genome alignment has been cho-
sen, relatedness is typically determined by SNP distances 
between the isolates. In practice, strains are generally under-
stood as sub-groups within a species that share genotypic 
and phenotypic characteristics [91]. However, there is no 
universal SNP distance threshold that defines strain-level 
relatedness, and as such the cutoff varies from study to study 
[92]. Stringent cutoffs, such as less than 10 SNPs, allow 
for researchers to argue for clonality [69]. However, other 
studies have set their cutoffs at 20 to 100 SNPs [93–95] 
(Table 1). In general, the literature has been permissive 
towards independently determined cutoff values so long as 
they are reasonably conservative about claiming clonality, 
and establish a clear numerical gap between those that are 
related and those that are not. A good way to do this is to 
first calculate all pairwise distances between isolates [21], 
and identify a natural “elbow” in the curve. This will be 
the point at which the distribution splits into two, and most 
likely (in a multi-patient study) where within-patient and 
between-patient comparisons separate. For example, in a 
comparative study of the gut commensal Bacteroides fra-
gilis, isolates from the same patient differed by fewer than 
100 SNPs, while those from different patients were on aver-
age more than 10,000 SNPs different [96]. Metadata about 
the isolates’ sampling site or timepoint can also provide 
additional context and biological support for interpreting 
distance cutoffs.

Another factor to consider when comparing genomes 
what will be used as the reference genome. Many studies 
choose to use a well-annotated, external reference that is 
known to be closely related to the samples at hand [97]. For 
instance, in a study on chronic infections of Burkholderia 

Table 1  Case examples of distance-based approaches to identify strains

Study Organism Sequencing approach Reference Strain 
cutoff

Silva et al. [95] Burkholderia multivorans WGS Temporally initial isolate draft 
genome

 ~ 20 SNPs

Snitkin et al. [232] KPC-producing Klebsiella pneu-
moniae

WGS Temporally initial isolate 40 SNPs

Tamburinin et al. [69] Escherichia coli and others WGS and WMS Best quality isolate draft genome 1 SNP
Coll et al. [94] Methicillin-resistant Staphylococcus 

aureus (MRSA)
WGS Core genome 50 SNPs

Smibert et al. [233] Methicillin-resistant Staphylococcus 
aureus (MRSA)

WGS Core genome with publicly available 
reference genome

183 SNPs

Guerra-Assunção et al. [234] Mycobacterium tuberculosis WGS Publicly available reference genome 10 SNPs
Clark et al. [93] Multidrug-resistant Mycobacterium 

tuberculosis
WGS Publicly available reference genome 50 SNPs

Donkor et al. [235] Staphylococcus aureus WGS Core genome with publicly available 
reference genome

2 SNPs

Sharma et al. [236] Streptococcus pyogenes WGS Publicly available reference genome 1 SNP
Sundermann et al. [237] Vancomycin resistant Enterococcus 

(VRE)
WGS Publicly available reference genome 15 SNPs
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multivorans in cystic fibrosis patients, the authors annotate 
polymorphisms within a given population by referring to the 
well-annotated AU0158 reference genome derived from the 
same outbreak [97]. However, this approach relies on the 
assumption that their isolates are closely related to the ref-
erence and may lose resolution on genomic regions unique 
to the samples. In contrast, studies with longitudinally col-
lected samples may choose to use the first isolate obtained as 
the reference, and interpret subsequent isolates as represent-
ing mutations accumulated since the initial infection event 
[95]. This longitudinal interpretation should be approached 
with caution, however, as it relies on sampling methods 
that are representative of the diversity within the cohort, as 
well as accurate representation of the initial infection event 
itself. What may appear to be a longitudinal evolutionary 
trajectory may actually be the coexistence of multiple strains 
within a sample set that are being sporadically sampled and 
sequenced. Still another potential reference is simply to 
select the best quality (i.e., the most contiguous and com-
plete) draft genome [69]. These approaches are not mutually 
exclusive, and some studies have opted to take a multi-step 
approach: first using a publicly available genome as refer-
ence, building a phylogeny demonstrating that clades are 
grouped by patient, and then constructing patient-specific 
draft genomes for higher resolution analyses [96]. As such, it 
is advised that researchers select a reference genome appro-
priate for the biological questions at hand, while maintaining 
a high assembly quality and rigorous sampling practices.

Accurate quantification of genomic distances in these 
ways requires high-quality assemblies, but other methods 
for resolving strains can be used when this is not available. 
Multilocus sequence typing (MLST) is a simple, curated 
way to consider strain types without introducing an arbitrary 
mutational threshold. MLSTs are defined on a per-species 
basis as specific mutational patterns on a set of five to seven 
housekeeping genes. Strain types (STs) have been defined 
for more than 100 microbial species and genera, making 
it the gold standard of typing [98, 99]. While traditionally 
determined through targeted PCR and Sanger sequencing, 
recent advancements in NGS have enabled the accurate in 
silico typing of samples from WGS [100]. Alternatively, 
some species, such E. coli, are more broadly categorized and 
referred to in terms of phylogenetic groups (phylogroups). 
Phylogroups are members of the same species, but differ 
in biological characteristics such as ecological niche and 
virulence [101, 102]. Like MLST, phylogroups had been 
originally determined by PCR [103], but in silico predic-
tions of phylogroup based on WGS are also available [104].

Surveying hospital-associated microbiota is a complex 
endeavor which can be addressed using several approaches. 
The method(s) chosen will ultimately depend on the avail-
able resources (e.g., sample types, analytical expertise, 
access to equipment) as well as the biological questions 

at-hand. For example, a study interested in the long-term 
adaptations of a pathogen within a host or environmental 
site would benefit from longitudinal sampling of multiple 
isolates per timepoint with WGS, while a similar study 
expecting to observe cross-species and cross-genera inter-
actions may instead opt for WMS sequencing. Additionally, 
a study interested in surveilling pathogens in the hospital 
environment could sample many patients and surfaces, but 
limit the total number of samples per person and surface or 
focus exclusively on MDR organisms. Regardless, a great 
strength to NGS-based approaches is that once sequenced, 
the resulting dataset can be shared publicly and re-analyzed 
using different bioinformatic tools to answer other questions 
(e.g., AR gene repertoire, presence of MGEs).

Profiling antibiotic resistance

Effective surveillance of hospital-associated microbiota 
requires knowledge of not only which species are present, 
but also what their antibiotic resistances and susceptibili-
ties are. AR genes have existed in bacterial populations for 
tens of thousands of years [105], but industrial production 
and extensive anthropogenic use of antibiotics has imposed 
immense selection pressures which results in the amplifica-
tion, diversification, and dissemination of resistance on a 
global scale [106]. AR is usually genetically encoded and 
can arise through mutations such as gene duplication [107], 
overexpression and point mutations [108], or the acquisition 
of fully-functioning genes via horizontal transfer [108, 109]. 
(Non-genetic mechanisms of resistance, such as tolerance 
and persistence, have been reviewed in [110, 111].) Mecha-
nistically, antibiotic resistance can be achieved in three ways: 
(1) keeping the antibiotic out of the cell through decreased 
cell permeability or production of efflux pumps, (2) alter-
ing the antibiotic cellular target of the antibiotic through 
mutation, increased expression, or production of protection 
proteins, and (3) degrading the antibiotic molecule by pro-
duction of antibiotic-inactivating enzymes [112, 113]. The 
resistome is the sum total of all AR genes in a microbiome 
[114, 115].

AR can lead to primary treatment failure, requiring the 
use of reserve or last resort antibiotics, whose use should be 
withheld except for the treatment of MDR infections that 
have exhausted all alternatives, such as the carbapenems, 
colistins, and third-generation tetracyclines [116, 117]. 
However, even highly-resistant strains can continue to 
acquire AR genes, including those against antibiotics of last 
resort for which there are limited treatment options [12, 18]. 
Often these drugs were initially abandoned due to unaccep-
table toxicities, but have since been revisited because they 
are the only remaining options. Plasmid-mediated resist-
ance determinants against reserve antibiotics are significant 
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AR threats, particularly the blaNDM1 and blaKPC carbapen-
emases [118–121] and QNR quinolone resistance proteins 
[122–124]. On the other hand, some AR genes, such as the 
tet(X)-like tetracycline destructases [125] and mcr-1 colis-
tin resistance gene [126], are similarly globally-distributed 
and capable of causing resistance against reserve antibiotics, 
but are rarely observed in clinical samples. While not an 
immediate threat, these genes’ potential for broad dissemi-
nation into human pathogens warrants special attention and 
highlights the importance of surveilling environmental and 
human commensal metagenomes for novel AR genes [127].

Genotypic resistance can be determined using the same 
WGS and WMS data used to determine taxa, and declining 
sequencing costs have coincided with an ever-increasing cat-
alog of known resistance genes [113]. A survey of resistance 
proteins in the UniProt database [128] showed that since 
1986 there has been an exponential increase in the num-
ber of resistance determinants classified as β-lactamases, 
chloramphenicol acetyltransferases or tetracycline efflux 
pumps [129]. In recent years, studies of the resistome have 
expanded from single isolates to entire microbial commu-
nities, shedding light on the importance of environmental 
microbiomes as a reservoir for diverse genotypes [130, 131]. 
Additionally, recently-developed rapid diagnostic tools, 
which infer resistance based on growth phenotypes, promise 
to accelerate the timeline for when clinical microbiologists 
and physicians can determine the resistance profile of an 
HAI, and tailor treatment accordingly [80, 132, 133]. Here 
we highlight some of the main methods for investigating the 
resistome and examples of their application in the clinic.

Traditional methods for AR detection

Determining the resistances and susceptibilities of the 
clinical isolate underlying a HAI can refine treatment from 
broad-spectrum antibiotics—which indiscriminately kill the 
“good” commensal bacteria along with the pathogen, select-
ing for resistance and potentially leading to dysbiosis—to 
targeted, narrow-spectrum antibiotics. AR has traditionally 
been assayed by ASTs, which are culture-based assays that 
determine the concentration of antibiotic required to inhibit 
the growth of an isolate [134]. ASTs can be performed on 
solid media using Kirby-Bauer disks and gradient-diffusion 
strips, or in liquid media using microbroth dilutions. These 
data are then compared to standards (aka clinical break-
points) published by the Clinical and Laboratory Stand-
ards Institute (CLSI) [135] and the European Committee 
on AST (EUCAST) [136] to be translated into resistance 
categories (resistant, intermediate, or susceptible). These 
assays continue to be widely used in hospital clinical micro-
biology laboratories because they provide actionable data 
to guide patient treatment decisions. However, ASTs have 
several limitations which make them unsuited for large-scale 

surveillance of antibiotic resistance. First, they require cul-
tured isolates, precluding insight into the resistome of the 
overall community. Second, they rely on published standards 
to interpret the results, which may be incomplete for the anti-
biotic or species in question, may utilize outdated methodol-
ogy, or may conflict with the guidelines of other agencies 
[137]. Lastly, AST have low-resolution on the genetic under-
pinnings of resistance; however, screening of environmental 
or agricultural isolates using ASTs followed by WGS has 
led to the identification of many novel AR genes [138, 139].

A more high-throughput method of AR determination is 
multiplexed PCR. Panels of DNA primers and probes target 
and amplify known AR gene markers for numerous drug 
classes including methicillin [140], carbapenems [141], 
and tetracyclines [142]. Further, diagnostic kits such as the 
TaqMan Array Card (TAC) [143] target both AR genes and 
taxa-specific sequences, enabling the simultaneous detection 
of pathogens and specific AR genes. The quick turnaround 
rate of this approach enables rapid diagnosis of patients, and 
it is effective with sample types that have a low abundance 
of bacterial DNA and high abundance of contaminating 
human DNA (e.g., blood), which next-generation sequenc-
ing technologies have difficulty with. However, multiplexed 
PCR can only detect AR genes for which it has primers, 
ultimately making a comprehensive analysis of an entire 
resistome unfeasible.

NGS‑based identification and discovery of AR genes

Analyzing WGS and WMS data for the presence of AR 
genes can predict functional features of bacteria without 
the laborious effort of culturing isolates and performing and 
interpreting ASTs or multiplexed PCR reactions. (Sequenc-
ing-based methods for AR gene detection are comprehen-
sively reviewed in [113].) Assembly-based tools directly 
identify AR genes in assembled genomes, generated using 
the WGS and WMS tools described in the previous section, 
by predicting protein-coding regions and comparing them 
with AR gene databases. Resfinder [144] uses BLAST-based 
methods to identify resistance genes from bacterial isolate 
genomes, while Pointfinder [145] detects chromosomal 
point mutations associated with antibiotic resistance, and the 
Resistance Gene Identifier (RGI) [146] uses both pairwise 
comparisons and curated AR detection models to annotate 
AR genes. An additional bonus of assembly-based tools is 
the ability to determine the genetic contexts of AR genes by 
analyzing up- and downstream elements. These can include 
mobile elements which can facilitate the intra- or intercel-
lular transfer of the AR gene, providing greater evidence for 
claims of horizontal transfer (described in more detail in a 
later section). Read-based tools, on the other hand, do not 
rely on prior assembly and can detect AR genes by directly 
aligning reads against reference databases, or splitting reads 
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into k-mers (subsequences of a length k) prior to a data-
base search. SRST2 [147] and Kmer Resistance [148] are 
examples of each, respectively. These tools can identify AR 
genes in contaminated samples as well as low-abundance 
organisms, which would be unfit for de novo genome assem-
bly. Though read-based tools lose contextual information 
about the position of genes within a genome and are prone 
to reporting false-positives due to sequence homology, by 
skipping de novo assembly and protein-coding prediction, 
they are typically faster and less computationally demanding 
than assembly-based tools.

As both methods are reliant on mapping to AR gene data-
bases, it is important that the database used is up-to-date 
and appropriate for the sample type. Some AR gene data-
bases are general, such as CARD (Comprehensive Antibi-
otic Resistance Database) [146], while others are specialized 
towards specific AR gene families (e.g., LacED (Lactamase 
Engineering Database) [149] and the Tuberculosis Drug 
Resistance Database [150]). Using multiple databases can 
mitigate some of the biases inherent to a single database, but 
this approach will still be restricted to the identification of 
known AR genes. However, a potent counterbalance to this 
limitation is the ability to re-analyze sequencing datasets 
or perform targeted PCR on stored isolates when a new AR 
gene is discovered.

For example, the discovery of the plasmid-mediated 
mcr-1 colistin resistance gene [138] was significant because 
resistance to polymixins (an antibiotic of last resort) thus far 
had only involved chromosomal mutations. mcr-1, therefore, 
opened the door for rapid global dissemination of resistance 
against this antibiotic of last resort. The authors retrospec-
tively identified mcr-1 in 16/1,322 (1%) Enterobacteriaceae 
clinical isolates from two Chinese hospitals, but the full 
extent of its spread, both taxonomically and geographically, 
was unknown. Within months of that initial report, multiple 
retrospective analyses of clinical and environmental isolates 
using WGS and PCR were published in rapid succession, 
which collectively showed that the gene had already spread, 
undetected, into several pathogenic species cultured in many 
other countries around the world [151–157]. Now, mcr-1 is a 
staple of AR gene databases, allowing it to be easily identi-
fied in WGS and WMS studies.

Several studies have aimed to characterize the resistomes 
of complex metagenomic samples, such as the human micro-
biome. However, referencing a large database of full-length 
AR genes can be computationally demanding for these com-
plex metagenomic datasets, and the strict cutoffs for pairwise 
alignments can miss remote homologs and novel AR genes. 
As an alternative approach, ShortBRED (Short, Better Rep-
resentative Extract Dataset) [158] constructs markers, short 
peptide sequences conserved within a protein family but dis-
tinct from other families, for AR gene families. Reads are 
then mapped to these marker sets, which can determine both 

the prevalence and abundance of AR genes in a bacterial 
community [131, 159]. Another method is to use a database 
built using profile hidden Markov models (HMM), such as 
Resfams [160], instead of full-length protein sequences. 
Profile HMMs are statistical models trained on multiple-
sequence alignments of genes with a known function. These 
are widely used for protein annotation [161, 162], and the 
authors of ResFams showed it could identify 64% more AR 
genes in soil and human gut metagenomes than pairwise 
alignment with the CARD and ARDB (Antibiotic Resistance 
Genes Database) databases [160, 163].

While the above in silico methods can detect known AR 
genes, functional metagenomics is a sequence-unbiased 
approach which can characterize resistomes and identify 
novel AR genes using the selective power of ASTs, without 
the laborious effort of culturing and screening isolates [164]. 
Functional metagenomic libraries are created by extracting 
total metagenomic DNA from a sample, packaging DNA 
fragments into an expression vector, and transforming that 
library of vectors into a susceptible host (typically E. coli). 
The library can then be screened for resistance via plating 
on antibiotic-containing media (or in other conditions when 
assaying for different phenotypes), and AR genes are identi-
fied by sequencing the surviving clones. PARFuMS (Paral-
lel Annotation and Reassembly of Functional Metagenomic 
Selections) [127] is a bioinformatic pipeline for assembling 
and annotating reads from functional metagenomic selec-
tions. More importantly, this method can identify AR genes 
present in unculturable bacteria which has led to the dis-
covery of novel AR genes and mechanisms [165, 166] and 
antibiotic biomolecules [167]. While the reliance on out-
of-host expression of a gene may generate false negatives, 
this can be overcome using other more genetically tractable 
hosts (e.g., Bacteroides thetaiotaomicron, Streptomyces 
coelicolor). The FARME (Functional Antibiotic Resistance 
Metagenomic Element) [168] and ResfinderFG [169] data-
bases are comprised of sequences identified by functional 
metagenomics, but not represented in other databases built 
primarily from AR genes in clinical isolates.

Rapid diagnostic tools

While ASTs determine an isolate’s functional response to 
an antibiotic, and WGS characterizes its genetic repertoire 
of AR genes, the time, technical expertise, and resources 
required limits their clinical utility. In response, several 
new approaches have been developed which promise phe-
notypic resistance/susceptibility data in mere hours instead 
of days. These can rapidly inform modifications to patient 
treatment, empowering healthcare providers to modify 
treatment away from broad-spectrum antibiotics which may 
fail due to resistance, towards narrow-spectrum drugs that 
are effective and decrease general selection for antibiotic 
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resistance in hospitals. In theory, all of these approaches are 
generalizable to any pathogen-antibiotic pair of interest, but 
more work is needed before they can be utilized by clinical 
labs. In addition to method-specific technical details, each 
method described below will require larger and higher qual-
ity databases, as well as integration into systems for auto-
mated sample processing and detection, and benchmarking 
against traditional assays.

RNA detection assays are based on the premises that 
(1) RNA transcripts are species-specific, and (2) antibiotic 
exposure triggers transcriptional responses in susceptible, 
but not resistant, strains [170, 171]. Further, as transcrip-
tional responses are among the first changes that occur upon 
drug exposure, they can be detected long before traditional 
growth-based phenotypes. GoPhAST-R (combined geno-
typic and phenotypic AST through RNA detection) [132] is 
a multiplexed mRNA detection assay, which can distinguish 
between susceptible and resistant strains of three ESKAPEE 
pathogens (K. pneumoniae, A. baumannii, and E. coli) when 
exposed to antibiotics of three major classes (fluoroquinolo-
nes, aminoglycosides and carbapenems) in < 4 h. It can also 
detect transcripts of key genetic resistance determinants, 
such as carbapenemases, to simultaneously profile pheno-
typic and genotypic information about resistance.

Alternatively, instead of directly identifying specific 
antibiotic resistance determinants, genetic linkage between 
resistance elements and the rest of the genome can enable 
the inference of resistance phenotypes based on coarse strain 
typing alone. Genomic neighbor typing [80] is an approach 
which determines how related a clinical isolate is to ref-
erence genomes with a known phylogeny and phenotype, 
providing predictions on the isolate’s resistances and sus-
ceptibilities. By matching nanopore long-read sequencing 
data against a database of genomes in real time, the RASE 
(resistance-associated sequence elements) algorithm identi-
fies a given sample’s closest relatives. The authors demon-
strate that this method can differentiate between resistant 
and susceptible isolates of S. pneumoniae and N. gonor-
rhoeae within 10 min of starting sequencing, and within 4 h 
of beginning sample preparation on clinical metagenomic 
samples containing S. pneumoniae.

MALDI-TOF MS, which has been widely adopted for 
species identification, can also be modified to simultane-
ously detect antimicrobial resistance or susceptibility [133]. 
This can be done by several innovative approaches [25]. One 
approach is to detect antibiotic degradation, as during the 
activity of beta-lactamases. Hydrolysis of the beta-lactam 
molecule changes the mass of a sample, which can be 
detected by MALDI-TOF [172]. Another approach involves 
identifying biomarkers specific to resistant organisms. Bio-
marker signals associated with pathogens such as MRSA 
[173], KPC-producing K. pneumonia [174], and B. fragilis 
cfiA [175] have already been identified with high specificity, 

offering a highly accurate assessment of a sample without 
any additional cost. Finally, media containing isotopically-
labeled amino acids can be incubated with organisms and 
antibiotics. Resistant organisms will synthesize proteins with 
the labeled amino acids, which can be identified by their 
distinct spectra [176, 177].

Resistome analyses are typically performed downstream 
of taxonomic analyses (e.g., using the same WMS or WGS 
datasets) and as such will similarly be influenced by sam-
ple choice and questions being asked. For example, while 
both WGS and rapid diagnostic tools are performed on cul-
tured isolates, the speed of the diagnostic tools comes at the 
expense of not being able to directly identify the genetic 
underpinnings of resistance features—inferring resistance, 
instead, from correlated features. This trade-off may be 
acceptable for clinical diagnoses where every hour counts, 
but AR surveillance efforts may be better suited with WGS 
which generate higher-resolution data. Additionally, func-
tional metagenomics can comprehensively identify all AR 
genes in a metagenomic sample, including novel genes, but 
it requires specialized library preparation. This extra step 
may require more effort than desired if a study is only inter-
ested in examining the presence of specific clinically-impor-
tant AR genes. But banked isolate samples and genomes can 
be re-analyzed using updated tools and AR gene databases 
in future analyses to identify features that were missed by 
previous analyses, as evidenced with the retrospective analy-
ses for mcr-1.

Identifying associations with mobile 
elements

The AR gene repertoire of a strain, as determined by the 
methods described in the previous section, is not a static 
identity. In addition to the slow processes of mutation and 
natural selection, nosocomial pathogens can rapidly acquire 
additional, fully-functioning AR genes via horizontal gene 
transfer (HGT). Indeed, many clinically-important ARGs 
have emerged via HGT from non-pathogenic reservoirs [127, 
178–180]. Finding high-identity ARGs in two or more phy-
logenetically distinct species suggests a recent HGT event, 
but this could also be explained by other factors such as 
functional optimization or lower mutation rate [181]. Claims 
of recent transfer are strengthened if it can be demonstrated 
that the ARGs are flanked by the same mobile genetic ele-
ments (MGE)—genetic features that facilitate DNA move-
ment. MGEs can be divided into two major groups: features 
that facilitate intercellular (i.e. HGT) or intracellular DNA 
mobility. MGEs can introduce gain-of-function mutations by 
shuttling “passenger” proteins (e.g., ARGs) between bacteria 
or DNA elements. Alternatively, they can lead to adaptive 
loss-of-function mutations by inserting into and interrupting 
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genes (e.g., those causing antibiotic susceptibility) or their 
regulatory elements [182]. The combined activities of vari-
ous types of MGEs in a microbiome—collectively referred 
to as the mobilome or mobile gene pool [183, 184]—can 
rapidly accelerate the evolution of multidrug resistant 
bacteria.

HGT (i.e. intercellular transfer) can occur by three pri-
mary mechanisms: conjugation by plasmids, transduction by 
bacteriophages, and transformation by uptake of extracellu-
lar DNA [109] (Fig. 1b). All of these are capable of shuttling 
protein sequences (e.g., ARGs) between cells; however, con-
jugation by plasmids is thought to be the most consequential 
mechanism for the horizontal transfer of ARGs between spe-
cies [185]. This is because conjugation is explicitly designed 
for the spread of bacterial genes—unlike transduction, which 
is an unintended consequence of bacteriophage replication. 
Conjugation also protects the DNA during its transit between 
cells, whereas in transformation, naked DNA must survive 
the extracellular environment. By facilitating the transfer 
of multiple ARGs at the same time, conjugation potentially 
enables recipient bacteria to become multi-drug resistant 
with just one HGT event. Once inside the new cell, the ARG 
can be expressed on the MGE directly, or be integrated into 
the genome of its new host or that of another plasmid via 
intracellular MGEs, such as insertion sequences, transpo-
sons, and integrons (Fig. 1b).

Recent advancements in long-read technologies, hybrid 
assembly, and bioinformatic tools can resolve the genomic 
context of plasmids in isolates and metagenomes, advanc-
ing the study of HGT beyond in vitro laboratory studies and 
into working hospitals and clinics [186–189]. It is beyond 
the scope of this review to cover all MGEs for all species 
(MGEs specific to ESKAPEE pathogens have been thor-
oughly reviewed in [190]). Instead, we will briefly describe 
the genomic approaches and bioinformatic tools that can be 
used to identify MGEs in clinical samples, with a special 
focus on plasmids.

NGS‑based methods for MGE identification

Plasmid typing can provide insights into the epidemiology of 
HAI outbreaks, such as whether ARGs are carried by diverse 
vectors or a single epidemic plasmid. Several schemes have 
been developed to classify plasmids based on differences in 
conserved “backbone” regions, principal among them being 
replicon typing and MOB typing. Replicon typing targets 
loci that encode the plasmid’s replication machinery and 
classifies them into the major plasmid incompatibility (Inc) 
groups, and plasmid multi-locus sequence typing (pMLST) 
can further assign them into subtypes within the broader 
replicon type [191–193]. MOB typing, on the other hand, 
specifically targets the relaxase protein of transmissible 
plasmids [194]. While originally developed for multiplexed 

PCR reactions, these schemes have been adapted for in sil-
ico detection using tools such as PlasmidFinder [195, 196]. 
However, considering the ease with which it is now possible 
to sequence and compare entire plasmid genomes, this type 
of plasmid identification based only on small fragments has 
fallen out of favor, and these schemes are now used primar-
ily for categorization [197, 198]. The principal limitation of 
replicon and MOB typing is that they are limited to known 
families, and neither can classify all plasmids—even among 
well-studied taxa. According to a recent estimate, 85% and 
65% of publicly available plasmids can be replicon and 
MOB typed, respectively [199], though this is likely to be 
biased towards clinically-relevant plasmids with the highest 
representation in both plasmid sequence databases and typ-
ing schemes [200].

Identification of novel plasmids requires de novo assem-
bly of WGS data. However, this task is complicated by the 
fact that it often is not clear which contigs belong to the 
chromosome and which to plasmids. By taking advantage 
of the fact that many plasmids exist at a higher copy number 
than the chromosome, PlasmidSPAdes [201] reconstructs 
plasmids from isolate WGS data using differences in cover-
age. For metagenomes, where differences in coverage are 
confounded by differences in relative abundance, several 
specialized tools for assembling plasmid sequences or iden-
tifying plasmid-associated contigs have been developed, 
including cBar [202], PlasFlow [203], Recycler [204], and 
metaplasmidSPAdes [200, 205]. In general, these tools can 
accurately predict small plasmids, especially those with 
well-known backbone structures, but have difficulty predict-
ing large plasmids (> 50 kbp) [200]. As with chromosome 
assembly, large repetitive elements make it is nearly impos-
sible to correctly assemble a plasmid genome using short-
read WGS data alone, but this can be addressed by manually 
closing the genome using PCR.

To mitigate this limitation of WGS assembly, binning 
plasmid sequences from WGS data can be assisted by 
reference-based read mapping. By mapping reads against 
a closed reference (or index) plasmid, the presence of the 
reference can be inferred if there is sufficient homology 
across a given length (e.g., 99% sequence identity over 80% 
of the plasmid) [206, 207]. Reference plasmid sequences are 
typically assembled using long-read sequencing data and 
can pulled from the growing plasmid reference content in 
databases [208], or from a select sample, such as from the 
onset of an outbreak. This method has been successfully 
used to track patterns of introduction and spread of plasmids 
during outbreaks. For instance, one study of carbapenem-
resistant K. pneumoniae (KPC) isolates from individuals 
from a Nepali neonatal unit used dataset-specific reference 
sequences to determine a key strain containing four highly 
conserved plasmids (including one carrying blaNDM-1) which 
was responsible for multiple clusters of cases [209]. This 
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approach, however, assumes that the index plasmid is con-
served throughout the study, and that plasmid structures are 
largely conserved. However, this may not be the case as plas-
mid structure can be extremely dynamic over time—even 
within short-term outbreaks—with smaller MGEs facilitat-
ing structural rearrangements through homologous recom-
bination with other plasmids, or by adding/losing copies of 
genes. Precisely because these types of repetitive elements 
are difficult for short-read data to resolve, reference-based 
approaches can lead to the incorrect conclusion that the 
reconstructed plasmid is identical to the reference, when in 
reality significant rearrangements have occurred [207].

As previously described, these issues with de novo 
assembly can be largely overcome using long-read sequenc-
ing technologies, such as PacBio and nanopore sequencing 
[48, 49]. For example, in a study of carbapenem resistance 
in hospital-derived Enterobacteriaceae, assembly with 
Illumina data indicated that 11/17 sequenced isolates were 
predicted to carry the blaKPC gene on a pKPC-UVA01-like 
plasmid. This was expected as pKPC-UVA01 is a known 
index for blaKPC presence, and suggested that the domi-
nant mechanism for dissemination of the blaKPC gene was 
via carriage in pKPC-UVA01. However, while PacBio 
assemblies confirmed that all 11 isolates indeed contained 
a pKPC-UVA01-like plasmid, only 5/11 of those plasmids 
contained blaKPC (i.e. were identical to the index). In the 
other 6/11 isolates, other plasmids—some only present only 
one of them—carried blaKPC, showing that the gene’s dis-
semination is actually driven by several distinct vectors and 
homologous recombination between them [207].

Long-read technologies are also useful when the goal is 
to generate contiguous sequences of novel plasmids [210]. 
For instance, the fact that PacBio read lengths can be signifi-
cantly longer than plasmid genomes can be taken advantage 
of to increase coverage through an approach called circular 
consensus sequencing (CCS) [211], where a single read pro-
duces multiple observations of each base, thereby increas-
ing accuracy. PacBio sequencing was used to assemble the 
sequences of megaplasmids (> 420 kb) in a study of MDR 
P. aeruginosa isolates from a hospital in Thailand [212], and 
these assemblies showed that the resistance regions of these 
megaplasmids harbored multiple ARGs and were rich with 
smaller MGEs. Nanopore sequencing has also been cou-
pled with culture-based enrichment of metagenomic samples 
swabbed from hospital surfaces, which resulted in the gen-
eration of 5,910 closed plasmid sequences, many > 100 kb 
long [19].

While useful on their own, these methods are most effec-
tive when coupled together; WGS with reference-based read 
mapping can identify interesting isolates (e.g., those contain-
ing plasmids with ARGs of interest or likely HGT events), 
which can inform decisions about which isolates are chosen 
for long-read sequencing. Then the resulting contiguous 

plasmid sequences can be typed using replicon or MOB 
schemes. This approach was taken in an 18-month study of 
2,173 clinical isolates from a single hospital [181], where 
short-read WGS data identified high-identity sequences 
shared by different genera, and then nanopore sequencing 
and hybrid assembly was performed on a subset of isolates 
containing these shared sequences. This revealed a diverse 
group of high-identity ARG-encoding plasmids shared 
within and across species and genera. To take this a step 
further, the authors matched high-identity plasmids with 
patient metadata to identify epidemiological links, revealing 
instances of putative HGT between different genera within 
and between patients. For example, isolates of K. pneumo-
niae and E. coli collected on the same date from the same 
site from Patient A each carried an identical (99.95% iden-
tity) 113.6 kb beta-lactamase-carrying IncF plasmid—strong 
evidence for within-patient transfer. This same plasmid 
(99.98% identity) was later identified in an E. coli isolate 
of another species type cultured from Patient B 109 days 
after Patient A’s sampling—strongly suggesting between-
patient transfer. Further, Patient B had an adjacent hospital 
room to Patient A’s and was treated by the same healthcare 
staff, strongly suggesting a hospital-associated reservoir and 
transmission network, though the connecting links were not 
able to be identified because surfaces were not examined.

Lastly, one step deeper from plasmid sequencing and 
identification has been that of the smaller intracellular 
MGEs—including insertion sequences (IS), transposons, 
and integrons—that can be nested within plasmid genomes. 
These can contribute to the spread of resistance by facilitat-
ing the transfer of AR genes from one genetic element to 
another, or interrupting susceptibility genes [182, 207]. In 
a process analogous to identifying AR genes from short-
read sequencing data, MGEs can be identified by mapping 
to reads or contigs to databases of known elements or HMM 
profiles using tools such as ISfinder [213], ISMapper [214], 
and IntegronFinder [215]. However, identifying novel ele-
ments using short-read technologies is difficult because these 
elements are repetitive and often longer than a single read 
length. Structural variant tools, such as panISa [216] and 
MGEFinder [217], can identify novel insertion sequences 
by aligning a draft genome assembly to a reference genome 
of the same species (98.5% identity), and then identifies 
reads that have “clipped” (unaligned) ends—indicating the 
genomic site where an insertion sequence begins or ends.

Plasmid‑specific approaches

Plasmid identification from WMS datasets has difficulties 
classifying metagenomic sequencing reads and contigs as 
plasmid- or chromosome-derived, confounding efforts to 
assemble novel plasmids; however, these technical difficul-
ties can be circumvented by first isolating plasmids prior 
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to sequencing. Here, the so-called plasmidome or metamo-
bilome is separated from chromosomes and other genetic 
elements by enzymatic digestion of sheared DNA—the vast 
majority of which is chromosomal [183]. Then, using trans-
poson-aided capture (TRACA), these purified plasmids are 
captured by inserting a transposon containing an origin of 
replication and a selectable marker, and then transformed 
into an E. coli host and sequenced [218]. Alternatively, 
the purified plasmids can be amplified using inverse-PCR 
coupled with multiple displacement amplification prior to 
sequencing [218–220]. The principal limitations of these 
approaches are that they require additional sample prepa-
ration steps. Plasmid isolation methods are biased towards 
smaller plasmids (3–10 kb) because the digestion process 
can degrade large plasmids which were unintentionally 
sheared during the extraction process. Lastly, as with all 
assemblies using WGS data, manual PCR or long-read 
sequencing is required to fully close gaps [186].

While plasmid purification can produce hundreds of cir-
cular novel plasmids, it and WMS generally often cannot 
assign plasmids to their bacterial hosts because the DNA 
extraction process separates plasmids from chromosomes. 
Proximity-ligation methods, such as Hi-C and 3C, were orig-
inally developed to study three-dimensional genome struc-
ture in eukaryotic cells [221] but have recently been adapted 
to detect interactions between DNA molecules in bacterial 
metagenomes. This is accomplished by cross-linking DNA 
in close physical proximity—such as a plasmid and chromo-
some from the same cell—followed by proximity ligation 
of cross-linked DNA and short-read sequencing. Linkages 
between non-contiguous DNA can then be used by special-
ized clustering algorithms [222, 223] to deconvolute which 
plasmids and chromosomes originated from the same cell. 
As with other metagenomic approaches, Hi-C’s resolution is 
limited by sample complexity and sequencing depth, which 
is further complicated by the fact that the majority of read 
pairs do not contain proximity ligation junctions (i.e. are 
not Hi-C read pairs). For example, the studies of human 
fecal samples estimated the fraction of Hi-C read pairs was 
between 0.36–0.67% and 1.38–2.38% [223, 224]. This will 
necessitate relatively deep sequencing (~ 40 to 70 million 
reads), likely limiting this approach to a small subset of 
samples.

Much work is still needed to optimize and scale-up Hi-C 
methodology for use in large surveillance efforts. In addition 
to testing with simulated and synthetic metagenomic sam-
ples [222, 225–227], it has been applied to single fecal sam-
ples from a healthy human and cow [223, 224, 228], used 
to compare fecal samples collected 10 years apart from two 
individuals [229], and to study plasmid-host associations in 
wastewater communities [230]. To our knowledge, just one 
has used this technique to analyze metagenomic samples 
from hospitalized patients [231]. Here, seven neutropenic 

patients undergoing hematopoietic stem cell transplantation 
were compared to two healthy individuals using samples 
from multiple timepoints over a 2–3 week period. This study 
found that networks of HGT were unique to each individual, 
and that while healthy patients had a basal level of HGT this 
was elevated in the neutropenic patients [231]. This suggests 
that these at-risk patients are at an increased risk for HGT 
of AR genes into MDR pathogens, and reinforces the role 
of patients’ gut microbiomes as a reservoir of AR genes in 
the hospital.

Recent advancements in NGS technologies and bioin-
formatic tools have empowered researchers to study the 
spread of AR on plasmids and other MGEs at a resolution 
not possible even just a few years ago. Studies using these 
technologies have revealed a second layer of transmission 
during HAI outbreaks—of genetic transfer of AR genes 
between genetic elements and bacterial strains, instead of 
geographic transfer of bacterial strains between patients and/
or the hospital environment. Comparative genomic analyses 
can be done on just those MGEs found up- and downstream 
of AR genes, or by resolving and tracking entire plasmids in 
a manner similar to tracking strains. Given the importance 
of HGT to the spread of novel resistance genes into and 
between HAI-causing pathogens, analyses of MGEs are sure 
to become a staple of outbreak tracking.

Conclusion

Despite extensive efforts to control infection, hospital envi-
ronments are reservoirs of an incredible diversity of AR and 
MDR bacteria. New approaches have enabled (1) the iden-
tification of species and tracking of strains, (2) the rapid 
profiling of genotypic and phenotypic resistance, and (3) 
the resolution of MGEs that facilitate intra- and intercellular 
gene transfer, at a greater resolution than ever before. This 
data, coupled with longitudinal sampling and comparative 
genomics, has led significant insights into the spatiotempo-
ral dynamics of hospital-associated bacterial communities 
and their AR gene cargo. This has revealed that the hospital 
microbiome is made up of complex nested systems, with 
multi-layered transmission of strains, plasmids, and smaller 
genetic elements between patients, healthcare workers, and 
hospital surfaces. In many cases, the same sequencing data-
sets can be re-analyzed with different bioinformatic tools to 
answer each of these questions, but often the most relevant 
data can only be generated with question-specific methods 
and unique sample preparation schemes. The approaches and 
tools used should be tailored to the goals of the study (e.g., 
complete environmental characterization, or detailed study 
of ESKAPE pathogens), and the sample types and techni-
cal expertise available. Continued research and technologi-
cal advances are needed before these approaches can be 
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routinely applied for hospital surveillance efforts, but there 
is much promise in their ability to track outbreaks of AR and 
MDR bacteria, identify persistent environmental reservoirs, 
and gauge future risks.
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