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Abstract

Understanding the organization of the human brain is the fundamental prerequisite for 

appreciating the neural dysfunctions underlying neurological or psychiatric disorders. One major 

challenge in this context is the presence of multiple organizational aspects, in particular the 

regional differentiation in structure and function on one hand and the integration by inter-regional 

connectivity on the other. We here review these fundamental distinctions and introduce current 

methods for mapping regional specialization. The main focus of this review is to provide an 

overview over the different concepts and methods for assessing connections and interactions in the 

brain, in particular anatomical, functional and effective connectivity. In this context, we focus less 

on technical details and more on the comparative description of strengths and weaknesses of 

different aspects of connectivity as well as different methods for examining a particular aspect. 

This overview closes by raising several open questions on the conceptual and empirical 

relationship between different approaches towards understanding brain structure, function and 

connectivity.
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PRINCIPLES OF BRAIN ORGANIZATION

One of the eminent long-term goals in systems neuroscience research is to elucidate the 

neural dysfunctions underlying neurological or psychiatric disorders. Evidently, however, 

Address requests for reprints to Prof. Dr. Simon B. Eickhoff, Institute of Neurosciences and Medicine (INM-2), Research Centre 
Jülich GmbH, D-52425 Jülich, Germany. S.Eickhoff@fz-juelich.de. 

DISCLOSURE AND CONFLICT OF INTEREST
S.B. Eickhoff and C. Grefkes have no conflicts of interest in relation to this article.

HHS Public Access
Author manuscript
Clin EEG Neurosci. Author manuscript; available in PMC 2021 March 29.

Published in final edited form as:
Clin EEG Neurosci. 2011 April ; 42(2): 107–121. doi:10.1177/155005941104200211.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



understanding the pathophysiology of complex disorders such as schizophrenia or 

Parkinson’s disease will remain futile without a concept of psychological brain organization. 

In other words, in order to appreciate the brain’s pathologies, we first need to understand its 

normal organization in healthy subjects.

The mammalian brain is governed by two fundamental principles of organization, i.e., 

functional segregation and functional integration.1 The former refers to the fact, that the 

brain, in particular the cerebral cortex, is not a homogenous entity but can be subdivided into 

regionally distinct modules (cortical areas or subcortical nuclei) based on both functional 

and microstructural properties. The concept of functional integration, on the other hand, 

highlights that no brain region is by itself sufficient to perform a particular cognitive, 

sensory or motor process. Further, all of these mental capacities or “tasks” have to rely on a 

dynamic interplay and exchange of information between different regions. However, 

functional integration is not in contrast with the aforementioned principle of functional 

segregation, as it can be conceptualized as the interaction between specialized regions, each 

performing a distinct computational sub-process.1,2

How to define a specialized module

Research in non-human primates has indicated that regional specialization, i.e., the cognitive 

or sensory processes served by particular cortical location, is determined by its intrinsic 

(structure) and extrinsic (connectivity) properties.3-8 Although closely related to the 

fundamental distinction between functional segregation and functional integration described 

above, the latter view provides a slightly different focus. In particular, specialization for a 

specific function is not regarded as an intrinsic property of a region that is independent of its 

connectivity. However, the functional specialization of a cortical region results from the 

local anatomical and neurochemical features but does not necessarily map on psychological 

concepts of mental processes or operations. Moreover, the computational processes only 

become specialized operations through the patterns of input and output, i.e., connectivity. In 

that sense, a module of functional specialization may not be defined independent of its 

connectivity but is also given by the intersection of regionally specific architecture and 

connectivity patterns. Each cognitive, sensory or motor task or mental capacity relies on the 

coordinated activity and interaction of many of such modules.

Structure - function - connectivity

We here suggest that brain organization and the pathophysiology underlying neurological 

and psychiatric disorders can only be understood at a sufficient level if considering (i) the 

anatomical differentiation of the cerebral cortex into micro-structurally distinct areas, (ii) its 

response properties or, more general, its pattern of recruitment by various mental operations 

and finally (iii) its interaction with other brain regions. Such multi-modal analyses should 

then help the understanding of how mental capacities emerge from a network of specialized 

but interacting regions. Research in non-human primates has a long tradition of integrated 

analysis of regional brain organization.9-12 Here, functional properties of a microstructurally 

distinct area (e.g., as determined by cyto- or myeloarchitectonic examinations) may be 

probed by recording single cells or local field potentials. Axonal connectivity of the very 

same location may then be revealed by injection of a tracing dye that is transported to 
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interconnected brain regions. Such analyses have repeatedly demonstrated the close 

correspondence of brain structure, function and connectivity, and provided most of our 

current knowledge on organizational principles of the brain. Unfortunately, however, all of 

these techniques are invasive in nature and ultimately entail sacrificing the examined animal. 

This evidently makes them unfeasible for advancing our understanding of the human brain. 

Consequently, knowledge of the organization of the human brain has lagged for many 

decades behind that on non-human primates. Over the last two decades, however, several 

new methods and technologies have become available, which may enable a similarly precise 

and multi-modal assessment of the human brain.

FUNCTIONAL NEUROIMAGING

Regional functional specialization

Functional neuroimaging by positron emission tomography (PET) and functional magnetic 

resonance imaging (fMRI) enables the in-vivo investigation of functional specialization in 

the human brain.13-19 Based on local changes in cerebral blood flow, glucose or oxygen 

metabolism, these techniques allow the identification of regionally specific increases in 

neural activation under a certain motor, sensory or cognitive task across the whole brain 

simultaneously. The spatial resolution in single subject data lies within the range of a few 

millimeters. However, when considering the much more frequent case of group activation 

studies, the precision of the spatial localization is reduced by factors such as inter-individual 

variability, averaging effects and technical confounds such as variance introduced by 

different normalization approaches.20 For example, in fMRI group data, spatial uncertainty 

is equivalent to a Gaussian distribution of about 10 mm FWHM.20 While functional 

neuroimaging has led to a wealth of information on the neural correlates of various 

processes, it has a predominantly confirmatory role in the context of differentiating cortical 

modules. That is, using appropriate experimental designs, fMRI is a powerful tool for testing 

hypotheses about, e.g., a functional differentiation between two regions or a dichotomy 

between the neural correlates of two processes. Neuroimaging is, however, intrinsically less 

well suited to delineate the organization of a particular brain region. A prime reason for this 

drawback is that in most instances the tasks that would differentiate different modules in a 

region of interest are unknown so that experiments cannot be specifically designed to reveal 

a functional distinction.

Regional structural specialization

The structural examination of the human brain by histological mapping has a long tradition.
21-25 Similar to anatomical studies in monkeys, these analyses rely on the investigation of 

post-mortem tissue, where cell bodies, myelinated fibers or the presence of specific 

molecules may be visualized using staining, radioactive labeling or in-situ hybridization.
26,27 Recent advances in high field imaging methods also allow assessing the microstructural 

properties of the human brain in-vivo.28 Currently, however, no in-vivo imaging approach 

seems capable of providing a similarly rich amount of ultrastructural information as 

histological post-mortem data. As noted above, fMRI and PET are excellent tools to identify 

the regions recruited by a mental operation but cannot distinct the borders of cortical 

modules. Therefore, combining functional imaging and histological maps may lead to an 
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integrated description of regional segregation. However, while neuroimaging produces 

volume-datasets of group results, anatomical mapping yields slice-wise individual 

information on the borders of microstructural areas. Therefore, the current approach for 

analyzing the correspondence between brain structure and function is to perform both 

analyses separately (evidently in two groups of subjects) and then to integrate them by 

means of probabilistic brain atlases in electronic formats.29-31 Such probabilistic atlases can 

be generated on the basis of automated analyses of histological sections, e.g., by means of 

image analyzer algorithms detecting laminar changes in cell body densities along the 

cerebral cortex in micrometer resolution.32 Cytoarchitectonic parcelations performed in a 

number of brains can then be warped to an anatomical reference brain in order to describe 

the location and variability of cortical areas on the group level in standard stereotaxic space. 

This is not only in clear contrast to classical anatomical brain atlases that present observer-

dependent parcelations of one or a few brains as schematic surface views. But, it also allows 

the direct and quantitative assessment of structure-function correlations in the same 

reference space, supporting the notion that functional differentiation indeed corresponds to 

microstructural differentiation.29

Regional structure-function relationships

These advances in the mapping of regional specialization led to the description of mental 

processes that recruit a specific, structurally defined, area. There are now plenty of studies, 

which demonstrated that anatomical borders indeed constrain functional specialization.33,34 

However, this “localization approach” seems insufficient to describe brain function, as a 

number of studies indicated that a single region can be “specialized” for a broad range of 

mental operations. For example, the inferior frontal gyrus hosts a distinct cytoarchitectonic 

area which Korbinian Brodmann termed “area 44”.22 Pierre-Paul Broca already noticed in 

the middle of the 19th century that this part of the brain is strongly engaged in language 

production.35 However, a number of neuroimaging studies clearly showed that this region is 

not language-specific but gets recruited by a broad variety of different tasks, ranging from 

speech to working memory and motor production.36 Does this contradict the fundamental 

idea of functional specialization? Not necessarily. We can assume that BA 44 is specialized 

to perform computations at a very basic level rather than being specialized to sustain any 

particular (psychologically defined) mental operations. However, these basic computations, 

which may be sequencing, temporo-spatial updating or even more fundamental processes, 

would then be integral parts of many different task-specifically recruited networks. 

Therefore, without taking an explicit network-perspective, that is consideration of 

integration as the second major organizational principle in the brain, physiological and 

pathological roles of probably most brain regions will remain elusive.

The elusive concept of brain connectivity

The concept of brain connectivity in itself has remained somewhat enigmatic. First, there is 

no such thing as “the” connectivity of an area, as several conceptually different aspects of 

brain connectivity may be distinguished. The following overview shall outline the major 

concepts and approaches that have been employed to capture different aspects of brain 

connectivity but importantly also point to their strength and drawbacks.
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ANATOMICAL CONNECTIVITY

Classical approaches to anatomical connectivity

Anatomical connectivity denotes the presence of fiber connections between two areas in the 

brain, or — more specifically — between neurons. Early investigations of anatomical 

connectivity in the human brain were limited to the use of post-mortem dissection 

techniques, which only allow the description of the location and direction of major fiber 

pathways on a macroscopic level.37,38 With the advent of appropriate myelin staining 

techniques, also microscopical examinations of white matter bundles also became feasible.39 

Such myeloarchitectonic techniques, however, barely allow the researcher to assess the 

three-dimensional course of a particular fiber tract. Therefore, until the end of the last 

century knowledge on the anatomical connectivity of the human brain was mostly limited to 

the course of major fiber bundles such as the cortico-spinal tract or the arcuate fasciculus. In 

contrast, invasive tract-tracing studies in non-human primates have provided detailed 

information on axonal connections with high spatial precision and specificity.40 Since the 

tracers are injected into locations that are usually defined based on electrophysiological 

properties of histologically distinct regions, connectivity patterns may be obtained for 

specific cortical areas and directly related to particular functions. Importantly, invasive 

tracing relies on either antero- or retrograde axonal transport of a particular tracer.40 It thus 

entails a high degree of confidence that the obtained results indeed reflect true axonal 

connections between two areas which in turn is a necessary prerequisite for any functional 

interaction between regions. Moreover, afferent and efferent connections can be 

distinguished due to the direction of axonal transport, which is something fundamentally 

impossible by those techniques applicable to humans that primarily identify the location and 

direction of fiber bundles. This long-standing discrepancy between highly precise and 

specific anatomical connectivity measures in non-human primates on one hand and the 

relatively coarse and limited methods available for the investigation of the human brain may 

explain why in particular anatomical connectivity of the human brain is often compared and 

referenced against that in non-human primates.

Diffusion weighted imaging and tractography

The advent of diffusion-weighted imaging (DWI) and the development of tractography 

approaches over the last decade have considerably changed this situation by opening the 

possibility of in-vivo explorations of anatomical connectivity in the human brain.41-44 DWI 

may be tuned sensitive to random motion of water molecules along a diffusion-encoding 

direction in a pulsed field gradient.41 By measuring diffusion along many different 

directions, it becomes possible to characterize the diffusion properties within a voxel 

(usually at an isotropic resolution of about 2 mm), most commonly reflected as a three-

dimensional Gaussian process. Importantly, diffusion in the brain is not isotropic along 

different spatial directions. In tissue with a high degree of directional organization such as 

the brain’s white matter where all axons along a fiber bundle are organized in parallel, 

diffusion is more hindered in some directions than others (Figure 1A), leading to a 

“diffusion ellipsoid”.42 The diffusion characteristics of a particular voxel, i.e., the shape of 

the diffusion ellipsoid, may be described by two main properties. The first is the direction of 

its principal axis, which corresponds to the direction of greatest diffusion (the principal 
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diffusion direction, PDD). In white matter, where diffusion is almost not restricted if water 

molecules follow the direction of the axons, and most limited perpendicular to the fibers due 

to the presence of myelin sheath and cell membranes, the PDD corresponds well with the 

dominant orientation of fibers within a voxel. The second important feature of the diffusion 

ellipsoid is its anisotropy, which corresponds to the preponderance of diffusion to follow the 

PDD relative to all other directions. This anisotropy thus reflects the degree of homogeneous 

organization within a voxel that may be brought upon by several fiber orientations, non-

directional tissue and other factors. From the fiber orientation directions in each voxel 

(Figure 1B-1E) in combination with measures about diffusion uncertainty, it is possible to 

infer the course of a particular fiber tract in the brain. Such tractography may be 

deterministic (following the principal diffusion direction at each voxel) or probabilistic (by 

repeated sampling of the possible diffusion directions in each voxel as reflected by the 

uncertainty or complex orientation distributions, Figure 1F). Given the dynamic of the field 

and the constantly evolving methods and modeling approaches, the reader may be referred to 

the methodological papers describing the various methods for modeling diffusion directions 

and performing tractography.45-49

Limitations of diffusion tractography

In spite of recent advances allowing for modeling different fiber orientations within a voxel, 

the reliability of diffusion tractography to define paths considerably depends on anisotropy. 

While large pathways in deep white matter may be well-defined, reliability strongly 

decreases in regions closer to the cortical surface due to a higher degree of fiber divergence 

as these fan out to cortical targets. In other words, while it is well possible to map the course 

of larger white matter pathways, assessing the anatomical connectivity between two 

locations in the grey matter is much less reliable. Furthermore, tractography studies always 

face the problem of false positives and false negatives due to limitations in resolution which 

could cause tractography traces to “join” bigger fiber tracts like the superior longitudinal or 

the arcuate fasciculus, thereby impeding the delineation of the precise connectivity between 

two locations connected with less prominent fiber bundles.

Given the symmetry of random water diffusion along a particular direction and the absence 

of any physiological characterization of axonal directions, tractography does not allow 

inference on the direction of a fiber tract and hence differentiation between afferent and 

efferent projections. Therefore, DWI based tractography primarily yields qualitative 

information on the presence and course of fibers that could provide an anatomical 

connection between two regions. Assessment of, e.g., the number of samples in probabilistic 

tractography that reached a particular target from a specific seed region, is not a valid 

approach for quantifying the strength of a fiber bundle. Such parameters also reflect the 

probability of how likely it is to reach that particular target in a random journey along the 

principle diffusion directions relative to all other possible locations that could be reached.

Problems in cross-species validation

Given the current limitations of diffusion weighted tractography for the delineation of 

regionally specific anatomical connectivity, it is common practice to reference the results of 

DWI tractography against the wealth of literature on anatomical connections available from 
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invasive tracing studies in non-human primates. This may, in the most extreme cases, lead to 

the problematic view that connections that have not been found in monkeys are regarded as 

false positives in human DWI data while connections obtained in tracer studies that are not 

replicated are regarded as false negatives. In other words, axonal tracing is seen as the 

ground truth that tractography has to verify in order to be accepted. There are, however, 

plenty of reasons why results from invasive tracing studies and tractographic analyses may 

diverge. First, axonal tracing also does not have perfect reliability. Likewise, the choice of 

the particular tracer dye used, and in particular the selection and definition of the injection 

sites, may strongly influence the results.40 Moreover, sample size is usually limited to only a 

small number of animals (often less than five) so that inter-individual differences may 

further obscure inference on connection patterns. In light of these drawbacks, it is not 

surprising that axonal tracing studies investigating the connectivity of the same brain region 

may yield different results, which evidently poses the question, which of these actually 

reflects the “ground truth” that tractography has to match. Along the same line, while 

diffusion based connectivity analysis certainly suffers from limited spatial resolution (in the 

range of millimeters), it does have the considerable advantage of whole brain coverage in 

contrast to invasive tract tracing studies where axon terminals have to be delineated by 

histological preparation of sections through the brain. Thus, only if continuous sections 

through the entire brain are assessed, which is not always feasible or even attempted, whole 

brain connectivity may be inferred in invasive tract tracing studies. Finally, and maybe most 

importantly, any attempt to use cross-species comparison as an unconditioned validation of 

data obtained in humans runs into the danger of disregarding evolutionary changes. While 

there is plenty of evidence, that the brains of macaque monkeys and humans are homologous 

in many aspects, it would be a fallacy to assume that their organization should match 

completely.50 In particular in regions showing considerable expansion and potentially re-

organization during the divergent courses of evolution, such as the frontal or temporal lobes, 

discrepancies between species may reflect true differences in connection patterns rather than 

methodological problems.

What can we learn from anatomical connectivity?

Performing tractography from micro-structurally defined regions may open the exciting 

perspective of evaluating one of the major conceptual questions: what constitutes a cortical 

module? Does a cortical area have a distinct histological architecture, connectivity and 

function? Or may a particular histologically defined area have multiple zones of differential 

connectivity within it, with functional specialization arising from the intersection of the 

architectonic and connectivity-defined boundaries? On the practical level, however, one 

faces the same problem as that from the use of group activations from functional imaging 

studies, i.e., added noise by the fact that the subject-specific borders of a particular area are 

highly variable and hence unknown. Previous attempts to delineate the anatomical 

connectivity of histologically defined areas have thus focused on the “centers” of the 

respective areas, i.e., those locations where the confidence to be indeed within the particular 

area is highest. Using such approaches, connection patterns of structurally defined areas may 

be reliably identified, though more specific questions on topographic relationships between 

histological borders and changes in connectivity patterns probably remain to be addressed. 

Finally, even if the potential drawbacks of diffusion tractography outlined above may be 

Eickhoff and Grefkes Page 7

Clin EEG Neurosci. Author manuscript; available in PMC 2021 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



overcome by advancing imaging and analysis technology, it is worth remembering the 

fundamental limitations of anatomical connectivity information. In particular, the presence 

of an anatomical connection, even at the axonal level, does not predicate any functional 

interaction along this path. Coupling between areas is dynamic and context-dependent.51 A 

given anatomical connection may thus be employed only in a specific context or at a specific 

time. It may convey many different kinds of information such as inputs for computation, 

feedback or bidirectional exchange for parallel processing. A weak anatomical connection 

may be crucial for the functional interaction, e.g., if one area provides the “go signal” for the 

second. On the other hand, a strong connection may have little relevance for a particular 

context. This is particularly true in brain systems that follow a topical organization, i.e., 

sensory cortices. For example, many somatotopically organized fiber bundles connect 

different areas of the somatosensory cortex, however, only a small subset of these may be 

relevant for any particular task at hand.

In summary, anatomical connectivity represents the structural scaffold, on which any 

functional interaction may be realized. It also represents a truly independent aspect of inter-

regional integration and brain networks that is not confounded by using the same source of 

data as investigations into functional specialization. Anatomical connectivity studies, 

however, do not allow any inference on information transfer and dynamics within the hereby 

defined networks.

FUNCTIONAL CONNECTIVITY

Definition and electrophysiological application

Functional connectivity is defined as the temporal coincidence of spatially distant 

neurophysiological events.2 The assumption behind this connectivity approach is that areas 

are presumed to be components of the same network if their time courses are consistently 

correlated. This definition already clearly reveals two main aspects that need to be 

considered when dealing with functional connectivity analyses.

First, functional connectivity is primarily correlative in nature. That is, two regions show 

significant functional connectivity, if increased activity in the first site is associated above 

chance with activity at the second site. As always with correlations, however, this does not 

imply any causal relationship or even any sort of direct connection between these two 

regions. Correlated activity in two regions may be mediated via additional structures 

relaying information from the first area to the second. Such relay processes could moreover 

be transmitted through cascades of several intermediates or via cortical-subcortical loops 

involving, e.g., the basal ganglia or the cerebellum. It is also possible that a third area 

induces correlated activation between regions that do not have any form of direct interaction. 

Therefore, functional connectivity may be driven by an external source inducing concurrent 

activity in both areas. An example of such situation would be the feed-forward of stimulus-

driven activity in early sensory areas that is forwarded to parietal sensory areas for 

perceptual analysis and, in parallel, to premotor cortex for response preparation. In this case, 

functional connectivity may be seen between the parietal and the premotor cortex which, 

however, does not necessarily imply that their activity is directly related to each other.
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Second, the notion of functional connectivity may pertain to any form of neurophysiological 

events, i.e., is not limited to the currently most popular analysis of resting state patterns or 

even fMRI time-series analyses. Additionally, functional connectivity may also be realized 

as correlated spiking patterns or field potentials. This application of functional connectivity 

analysis is commonly found in electrophysiological experiments in non-human species, 

where direct recordings of individual cells or multi-unit activity may be correlated among 

different recording sites.52 It may, however, also be applied to direct recordings during deep 

brain stimulation, across sites or with peripheral signals.53 Another non-fMRI application of 

functional connectivity analyses is the delineation of correlations or coherence between EEG 

sensors, which due to the high temporal resolution of EEG may be computed as broad band 

correlations or specific for particular frequency bands. In these instances, functional 

connectivity analyses indicate coherent oscillations,i.e., neuronal mass activity, between 

different regions of the brain reflecting synchronous activity.54-57

Functional connectivity MRI

Probably the current most widely applied strategy for the examination of functional 

connectivity is based on the assessment of correlated signal changes in fMRI time-series.
57-60 Given the richness of fMRI data, which usually consists of several hundred time-points 

of voxel-wise data across the brain, this approach has the perspective to yield information on 

the functional connectivity at the level of the entire brain. The idea underlying “functional 

connectivity MRI” confines to the same fundamental approach as outlined above for other 

applications of functional connectivity analyses, i.e., correlation of signals between different 

brain areas.1 While functional connectivity MRI is still a developing field and concepts are 

continuously evolving, several key concepts and approaches seem to be emerging.

Analyses of functional connectivity by the correlation of regional BOLD signal intensities 

may be performed on fMRI time-series obtained in the task-state, i.e., while subjects are 

engaged in a particular cognitive or perceptual experiment. In these cases, however, the 

major predicament is the immanent presence of task-driven correlations. That is, all those 

regions that are activated by the particular task at hand will necessarily show functional 

connectivity due to common stimulus-evoked modulations. Importantly, these effects may 

not be discarded as spurious, as they reflect the functional connectivity during that task. 

Such common recruitment by a particular task in fact follows precisely the idea of functional 

connectivity as the coincidence of neurophysiological events. Nevertheless, it is often 

regarded as not adding substantial new information above the observation of jointly activated 

regions in a conventional fMRI analysis. However, functional connectivity analysis by 

correlation of voxel- or region-wise fMRI time series obtained during the performance of an 

experimental paradigm that entails multiple conditions may indeed add new insight into how 

closely different regions interact during the assessed tasks. Here the correlation of time-

series fluctuations may be regarded as a quantification of the similarity in response or 

recruitment characteristics. In other words, in the context of complex tasks consisting of 

multiple contextual sets, functional connectivity describes to which degree two regions are 

commonly recruited. It thus represents an interesting though little employed tool for the 

further characterization of the relationship between different regions (jointly) activated in 

functional imaging experiments.
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fMRI “resting state” functional connectivity

Currently, however, the main application of functional connectivity analysis pertains to the 

assessment of “resting state” images.60,61 Here, fMRI time series are obtained while the 

subjects are lying in the scanner without being challenged by a particular task. An important 

issue in the assessment of functional connectivity in this context is that raw MRI signal time 

courses are noisy due to scanner artifacts, motion-induced effects, and physiological sources 

such as cardiac and respiratory cycles. Consequently, there is an important need to reduce 

spurious correlations by multiple processing steps such as spatial and temporal filtering as 

well as removal of signal contributions from motion, physiological noise and global signal 

fluctuations. This application has led to the observation that even in the absence of a 

structured external task, distant brain regions often show strong correlations in their activity 

levels (Figure 2), which are particularly expressed at lower frequencies (<0.1 Hz). A large 

number of different studies have used data-driven approaches, in particular independent 

component analysis (ICA), to delineate large-scale systems of coherent MRI signal changes 

with a considerable degree of consistency between datasets.62 These studies have thus 

presented converging evidence for the existence of several distinct components (i.e., 

functional networks) in fMRI datasets obtained during a task-free, “resting” state. Moreover 

most of these “resting state networks” closely resemble networks that are commonly 

engaged in task-based fMRI studies.62 This has led to the intuitive but little validated notion 

that virtually any functional system is reflected in what has been termed resting state 

networks (RSNs). It has also contributed to the now widely established but confusing 

labeling of these components as “dorsal attention network”, “visual network”, “auditory 

network”, “sensorimotor network”, “central-executive network”, “core network” and so on. 

The relation of components defined by ICA decomposition of resting state data to such task-

related networks, however, certainly warrants further examination as intuitive associations 

may be premature.

Regardless of the precise relationship between RSNs and networks recruited by specific 

tasks, these observations have raised an ongoing debate on the physiological basis of such 

correlations. It was suggested that these fluctuations are driven by intrinsic activity events 

constrained by anatomical connections between the respective areas.61,63 In this concept, 

functional connectivity may be regarded to be largely a reflection of the anatomical 

connectivity between different brain regions in the absence of an external task. Supporting 

this view simulation studies show that one may generate patterns similar to resting state 

fluctuations by injecting stochastic activity in structural networks defined by anatomical 

connectivity information.57 On the other hand, some patterns of functional “resting state” 

connectivity exist, which cannot be explained by anatomical connections. Moreover, it 

remains unresolved what drives these interactions in a physiological sense, i.e., why there 

should be fluctuations of sufficient magnitude to propagate along anatomical connections.64 

This has motivated a modified view on the physiology of the “resting state networks”, which 

de-emphasizes the “resting” aspect.65-67 However, it is assumed that the brain is never at 

rest. There is a large amount of ongoing activity composed of a vast variety of mental 

functions. These range from bodily perception and somatosensation to memories and 

reflections, emotions and feeling as well as explicit cognitive reasoning and planning 

including inner speech. When lying in an MRI scanner without a specific task we are not 
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thus resting but instead performing all sorts of mental operations in succession or parallel. 

The correlation in the MR signal time course between two regions should thus reflect the 

degree to which these jointly participate in the various networks engaged in the absence of 

an externally pre-set task. “Resting state” activity would hence consist of a, more or less 

random, sampling of all the different task-related networks that the brain is capable of, with 

a certain preponderance for introspective and inter-personal aspects. This view not only 

presents a plausible explanation for the apparent presence of networks resembling those seen 

in task-based fMRI but also reconciles the psychological experience of “rest” with the 

hypothesis of coordinated stochastic fluctuations in brain activity. It has thus been proposed 

to avoid the term “resting state” in favor of “task-free functional connectivity” or “functional 

connectivity in the absence of an externally structured task set”.65-67

Task-based functional connectivity and co-activations

The notion of functional connectivity in the absence of an externally structured task set 

easily leads to the complementary aspect of task-based or task-dependent functional 

connectivity. As noted above, task-based functional connectivity may be inferred from 

correlation analysis between time series from different brain regions during the performance 

of a particular task. In this case, however, inference is limited to the task at hand or — more 

precisely — to the particular experimental implementation of a given task. While such an 

approach may reveal new insight into functional connectivity networks, it does not allow 

answering the core question about task based functional connectivity: With which other 

regions does a particular area in question work? In other words, if a particular area is 

activated, which other brain regions are co-activated over and above chance? If such a 

question may be answered comprehensively by considering a large number of different tasks 

and implementations, it would allow inference on jointly activated and hence most likely 

interacting areas. Ideally, however, such a data-driven definition of brain networks should 

cover a broad range of functional domains in order to reveal associations between regions 

beyond a particular mental function. A possible solution to this problem has emerged from 

the advent of large scale databases on functional neuroimaging results (Figure 3). These 

enabled completely new approaches to task-based functional connectivity analysis.68-70 

Such resources, like the BrainMap (http://brainmap.org/) or Caret database (http://

brainvis.wustl.edu/wiki/index.php/), contain a summary of the results of several thousands of 

functional neuroimaging experiments. Given the high standardization of neuroimaging data 

reports and in particular the ubiquitous adherence to standard coordinate systems (such as 

the MNI system), the results reported in these studies can be readily compared with each 

other with respect to the spatial location of significant neural activity. Using such broad 

pools of neuroimaging data functional connectivity may be assessed by testing for co-

activation probabilities between different areas. In practice, functional connectivity of a 

given region is established by retrieving all experiments from a database that feature at least 

one focus of activation within this seed region of interest.71,72 Coordinate based meta-

analysis is then performed over all activation foci reported in these experiments in order to 

test for significant convergence (Figure 3C). As the experiments entered into such an 

analysis are selected based on the presence of an activation in a given seed region, any 

significant convergence of coordinates outside that seed would reflect above-chance co-

activation. Importantly, such meta-analytic connectivity mapping (MACM) does not 
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differentiate between different experimental paradigms or other factors, but is solely based 

on the likelihood of observing activation in a target region (or voxel).73-75 Note that MACM 

follows exactly the definition of functional connectivity by testing for coincidences of 

neurophysiological events. In MACM, however, time-scales are very distinct from other 

approaches as the unit of observation is not a specific point in an acquired time-series but a 

particular neuroimaging experiment. Thus functional connectivity is not expressed as 

coherent fluctuation across time but as coherent activation across experiments.

Task-based vs. task-free functional connectivity

Compared to task-free functional connectivity measures, the advantage of task-based 

functional connectivity analysis by MACM is twofold. First, MACM delineates networks 

that are conjointly recruited by a broad range of tasks and should hence reflect robust (i.e., 

meaningful) patterns of coordinated activity in response to an external challenge. Secondly, 

the MACM approach can also be used to investigate what kinds of experiments yield co-

activation between two regions allowing the establishment of a link between functional 

connectivity and particular mental operations. In contrast, as MACM analyses are based on 

task-related neural activity, spontaneous networks related to self-initiated behavior and 

thought will be largely missed in MACM analyses.

Hence, a comprehensive assessment of the functional connectivity patterns of a particular 

seed region may consist of performing a meta-analysis identifying significant co-activation 

in all experiments activating that seed region (MACM) as well as identifying all voxels in 

the brain whose time-series in a task-free state (resting state) show significant correlation 

with the reference time-course extracted from that seed. In a comparison of both functional 

connectivity maps, two situations may arise. First, regions are congruently implicated as 

functionally connected with the seed in both analyses. Such convergent evidence across 

fundamentally different states (presence or absence of a preset task) may be regarded as a 

very strong indication of a functional coupling with the seed. Second, strong but non-

matching evidence obtained from both analyses, however, may relate to the fundamental 

differences between two states. It is well conceivable that a seed region of interest interacts 

with a particular set of areas (related, e.g., to planning and internal goals) during 

spontaneous, self-initiated mental operations and with other distinct set areas (related, e.g., 

to sensory processing) during the performance of an externally presented task. Both 

convergence and divergence of results may hence contribute to our understanding of 

functionally connected networks in the brain. While there has been little to no research along 

these lines, the prospect of differentiating internally and externally driven functional 

connectivity networks by such a comparison may hold an important potential for 

understanding the physiology of the two main states of brain function, reaction to the 

external world and reflection on our inner states.

Relation to regional specialization

In contrast to the assessment of anatomical connectivity, which is closely related to the 

regional differentiation of brain (micro-) structure, functional connectivity is conceptually 

much closer related to the regional specialization of brain function. As noted above, there is 

growing consensus that functional connectivity in the task-free state reflects, similar to task-
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based functional connectivity, the degree to which different brain regions are involved in the 

same functional networks. The role of a particular network is evidently to fulfill a particular 

mental function. However, conjoint contribution to a particular function does not imply that 

different regions within the respective network feature similar functional specializations but 

also sustain different computational processes that need to interact for task performance. 

Nevertheless, if two areas show a highly similar profile of “network-participation” we may 

thus assume that the functional specialization realized in these modules are closely linked to 

each other indicating that the computational processes sustained by these modules are often 

used together. Regions that are obtained from a conjunction analysis over “resting state” 

correlations and MACM co-activations may thus be regarded as robustly connected with the 

seed due to the incorporation in similar networks and the engagement by, potentially, the 

same mental operations. This approach thus allows delineation of functional specialization 

in the brain based on the location of significantly coupled regions. This perspective is much 

sharpened, if multiple seed regions are employed. Hereby the triangulation of brain networks 

may allow a detailed mapping of regional specialization in other parts of the brain. 

Especially when we have a good notion about the seeds and their respective roles, this opens 

the perspective to connectivity based mapping allowing identification of brain regions not 

based on activation in a specific task or their structural properties but on their connectivity 

with a set of seed regions. Functional connectivity may also be assessed for cortical modules 

or areas as defined by functional or structural criteria. In this case, a histologically defined 

cortical area or the region activated by a particular functional task would represent the seed 

for the functional connectivity analysis. By delineating distant brain regions showing task-

free and task-based functional connectivity with this module, one may then describe the 

network which interacts most closely with that particular region. In the case of a functionally 

defined seed area, such an approach enables the generalization of inference beyond the 

current task-set. That is, while a particular experiment may show that right area 44 is 

activated in the same contrast as, e.g., the bilateral intraparietal sulcus and the dorsolateral 

prefrontal cortex, functional connectivity analyses may test whether this association is 

consistently expressed over many tasks (MACM) or whether it is also present in the task-

free, i.e., self-reflexive state. Functional connectivity analyses seeding from a histologically 

defined region of interest may already provide, albeit indirect, evidence for its functional 

role by delineating those regions of the brain which interact with the area in question. This 

inference is considerably strengthened by assessing the functional properties of experiments 

that activate the particular area in a large database. Hereby it becomes possible to draw 

conclusions about the functional role and network-interactions of a purely structurally 

defined regional specialization.

What can we learn from functional connectivity?

The fact that functional connectivity analyses are fundamentally correlative in nature 

represents both their major strength and mostly severe drawback. As outlined from the 

opposite perspective in the discussion on anatomical connectivity, a correlation between the 

neuroimaging signals on any scale may arise not only from direct interaction but may be 

induced by a third area or mediated via relays and loops. Moreover, given the absence of a 

specific model on the nature of the interactions, functional connectivity analyses tend to be 

susceptible to confounding factors such as global signal changes and physiological artifacts 

Eickhoff and Grefkes Page 13

Clin EEG Neurosci. Author manuscript; available in PMC 2021 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in task-free analyses, or activation corresponding to task-elements generic to most imaging 

experiments such as remembering the instruction and paying attention in MACM. The fact 

that functional connectivity analysis does not depend on a specific model of interactions but 

describes the strength of coupling, i.e., the similarity in network participation between 

regions, however, also represents a major advantage. Being a hypothesis-free approach, 

minimal assumptions have to enter into functional connectivity analyses rendering them 

largely unbiased in the mapping of interacting networks. Functional connectivity studies, 

however, do not allow any inference on the causal nature, context-dependency or 

directionality of the respective interactions.

EFFECTIVE CONNECTIVITY

One concept, many approaches

Effective connectivity in the brain is defined as the causal influence one area exerts over 

another.2 In contrast to measures of anatomical connectivity aiming at identifying fiber 

pathways or functional connectivity analyses identifying coupled networks by correlated 

signal changes, effective connectivity analyses thus strive to understand how different brain 

regions affect another. Importantly, effective connectivity measurements are based on 

explicit models, how influences between brain regions are mediated. Model parameters are 

then fitted using the measured fMRI (or electrophysiological) signal.

In spite of the considerable differences between methods and concepts for effective 

connectivity modeling, all approaches allow inference on directed influences. This has led to 

the common custom of representing effective connectivity analyses as directed graphs, 

where nodes represent the individual brain regions that were either included in the analysis 

or inferred from it. 56,76 The directed edges of the graph then express the causal influences 

of one region on another, i.e., effective connectivity. The dependency on an explicit model of 

interactions between areas is the major advantage of effective connectivity analyses. Since 

models reflect hypotheses about functional integration in the brain, the comparison of 

different models allows the comparison of competing hypotheses. Models of effective 

connectivity are thus hypothesis-driven investigations of how data are propagated and 

processed in and between different areas of the brain. However, the reliance on the explicit 

and implicit assumptions going into a particular model and its parameter estimation scheme 

has also been voiced as the most fundamental limitation of effective connectivity modeling. 

In particular, while model-and hypothesis-based analyses enable a mechanistic assessment 

of interaction processes, any inference drawn from these analyses crucially depends on the 

validity of the modeling assumptions.

Above this fundamental commonality to all approaches for assessing effective connectivity, 

there are also major lines of conceptual and practical distinctions between them. Some 

methods such as psycho-physiological interactions (PPI) or Granger Causality Mapping 

(GCM) enable spatial inference.77,78 That is, given a particular seed region or a set of seed 

regions, regions showing effective connectivity with these, either by influencing the seed or 

being influenced by it, may be delineated. Other approaches, for example Dynamic Causal 

Modeling (DCM) or Structural Equation Modeling (SEM) do not aim at localizing effects 

but also model the interactions within a pre-defined network or regions.51,79,80 Models of 

Eickhoff and Grefkes Page 14

Clin EEG Neurosci. Author manuscript; available in PMC 2021 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effective connectivity also differ in whether external perturbations of a system are explicitly 

incorporated in a model, assumed to be stochastic or in equilibrium. Examples for the 

former would be PPIs and DCM, the probably prime example for the latter is SEM. Finally, 

modeling schemes may also differ with respect to the level of hemodynamic modeling 

involved.81-83 All of the approaches discussed here estimate effective connectivity from 

fMRI time series, which presents a challenge to the estimation of effective connectivity, 

since fMRI measurements do not reflect any neuronal signal directly but clearly after its 

convolution with a hemodynamic response function (HRF).84 Evidently, interactions in the 

brain should be expressed at the neuronal level instead of at the (measureable) level of 

hemodynamic responses. Consequently, there is a growing consensus that models of 

neuronal interactions, i.e., effective connectivity, should be based on a constrained 

approximation or inference of neuronal responses based on the measured time-series instead 

of on the hemodynamic observation.83

Psycho-physiological interactions

Analyses of effective connectivity via psycho-physiological interactions (PPI)77 are 

conceptually closely related to functional connectivity analyses, in particular task-based 

correlations with a seed-region. An important assumption underlying PPI is that if activity in 

one brain area is regressed on the time series of another area, the slope of this regression 

should reflect the dependency of the first area on the second, i.e., the influence of the latter 

on the former. Functional connectivity analyses in turn usually assess correlation between 

two time-series as a bidirectional estimate of coupling but follow the same concept. What 

makes PPI a measure of effective connectivity? The basic distinction of PPI from functional 

connectivity analyses is that it addresses contextual modulations of these influences. PPI 

analyses are conditioned on at least two distinct mental states being present in an 

experiment. The slope obtained from regressing the activity measured in the first area on the 

activity measured in the second area is then compared between the images obtained under 

the different psychological contexts. Any change in slope, i.e., any change in the influence 

that the second area exerts over the first within the experimental context represents a PPI. 

Importantly, locations where the PPI becomes significant may actually be interpreted 

twofold. Either the effective influence (connectivity) of the seed region to this particular area 

of the brain is modulated by the experimental manipulation. Or the response of that 

particular region to the experimental manipulation is modulated by the influence 

(connectivity) of the seed. That is, either term may be ascribed the role of the effector and 

modulator, respectively. While there is no statistical approach to disentangle this ambiguity, 

it has to be remembered that both main effects are also specified in the design-matrix as 

confound regressors and can therefore be used to identify the relationship of the interaction 

with the respective main effects.

In practice, PPI analysis does not require performance of separate regression analyses. The 

explanatory variable used to predict the activation time-series in any other location of the 

brain is given by the interaction-effect (point-wise multiplication) between a standard 

experimental design regressor (presence / absence of a particular context or stimulus) and 

the response time-series from another part of the brain (the seed). In this context, however, it 

needs to be remembered, that interactions in the brain should be expressed at the neuronal 
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level, and not at the level of hemodynamic responses which are slow and regionally variable.
51,83 This constraint to effective connectivity analyses implicates that the simple interaction 

between a psychological factor and a delayed hemodynamic response does not precisely 

reflect the object of inference. It has been suggested to first de-convolve the time-series of 

the seed region, hereby estimating its neuronal states.85,86 The interaction term between the 

de-convolved physiological regressor and the psychological factor is then again convolved 

with a canonical hemodynamic response function to represent a more faithful predictor of a 

PPI effect. The observed signal time-series in each voxel of the brain is regressed on this 

interaction term as well as on the physiological (time-series of the seed) and psychological 

(experimental context) time-series used as confound regressors. Inclusion of these latter 

regressors of no interest is crucial to remove the main effects of either factor from the 

variance explained by the PPI regressor and thus remove confounding, e.g., stimulus-locked 

effects. This general linear model, testing for the presence of a differential influence from 

the seed region, is applied to every voxel in the brain. Hence, the PPI approach can be used 

in an exploratory fashion enabling inference on regional specialization based on differences 

in context-specific functional integration. This is an important difference to other network-

based models of effective connectivity and renders PPI analyses again close to context-

dependent functional connectivity models. However, as only pair-wise interactions between 

the seed region and all other voxels are considered, PPIs have limited capacity to represent 

complex neural systems.80

Granger Causality Mapping

Granger causality mapping (GCM) is another exploratory approach for assessing effective 

connectivity.78 It was originally developed in the field of econometrics for the analysis of 

directed dependencies in time-series data.87 The application of GCM in the context of 

effective connectivity analyses taps into what many would describe as our common-sense 

description of causality, i.e., temporal precedence. Simply speaking, any effect that is 

present in structured time-series data may only be explained by the history of that time-

series, not by other observations made at the same time or even the future. That means that if 

region X has an influence on the activity in region Y, region X has to activate earlier than Y. 

On the other hand, however, if these two brain regions would activate at the same time, 

fulfilling the definition of functional connectivity, then the common cause must lie in the 

past. Examples for such earlier causes may be activity in a third area driving both areas. 

Apart from temporal precedence, the second fundamental assumption in GCM is 

predictability. Together, precedence and predictability define what has been termed 

“Granger causal” or g-causal as follows: If there is a causal influence of one area on a 

second, then knowledge of the time-series history of the first region should improve the 

prediction of further values of the latter.78 This means that effective connectivity is assumed 

when the current value of the target area is better predicted by the past values of this area as 

well as the ones from the seed area as compared to using only the past values of the target 

area itself. Given this asymmetrical definition it becomes evident that GCM enables 

delineation of the directionality in the interaction of two regions. If the activation history of 

region X helps to predict the current values of Y but not vice versa, X has an influence on Y. 

Conversely, if Y helps to predict X but not the other way around, Y has an influence on X. 

What, however, happens if both past time series help predicting each other? One of the most 
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discussed aspects of GCM is the fundamental assumption that fMRI data contains enough 

temporal information to enable a delineation of directed influences in a data-driven fashion 

based only on temporal precedence in the measured BOLD data. It has been argued, that due 

to physiological variations in the hemodynamic response function, scanner noise, and most 

importantly sparse sampling, i.e., limited temporal resolution, many short-lagged influences 

may remain unresolved.83,88,89 These would then get absorbed in an instantaneous influence 

term, which essentially describes the correlations within the two time-series. While such 

instantaneous influences, under steady state assumptions, are elementary to SEM as 

discussed below, they are usually not of specific interest in GCM analyses. Notably, 

however, these instantaneous influences, which may not be attributed to any directed 

influence at the given temporal resolution, confine precisely with the notion of functional 

connectivity as discussed in the previous section. GCM may thus be regarded as a temporal 

expansion of functional connectivity analyses that uses temporal precedence in the time-

series to ascribe directionality to functional interactions.

GCM is usually applied as a seed-region based analysis of every other voxel in the brain. 

Similar to seed correlations or PPI analyses, a particular location in the brain is chosen as the 

reference region, whose effective connectivity is of interest. A vector autoregressive model 

is then fitted at each voxel of the brain, assessing the degree to which prior information from 

the reference region improve predictability of the current target voxel and vice versa.78 In 

contrast to PPI analyses, which are only concerned with the influence of the seed on the rest 

of the brain, GCM thus enables delineation of regions influenced by the seeds as well as 

those regions that in turn influence the seed region. It must be noted though that direct and 

directed influences may only be inferred in a situation where the seed or reference region 

and the current target, or more general any two areas of the brain, may be regarded as the 

only relevant sources of influence. Indirect influence, e.g., mediated by a third region that 

drives both the reference region and the current target voxel, will wrongly appear as direct 

influence unless their time series is likewise added to the model. Given the observation, that 

at any given time a large number of regions in the brain is concurrently active (since most 

brain networks are composed of multiple areas) the assumption of “exclusive” influences 

may evidently be rarely upheld. In most cases regions of confounding influences are usually 

not known a priori, although in cases were a strong hypothesis on a particular confound 

exists it may be added. Since on the other hand inclusion of all other regions in the brain is 

computationally difficult, a possible solution to overcome this problem is to compute an 

influence difference term.78 This influence difference term is given by the difference of the 

estimated influence of the reference region on the current target and vice versa, thereby 

mapping of influence to and from the reference region over the brain.

Similar to PPI analyses, GCM may also be used to test for context-dependent differences in 

the effective connectivity between conditions. Unlike the situation in PPI, where the 

interaction is computed from a single time-series, however, GCM difference analyses are 

based on two separate functional imaging time series obtained under different conditions. 

Influences to and from the reference region are then delineated based on the time-series 

obtained for each condition and contrasted with each other. Such contrast analysis has been 

advocated as a remedy for the most crucial problem associated with the application of GCM 

to fMRI data, namely the inter-regional variability of the hemodynamic response function.
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83,88 It is easily conceivable that in a scenario of two perfectly synchronous neuronal 

responses GCM on the BOLD time-series would indicate strong directed influences if one 

area would show a more sluggish, i.e., later hemodynamic response. That is, the key caveat 

in analyses of an indirect signal that are based on temporal precedence is that differences in 

hemodynamic latencies may be misinterpreted as effective connectivity.

Structural equation models

Structural Equation Models (SEM) also have a long tradition in the fields of econometrics 

and social sciences and were introduced in the field of effective connectivity analysis of 

neuroimaging data (initially PET) in the early 1990s.79,81,90 The basic idea behind SEM is 

to model the interactions within a pre-defined set of areas based on an a priori hypothesis 

about their interactions. These interactions are specified as directed connections in the model 

that represent the causal relationship between the examined areas. The model is tested 

against the data obtained in fMRI time-series or PET scans from individual subjects. The 

model parameters, i.e., path coefficients representing connection strengths, are then 

optimized such as the discrepancy between the covariance-structure of the measured data 

and that implied by the model is minimal. In this context, three aspects deserve special 

attention when SEM is applied to fMRI rather than, as originally proposed, PET data. SEM 

path coefficients reflect instantaneous correlations between measured variables. On one 

hand, this requires the temporal dynamics in the system to be negligible and the system to be 

in equilibrium. These assumptions certainly met the case in PET images which are usually 

acquired over the course of several minutes while the subjects are constantly engaged in a 

particular task, but are more difficult to ascertain in fMRI time-series. On the other hand, the 

model parameters are fitted to represent the covariance structure of the measured 

(hemodynamic or metabolic) data, not the underlying neuronal activity. SEM thus has to rely 

on the tenuous assumption that the mapping from neuronal to measured activity is invariant 

across areas. Finally, SEM does not allow the direct modeling of modulatory effects of 

experimental manipulations on effective connectivity. If separate imaging datasets are 

obtained for the different conditions, as in PET, this problem is easily circumvented by 

fitting separate SEMs to the data obtained under the various conditions and inferring 

changes in effective connectivity from the differences between the obtained path 

coefficients. In the case of a single time-series in which measurements pertaining to a 

particular condition are not clearly separable but part of the same time-series, however, 

inference on context-dependent effective connectivity may be limited.

A drawback that is shared between SEM and all other network-based analyses of effective 

connectivity is the strong reliance on a priori assumptions. Model-based confirmatory 

analyses have major advantages over exploratory strategies, as they represent an approach to 

explicitly test hypotheses about interactions in neuronal systems. They may, however, give 

rise to potential biases in effective connectivity modeling. Given the large number of areas 

commonly engaged in a particular mental process, testing for all possible models of how 

these may interact by separate models is rarely a viable option (if there was only a binary 

choice of modeling a connection or not, the number of possible models grows as an 

exponential of 2 with the number of theoretical connections, which in turn raise as a second-

order power of the number of regions). In most cases, even including all regions that may 
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participate in this particular function may exceed the model capacity. Virtually all applied 

models must hence be constrained by specific hypotheses about the underlying network 

architecture. This aspect is crucial for the validity of the subsequent inference. Typically, 

assumptions are based on anatomical connectivity information obtained in non-human 

primates, observations or hypotheses on the physiological “function” of an area from 

previous neuroimaging experiments or functional connectivity analyses. Furthermore, 

Bayesian approaches allow for testing multiple network models against each other in order 

to identify the optimal model structure. However, even prior information and model 

selection cannot completely alleviate the problem of experimenter-induced bias in a network 

model. This leads to the uncomfortable situation that on one hand hypothesis-based 

modeling is highly needed in a field still dominated by exploratory analyses. On the other 

hand, the motivation for (not) including a particular area or connection into the assessed 

model space may always be questioned as deteriorating the validity of the entire model.

Dynamic causal modeling

In contrast to SEM or GCM, which are rooted in non-brain imaging applications, dynamic 

causal modeling (DCM) represents an approach to effective connectivity modeling that has 

been specifically designed for the analysis of fMRI time-series.51 The idea behind DCM is 

to consider the brain as a nonlinear dynamic system in which external perturbations (inputs) 

cause changes in neuronal activity or inter-regional coupling strength, i.e., connectivity 

(Figure 4). The ensuing changes in neuronal activity states in turn cause changes in the 

blood oxygen level-dependent (BOLD) signal observable with fMRI. Importantly, the 

hidden neuronal dynamics (neuronal states) are driven by the experimental inputs (sensory 

stimulation or contextual influences such as task settings). These neuronal dynamics then 

give rise to externally assessable outputs such as BOLD signal changes which are explicitly 

modeled in DCM by a set of differential equations. The effective connectivity within the 

assessed dynamic system is thus expressed in terms of coupling between unobservable brain 

states (e.g., the modeled neuronal activity in the different regions comprised in the model), 

and being inferred directly from the measured time-series data. The modeled neuronal 

dynamics are then linked to the observable changes in the BOLD response via a 

biophysically validated hemodynamic forward model translating neuronal states into 

predicted measurements.51 In DCM, effective connectivity within a given brain network is 

inferred from the coupling parameters computed for the hidden neuronal states. Estimation 

of these in turn is based on perturbing the system through experimental manipulation, e.g., 

by engaging the subjects with different tasks while measuring the evoked effects on the 

BOLD time-series of the regions included in the model. The parameters of the model that 

best translate the input functions based on the experimental design into the measured time-

series may be estimated by Bayesian inversion. The aspect of perturbation is especially 

important in the classical formulation of DCM,51 as here the modeled neuronal network is 

considered completely deterministic and only driven by external inputs. Without such 

driving input, however, the system would stay and remain at rest. More recent developments, 

however, have added stochastic behaviour and may thus alleviate the strong dependency of 

DCM analyses on the experimental manipulation and the assumption that neural population 

dynamics may be correctly captured from the modeled inputs.91 In spite of these revisions, 

the mainstay of DCM analyses is still the modeling of task-specific contextual influences 
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aiming at an interpretation of functional neuroimaging data in terms of the underlying 

connectivity patterns. DCM may thus be seen primarily as a tool providing an additional 

layer of insight into the causes of regionally specific activation patterns rather than revealing 

information about functional connectivity patterns that go beyond the particular experiment. 

In other words, stemming from general systems theory, DCM represents the most 

confirmative modeling approach currently available for effective connectivity modeling in 

healthy subjects and patients suffering from neurological or psychiatric disease.81,85,86,92,93

Bayesian model inversion does not only provide estimates (posterior densities) for the model 

parameters, but also an approximation to the log evidence of the model for the observed 

data. This log evidence can be used to compare alternative DCMs of the same data, i.e., to 

decide between alternative hypotheses on the architecture of the neuronal interactions 

underlying an observed pattern of activation.94,95 This formal approach to comparing 

different hypotheses on the model structure has been conceptualized as one of the major 

advantages of DCM over other approaches to effective connectivity.

At present, DCM is certainly the most specific and biologically informed tool for modeling 

neuronal networks. As outlined above, confirmatory models of connectivity like DCM 

strongly depend on a priori assumptions. This dependency on a priori assumptions spans 

several aspects of DCM analyses, starting with the definition of regions to be included in the 

model. Given the context-dependency regions going into the model should be based on task-

specific effects. But there are usually many of these while DCM analyses are currently 

limited to eight regions for any given model due to computational constraints. The definition 

which areas among the set of activated regions are deemed crucial to the model may thus be 

a matter of conjecture. Moreover, although model selection may allow to identify the most 

likely model given the measured data, inference is evidently limited to the models included 

into the comparison which may only reflect a small proportion of the potential full model 

space. Finally, Bayesian inversion of the model and estimation of the neuronal and 

hemodynamic parameters is only feasible by constraining these estimates using priors on 

each parameter. For the neuronal interactions, these priors are (conservative) shrinkage 

priors.51 The hemodynamic priors reflect biological constraints on the nature of the BOLD 

response.96 Evidently, all of these assumptions have considerable influence on the ensuing 

models of effective connectivity. As an example, given that hemodynamic priors are 

generally more relaxed than neuronal ones, a delayed influence may be absorbed by the 

former instead of being interpreted as effective connectivity. Consequently, DCM currently 

allows the most specific modeling of effective connectivity in neuronal systems but this 

specificity comes at the cost of a high dependency on prior information and assumptions 

going into the model.

The notion of causality

The fundamental definition of effective connectivity relates to the influence of one area over 

another.2 Consequently, effective connectivity is commonly framed in terms of (implicit or 

explicit) causality, e.g., “area X inhibits area Y”. It is important to note, however, that strictly 

speaking true causality cannot be assessed by pure observation of a system from a 

theoretical point of view. To illustrate the point, when observing that the street is wet in the 
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morning after hearing a storm at night, do we know that this was caused by rain (and not by 

a cleaner who drove by in the early morning or a malfunctioning sewer)? Inference on 

causality, if philosophically acceptable at all, requires the intervention and manipulation of a 

system. Thus, while all approaches to effective connectivity analysis evoke a notion of 

causality, these differ between the different analysis concepts.

In PPI, causality is understood as the contribution of another area to the local signal time-

course and is thus inferred from dependencies revealed by context-dependent regression of a 

regional time-series on the activity in another brain region.

In GCM causality is framed as predictability and temporal precedence, and parameterized in 

an increased predictability of current activity in area X by adding information about the 

history of a distant area Y to the history of X. The distant area Y would hence have effective 

influences on X.

In SEM causal relationships are derived from the direction of the connections that are 

included in the fitted model. A directed connection between two areas hence equate to the 

assumption of a causal influence whose strength would be reflected in the estimated path 

coefficients.

In DCM, effects are deemed causal in the sense of control theory, describing how dynamics 

in one neuronal population cause dynamics in another and how such interactions are 

modulated by contextual manipulations.

Relation to regional specialization

Effective connectivity models may be separated into those that have localizing power by 

assessing the effective connectivity with a seed region in every voxel of the brain and into 

those representing network-based models of interactions within a predefined set of regions. 

The former (PPI, GCM) may be described as exploratory methods, the latter (SEM, DCM) 

as confirmatory, although this distinction is blurry given cross-validation and model 

selection procedures, respectively. Regarding their relationship with the fundamental 

concept of regional specialization in the brain, most that has been said for functional 

connectivity analyses also holds true for voxel-based effective connectivity models. 

Analyses such as PPI allow the identification of regionally specific effects. In contrast to 

functional neuroimaging or histological examinations, however, these effects are not 

referring to response properties or structural features. In other words, the property of 

interest, whose regional distribution and specificity is examined, relates to the (context-

specific) influences of a distant area. Like functional connectivity analyses, PPI and GCM 

use connectivity to provide regionally specific properties (“where is something connected to 

the seed”), adding context-specificity to these (“and under which circumstances”).

On the other hand, graph-based approaches such as SEM and DCM have a very distinct 

relationship with analyses of regional specialization, as they are not aimed at identifying 

locations that show a particular effect. Their focus is to model interactions between a set of 

regions defined by other methods of structural or functional brain mapping. This renders 

network-based effective connectivity analyses highly complementary to studies on regional 
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differentiation using, e.g., fMRI analyses of task-related activity. It should be noted that 

“complementary” does by no means imply independence. In virtually all cases, the networks 

in which effective connectivity is modeled as well as the task-specific effects representing 

the experimental perturbations to the system will be derived from a particular functional 

mapping study. Analysis on regional differentiation and functional integration is thus 

performed on the same dataset. From a more system-based perspective, functional mapping 

reveals the nodes, and effective connectivity modeling the edges of a brain network. Despite 

the potential influence of various priors and assumptions, effective connectivity models 

allow unrivaled insight into the processes and mechanisms of functional integration and may 

hence be a powerful complement to any analysis that identifies regionally specific effects.

What can we learn from effective connectivity?

The strength and drawbacks of effective connectivity modeling are largely the mirror 

reverses of those discussed for functional connectivity analyses. Certainly the major 

advantage of assessing effective connectivity is that it allows inference on the directed, 

context-specific influences between cortical areas. Models of effective connectivity thus 

represent an approach to mechanically understand the dynamics within brain networks. 

Evidently, the precise nature of transmitted information remains obscure, but context 

dependency of promoting or inhibitory influence often enables to ascribe more specific 

functional roles to a particular area as would have been possible from the pure observation 

of task specific activations. Thereby, effective connectivity analyses offer the opportunity to 

disentangle the relative contribution of areas conjointly activated in a particular task as well 

as to delineate the flow of information through a particular network.

There is, however, the implicit problem of potential misspecifications in the model. This is 

particularly relevant to confirmatory network-based approaches where, e.g., misguided 

choices of not including a particular region may compromise the validity of the entire 

model. Seed region based approaches also specify a particular model, e.g., by assuming that 

a particular region should show differential connectivity with other areas in the context of 

two experimental states. Most approaches additionally evoke choices on model parameters 

ranging from the order of a multivariate autoregression to a particular hemodynamic model.
80,89 On the deepest level, the various approaches available for modeling effective 

connectivity also differ in their concepts about brain dynamics. For example, DCM assumes 

that interactions between brain regions may be sufficiently described with bi-linear 

influences and time-invariant quadratic effects. In contrast, GCM is based on the belief that 

in spite of regionally variable hemodynamic low-pass filtering the originally neuronal signal 

interactions may be inferred from temporal precedence and predictability. Extensive 

simulation analyses have attempted to verify or challenge the assumptions of various 

effective connectivity analyses,83 but it has to be remembered that simulations themselves 

are reflections of assumptions about some underlying truth.

SUMMARY AND OPEN QUESTIONS

Although far from exhaustive, we hope that this synopsis has provided an overview on the 

different concepts and approaches to study regional specialization and functional integration 
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in the brain. As discussed above, there is no optimal tool or model for understanding the 

organization of the human brain.97 Both regional specialization and integration may be 

expressed in many different facets. Regional specialization comprises microstructural and 

functional aspects, with the latter closely related to regionally specific differences in the 

interaction with other parts of the brain. Inter-regional integration, i.e., brain connectivity, 

may be described along various lines such as anatomical connections, participation of distant 

areas in the same networks during a task-based or task-free state and effective influences 

within these networks. While each approach has its particular strength and allows statements 

not possible by any other method, they all come with their particular associated drawbacks 

as well. Importantly, however, strengths and weaknesses of these different approaches to 

understand the human brain are often complementary to each other. For example, functional 

connectivity analyses may inform models of effective connectivity by pointing to important 

nodes in a network. Histologically defined areas of the brain may provide seed points for 

anatomical connectivity analyses using probabilistic tractography.

Using a modular and highly interconnected structure, our brain is able to fulfill the large 

array of cognitive, affective and sensory-motor capacities. Given this complexity, a deeper 

understanding of how the brain is organized thus calls for an integrated multi-modal and 

multimethod analysis of structure, function and connectivity. Such integration of information 

on different aspects of brain organization will without doubt enable more new insight into 

the neurobiological basis of mental capacities and disturbances thereof in the diseased brain.
17

We would thus like to conclude this overview with a dozen questions all being located at the 

junction between methodological considerations and neurobiological challenges. This is in 

particular to point to the issue that conceptual knowledge of the organization of the human 

brain and an improved understanding of what the different methods actually reflect are 

closely linked to each other. In other words, understanding how different aspects of 

structure, function and connectivity relate to each other may actually guide us to the 

fundamental principles underlying human brain organization.

1. Do borders of microstructure and anatomical connectivity patterns coincide? Or do 

intersecting mosaics represent the constraints on functional specialization?

2. Are structural features such as histology and anatomical connectivity patterns sufficient 

for functional specialization or may functional differentiation exist if these are 

homogeneous?

3. Which are the modules of brain function that form the unit of functional specialization? 

And how do they relate to our concepts of mental functions or psychological ontology?

4. What is the explanation of the involvement of some regions in many different tasks? If 

connectivity, what is the explanation of the presence of similar networks in many different 

tasks then?
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5. Is there a difference between functional specialization in task-based fMRI and 

specialization of functional or effective connectivity patterns assessed by seed-voxel based 

methods?

6. To what degree are functional connectivity patterns in a task-free “resting” state a 

reflection of anatomical connectivity? To what degree are they a reflection of functional 

specialization?

7. How does one quantify connection strength in exploratory seed-based analyses of 

anatomical and functional connectivity in a way that is comparable across methods?

8. Do task-based and task-free functional connectivity correspond to each other? Are 

differences only a reflection of the different “tasks” engaged in during experiments or free 

thought?

9. Can anatomical and functional connectivity inform and hence improve effective 

connectivity models? If not, are we missing or messing information?

10. Could a combination of different exploratory approaches to functional and effective 

connectivity analyses render them confirmatory?

11. How do results from different approaches towards effective connectivity analyses relate 

to each other under the same context?

12. Which information on structure, function and connectivity are actually congruent and 

may be used for cross-validation? If none, how much overlap is there to drive converging 

evidence?
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Figure 1. 
Diffusion Tensor Imaging (DTI). (A) Restricted diffusion in white matter. (B) T1 weighted 

coronal section. (C) Diffusion tensor image of the same coronal section as in (B). The 

direction of fiber orientation is color-coded in blue (dorso-ventral direction, e.g., the 

corticospinal tract, CST), red (medio-lateral direction, e.g., the corpus callosum, CC) and 

green (antero-posterior direction, e.g., the superior longitudinal fascicle, SLF). (D) Detail of 

diffusion tensors of the principal diffusion direction. (E) Detail of the diffusion tensors of 

“crossing fibers” representing higher order models of fiber orientation per voxel. (F) 

Probabilistic tractography between the parietal operculum (area OP 4) and the primary 

motor cortex.
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Figure 2. 
Functional connectivity in resting state fMRI data. (A) Single subject data of correlated 

activity with a seed voxel situated in left primary motor cortex (M1). Positive correlations 

are colored in green, negative correlations in red . (B) Time series information from voxels 

in left M1 (left panel, seed), precuneus (middle panel) and right M1 (right panel) illustrate 

the underlying correlations. r = Pearson correlation coefficients with seed voxel in left M1. 

(C) Group data of correlated activity with left M1 (n = 100, random effects analysis, p < 

0.01, FWE corrected on the voxel level).
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Figure 3. 
Task-based functional connectivity and co-activations. (A) Seed region in left BA 44 

according to the SPM Anatomy toolbox.29 (B) Excerpt from the list of experiments from the 

BrainMap database that feature at least one focus of activation within this seed region of 

interest. (C) Activation likelihood estimation (ALE) map quantifying the degree of 

convergence across the activations reported in these experiments (cf. B). Thresholding the 

ALE map at p<0.05 (corrected for multiple comparisons) reveals those regions, where 

experiments activating BA 44 show significant above-chance co-activation, i.e., the 

functional connectivity of the seed region.
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Figure 4. 
Effective connectivity as established with dynamic causal modeling (DCM). (A) Simplified 

network model of three interacting regions (Area X, Y, Z) receiving context-independent 

(yellow arrows), context-dependent (blue arrows) and nonlinear (purple arrows) inputs. 

Direct influences of an experimental condition (i.e., u1) on activity (e.g., of area X) are 

coded with grey arrows. (B) Context-dependent connectivity (DCM B-matrix) within key 

areas of the motor system for rhythmic fist closures performed with the right hand (upper 

left panel), left hand (lower left panel), and with both hands in-phase (right panel). Coupling 

parameters (rate constants in 1/s [Hertz]) indicate connection strength, which is also coded 

in the size and color of the arrows representing effective connectivity. Positive (green) values 

refer to facilitation of neural activity. Negative (red) values denote inhibitory influences on 

neuronal activity. (Adopted from Grefkes et al. [2008],98 with permissions).
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