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ABSTRACT: Accurate description of finite-temperature vibrational dynamics is indispensable
in the computation of two-dimensional electronic spectra. Such simulations are often based on
the density matrix evolution, statistical averaging of initial vibrational states, or approximate
classical or semiclassical limits. While many practical approaches exist, they are often of limited
accuracy and difficult to interpret. Here, we use the concept of thermo-field dynamics to derive
an exact finite-temperature expression that lends itself to an intuitive wavepacket-based
interpretation. Furthermore, an efficient method for computing finite-temperature two-
dimensional spectra is obtained by combining the exact thermo-field dynamics approach with
the thawed Gaussian approximation for the wavepacket dynamics, which is exact for any
displaced, distorted, and Duschinsky-rotated harmonic potential but also accounts partially for
anharmonicity effects in general potentials. Using this new method, we directly relate a
symmetry breaking of the two-dimensional signal to the deviation from the conventional
Brownian oscillator picture.

Multidimensional optical spectroscopy is an emerging
experimental method for studying molecular photo-

chemistry and photophysics, but its further development and the
interpretation of new experiments rely heavily on theoretical
modeling.1−7 To this end, a number of theoretical methods8−15

were developed to account for typical vibrational−electronic
effects occurring in molecular systems, such as anharmonicity,
different curvatures of the ground- and excited-state potential
energy surfaces, or mode−mode mixing (Duschinsky rota-
tion).16−20 In its original formulation, the second-order
cumulant expansion21−24 is exact only for the Brownian
oscillator (i.e., displaced harmonic) model and cannot treat
the intermode coupling in the excited state. Although this basic
molecular model shaped our understanding of steady-state,
ultrafast, and multidimensional electronic spectroscopy in the
past decades, it is inadequate for many molecules that exhibit
Duschinsky and anharmonicity effects.12,14 Similar limitations
are met when using the semiclassical phase averaging,22,25 also
known as the Wigner-averaged classical limit26−30 or dephasing
representation.31−34 The recently developed third-order cumu-
lant approach seems to overcome these limitations,10,13,14 yet it
is accurate only in systems with weakly coupled or distorted
modes.14

In contrast, quantum dynamics methods35−40 are well suited
for describing the evolution of nuclear wavepackets but often
neglect temperature effects. To avoid the impractical Boltzmann
averaging over the initial states, a number of alternative
strategies for including temperature in wavepacket-based
methods have been proposed.41−47 We turn to the so-called

thermo-field dynamics,48,49 which transforms the von Neumann
evolution of a density matrix to a Schrödinger equation with a
doubled number of degrees of freedom. This approach has only
recently been introduced in chemistry for solving the electronic
structure,50−52 vibronic,53−56 and spectroscopic57 problems at
finite temperature. Here, we show how it could be used to
compute two-dimensional vibronic spectra. The finite-temper-
ature treatment is combined with the thawed Gaussian
approximation,58 an efficient first-principles59,60 method for
wavepacket propagation, and applied to the stimulated emission
and ground-state bleach signals of azulene.
In two-dimensional spectroscopy, a nonlinear time-depend-

ent polarization22,61
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is induced in the sample through interaction with the electric
field Et1,t2(t) comprised of three light pulses centered at times
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−t2 − t1, −t2, and 0, where t1 is the delay between the first two
pulses, t2 is the delay between the second and third pulses, and
R(3)(t‴, t″, t′) is the third-order response function.22 In a
heterodyne detection scheme, the measured signal is61
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where ELO(t) is the fourth, local oscillator pulse centered at time
t3 after the third pulse. The two-dimensional spectrum is
obtained by scanning S(t3, t2, t1) as a function of the three time
delays and Fourier transforming over t1 and t3. We focus on the
absorptive two-dimensional spectrum62,63
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and assume ultrashort and nonoverlapping pulse approxima-
tions, where the rephasing and nonrephasing spectra61
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In eq 8, Ĥj terms are the vibrational Hamiltonians corresponding
to the ground (j = 1) and excited (j= 2 or 3) electronic states, ρ̂ =
exp(−βĤ1)/Tr[exp(−βĤ1)] is the vibrational density operator

at temperature T = 1/kBβ, and μ μ ε̂ = ⃗ ̂ · ⃗ij ij is the electronic

transition dipole moment between electronic states i and j
projected on the polarization unit vector ε ⃗ of the external electric
field. Correlation function C1 corresponds to the stimulated
emission and ground-state bleach processes, while C3, which
involves a higher excited electronic state, corresponds to the
excited-state absorption (see section 1 of the Supporting
Information). Although the excited-state absorption term
involves, in general, a sum over several higher excited states (i

≥ 3), here, for the sake of brevity, we consider only one such
state.
An intuitive physical interpretation of eq 8 is available in the

zero-temperature limit, where the density operator ρ̂ = |1,g⟩⟨1,g|
is given in terms of the ground vibrational state |1,g⟩ of the
ground electronic state. Then40
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Ĥi′ = Ĥi − ℏω1,g, and ℏω1,g = ⟨1,g|Ĥ1|1,g⟩. In Figure 1, we
illustrate how eq 9 is evaluated for stimulated emission
contribution C1(t1 + t2, t3, t2 + t3) (eq 8) to the rephasing
signal (eq 6). The bra nuclear wavepacket is first evolved for a
time τa = t1 + t2 in the excited electronic state and then for a time
τb = t3 in the ground state; the ket wavepacket is in the ground
electronic state during t1 and evolves in the excited state for a
time τc = t2 + t3. In general, during time delays t1 and t3, also
known as coherence and detection times, the bra and ket
wavepackets evolve on different potential energy surfaces;
during the so-called population time t2, the two wavepackets are
in the same electronic state: in the ground state for the ground-
state bleach contribution and in the excited electronic state for
the stimulated emission and excited-state absorption compo-
nents.
We now address the question of whether it is possible to retain

the simple wavepacket picture without neglecting finite-
temperature effects. To answer this question in the affirmative,
we employ thermo-field dynamics, which maps the evolution of
a density operator at finite temperature to the evolution of a
wave function with a doubled number of coordinates. In the
thermo-field dynamics theory,48 the thermal vacuum is defined
as

∑β ρ| ̅ ⟩ = ̂ | ⟩̃kk0( )
k

1/2

(11)

where |kk̃⟩ = |k⟩|k̃⟩ is the basis vector of the tensor-product space
obtained from the physical (with basis {|k⟩}) and “fictitious”
(with basis {|k̃⟩}) Hilbert spaces. We note that physical
operators (denoted only by a hat ^, such as ρ̂ or μ̂) act only
on the physical subspace. With these definitions, eq 8 can be
rewritten as
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is the analogue of |ϕτ,t
(i)⟩ from eq 10

Figure 1. Evolution of the bra (a, dotted line) and ket (b, solid line) wavepackets of eq 9 for τa = t1 + t2, τb = t3, and τc = t2 + t3. Their overlap (c) is
stimulated emission term C1(t1 + t2, t3, t2 + t3) (eq 8) of rephasing signal SR(t3, t2, t1) (eq 6).
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is the Hamiltonian acting in the full, tensor-product space, and
̃Ĥ1 is the ground-state vibrational Hamiltonian acting in the

fictitious space only. The proof of eq 12 goes as follows:
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Equation 15 is obtained from eq 12 by inserting the definition

(eq 13) of ϕτ̅ t
i
,

( )
, while eq 16 results upon substituting eq 11 for

|0̅(β)⟩; in going from eq 16 to eq 17, we used the fact that
operators acting in different subspaces commute. In going from
eq 17 to eq 18, we used the conjugation rules relating the
physical and fictitious spaces (see section 2 of the Supporting
Information). The resolution of identity and commutation of
ρ̂1/2 with Ĥ1 were used to obtain eq 19, and the definition and
cyclic property of the trace to obtain eq 20.
Remarkably, the result (eq 12) has exactly the same form as

the zero-temperature expression (eq 9) and can be interpreted
as in Figure 1. It also allows finite-temperature effects to be
included in regular wave function-based codes, by modifying
only the definition of the initial state and the Hamiltonians
under which this state is evolved. In section 3 of the Supporting
Information, we prove that the same wavepacket picture can be
justified even beyond the Born−Oppenheimer approximation,
which was invoked implicitly in eqs 6−8. To avoid exponentially
scaling exact quantum methods on precomputed potential
energy surfaces64−67 or computationally demanding multiple-
trajectory68−82 approaches, we propose using the simple, yet
efficient, single-trajectory thawed Gaussian approximation,
which can be interfaced with on-the-fly ab initio evaluation of
potential energy information.83

Let us consider a Gaussian wavepacket

ψ = γℏ [ − · · − + · − + ]q( ) et

i q q A q q p q q( ) ( ) ( )t
T

t t t
T

t t (21)

where qt and pt are the real, D-dimensional expectation values of
the position andmomentum, respectively, At is aD×D complex
symmetric matrix with a positive-definite imaginary part, γt is a
complex scalar whose imaginary part ensures normalization of

the wavepacket, and D is the number of coordinates. Within the
thawed Gaussian approximation,58 one replaces true potential
energy V(q) by its local harmonic approximation

= + ′ · − + − · ″ · −V q V q V q q q q q V q q q( ) ( ) ( ) ( )
1
2
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about the center qt of the wavepacket, which leads to the
following equations of motion for the Gaussian’s parame-
ters:58,84

̇ = ·−q m pt t
1
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where Lt = pt
T·(2m)−1·pt − V(qt) is the Lagrangian along the

trajectory (qt, pt) andm is the symmetric mass matrix. According
to eqs 23−26, the position and momentum of the Gaussian
wavepacket evolve classically, while matrix At depends on the
Hessians along the classical trajectory. The described evolution
of the Gaussian wavepacket is exact for a harmonic potential
because the local Taylor expansion of eq 22 becomes exact in
this case. For more general, anharmonic potentials, the method
is only approximate, but typically accurate for moderate
anharmonicity and short times, which makes it practical in
spectroscopic applications.58−60,85,86 Although the thawed
Gaussian propagation is not suited for nonadiabatic dynamics,
it can treat accurately the effects that arise due to different force
constants of the ground- and excited-state potential surfaces:
mode distortion, i.e., the change in the frequency of a normal
mode, and intermode coupling or Duschinsky rotation. The on-
the-fly ab initio thawed Gaussian approximation, which uses
electronic structure calculations to compute potential energies,
gradients, and Hessians only when needed, was recently
validated for the simulation of finite-temperature linear57 and
zero-temperature two-dimensional spectra.40

To construct the initial state, we approximate the ground-state
potential energy surface by a harmonic potential and use the
corresponding mass-scaled normal mode coordinates. Then, in
the zero-temperature limit, the initial state ψ0(q) = ⟨q|1,g⟩ is a
Gaussian (eq 21) andD = F, where F is the number of vibrational
degrees of freedom. In the thermo-field dynamics formulation,D
= 2F, the initial state ψ̅0(q̅) = ⟨q̅|0̅(β)⟩ is also a Gaussian, and q̅ =
(q, q̃) is the 2F-dimensional coordinate vector.57 To solve the
equations of motion in the finite-temperature picture, we need
the potential energies, gradients, and Hessians in the extended
coordinate space, which can be easily formulated in terms of the
energies, gradients, and Hessians of the two potential energy
surfaces, as shown in ref 57. Remarkably, the thermo-field

dynamics under Hamiltonian ̅Ĥj (eq 14) requires exactly the
same classical trajectory, in electronic state j, as the conventional,
zero-temperature thawed Gaussian propagation with Hamil-
tonian Ĥj.

57 No further ab initio evaluations are needed for the
finite-temperature implementation, meaning that, within the
thawed Gaussian approximation, the temperature effects can be
included almost for free. The only difference in the computa-
tional cost is in solving the equations of motion with 2F rather
than F coordinates, which is approximately 23 = 8 times more
expensive due to the roughly cubic scaling of the involved matrix
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operations, including matrix−matrix multiplication and matrix
inverse. This cost is, however, negligible compared to the cost of
electronic structure calculations.
Formally, the propagation of the wavepacket according to eqs

23−26 requires not only the potential energies and gradients but
also the Hessians at each step of the dynamics. In this work, we
employed the single-Hessian method,87 which further approx-
imates V″(qt) ≈ V″(qref) in eq 25, where qref is a reference
geometry at which the Hessian of the excited-state potential
surface is evaluated once and reused during the excited-state
dynamics. Because the center of the wavepacket still follows the
fully anharmonic classical trajectory, the single-Hessian version
partially includes anharmonicity effects; in several examples
studied in ref 87, the accuracy of this method was shown to be
similar to that of the thawed Gaussian approximation. Here, we
chose qref as the excited-state minimum. The ground-state
potential surface was assumed to be harmonic in all simulations.
To analyze the effects of the excited-state anharmonicity, we

compare the anharmonic calculations, based on the on-the-fly
single-Hessian thawed Gaussian approximation for the excited-
state propagation, with the harmonic model (also called the
generalized Brownian oscillator model), where the excited-state
potential surface is approximated by a harmonic potential fitted
to the surface at its minimum (so-called adiabatic harmonic or
adiabatic Hessian scheme). In the mass-scaled normal mode
coordinates of the ground state, the excited-state force constant
is a symmetric, nondiagonal matrix, whose off-diagonal terms
reflect intermode couplings, also known as Duschinsky mixing.
To study the effects of the difference between the excited- and
ground-state force constants on linear and two-dimensional
spectra, we construct the displaced harmonic model (also called
the Brownian oscillator model), where the excited-state force
constant is approximated by the force constant in the ground
electronic state. This model neglects mode distortion and
Duschinsky effects. The two-dimensional spectra can be
computed exactly with the thawed Gaussian propagation, as
described above, for both harmonic and displaced harmonic
oscillator models. Whereas the exact solution to the displaced
harmonic oscillator model was known before in the form of the
second-order cumulant expansion,22 to the best of our
knowledge, no method has been published for computing
exactly the two-dimensional spectra of the global harmonic (or
generalized Brownian oscillator) model.14

Azulene is a well-known example of a Kasha-violating
molecule,88 as it emits light from the second, rather than first,
excited electronic state. This is due to the interplay of two
factors:89 (i) weak nonadiabatic coupling between states S1 and
S2 and (ii) fast (≈1 ps) nonradiative decay from S1 to S0. These
properties make azulene one of the key building blocks in the
synthesis of novel optoelectronic materials.90 Although non-
adiabatic couplings between the ground and first excited states
play an important role in the photoinduced dynamics of
azulene,89 they do not affect its vibrationally resolved S1 ← S0
absorption spectrum. Indeed, the linear absorption spectrum
can be reproduced well using adiabatic, Born−Oppenheimer
approaches that neglect nonadiabatic effects.89,91,92 Here, we
also ignore the nonadiabatic effects on the two-dimensional
spectra, which we compute only at short t2 delay times. In the
results, we focus on the ground-state bleach and stimulated
emission contributions to the two-dimensional spectrum (the
first two terms on the right-hand sides of eqs 6 and 7); according
to the oscillator strengths of the S1−S0 (0.009)93−95 and S2−S1

(≈10−5)94,95 transitions, the excited-state absorption is expected
to be ∼3 orders of magnitude weaker.
In Figure 2 (top), we compare linear absorption spectra

simulated at 300 and 0 K with the experimental spectrum

recorded at room temperature. One of the main effects of
temperature is the broadening of the spectral features, which
also affects the relative intensities of vibronic peaks, namely,
those at 14300 and 15800 cm−1. These intensities are
overestimated in the zero-temperature spectrum but corrected
by the finite-temperature treatment.
A non-zero temperature has an even stronger effect on the

two-dimensional spectrum (Figure 2, bottom). The zero-
temperature spectrum is composed of sharp vibronic peaks,
which are broadened and less resolved in the spectrum
computed at 300 K. As in the linear spectrum, the temperature
effects modify not only the resolution of the spectrum but also
the relative intensities of the peaks. However, in contrast to the
linear absorption spectrum, where these differences affect only a
few peaks and could still be considered acceptable, the two-
dimensional spectrum is strongly affected due to the increased
complexity of spectral features.
To investigate the effects of anharmonicity, mode distortion,

and mode−mode coupling, we first compare the linear
absorption spectra computed using three models with different
accuracies (see Figure 3). The spectrum computed with the
displaced harmonic oscillator model displays a highly regular

Figure 2. S1 ← S0 absorption spectra of azulene (top) computed with
the on-the-fly ab initio single-Hessian thawed Gaussian approximation
at zero temperature (red, dashed) and at 300 K (blue, dotted),
compared with the experimental spectrum (black, solid) recorded at
room temperature in cyclohexane.89 Absorptive two-dimensional
electronic spectra (bottom) (eq 3) at zero delay time (t2 = 0),
computed at zero temperature (left) and 300 K (right). Each two-
dimensional spectrum shows the sum of the ground-state bleach and
stimulated emission terms (first two terms on the right-hand sides of
eqs 6 and 7) corresponding to the S1−S0 electronic transition in
azulene. See Figure S1 for the rephasing and nonrephasing
contributions to these spectra and Figures S3 and S4 for the spectra
at delays t2 > 0.
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intensity pattern, as opposed to the irregular intensities found in
the experiment, and overestimates the frequency spacing
between the peaks. The results are largely improved by including
Duschinsky coupling and changes in the mode frequencies
through the global harmonic model. However, the harmonic
approximation suffers from an overly broad tail in the high-
frequency region. This is further corrected by accounting for the
anharmonicity effects with the on-the-fly thawed Gaussian
approximation.
The corresponding two-dimensional spectra (Figure 4, top)

exhibit similar differences, which we can conveniently analyze in

the time domain [see Figure 4, bottom, for |SR(t3, 0, t1)| and
Figure S6 for |SNR(t3, 0, t1)|]. The displaced harmonic oscillator
model results in stronger recurrences after 45 fs (in t1, t3, or both
t1 and t3) than the harmonic or anharmonic approaches. This
translates into sharper peaks in the two-dimensional spectrum.
The anharmonic spectrum extends less into the high-frequency
region, compared to the harmonic and displaced harmonic
oscillator models, because the thawed Gaussian propagation
gives a slower initial decay (for t1 and t3 < 6 fs) in the time
domain than the models that neglect anharmonicity (see Figure
S5). Subtle differences between the harmonic and anharmonic
excited-state dynamics affect the peak intensities in the region
between 15000 and 18000 cm−1.
Interestingly, for the displaced harmonic oscillator model,

|SR(t3, 0, t1)| is symmetric with respect to the diagonal (Figure 4,
bottom right), which does not hold when mode distortion,
rotation, and anharmonicity are included (Figure 4, bottom left
and middle). We prove this analytically in sections 7 and 8 of the
Supporting Information, where we also demonstrate that the
asymmetry can appear only in rephasing signal |SR(t3, 0, t1)|.
Moreover, we show that the (incorrect) symmetry of |SR

DHO(t3, 0,
t1)| with respect to the diagonal t1 = t3 is, more generally,
imposed by the second-order cumulant approximation,22 which
is exact for the displaced harmonic oscillator model and is
employed regularly to model two-dimensional spectra.23,24,96,97

Hence, the second-order cumulant method cannot account for
the asymmetry induced by the deviation from the displaced
harmonic oscillator model. This erroneous qualitative behavior
was difficult to study in the past, partly due to the absence of

Figure 3. S1 ← S0 absorption spectra of azulene computed with the on-
the-fly ab initio single-Hessian thawed Gaussian approximation
(“Anharmonic”, blue, dotted), harmonic approximation (red, dashed),
and displaced harmonic oscillator (DHO) model (green, dashed−
dotted) at 300 K, compared with the experimental spectrum (black,
solid) recorded at room temperature in cyclohexane.89

Figure 4. Absorptive two-dimensional electronic spectra (top) (eq 3) at zero delay time (t2 = 0), computed with the on-the-fly ab initio single-Hessian
thawed Gaussian approximation (“Anharmonic”, left), harmonic approximation (middle), and displaced harmonic oscillator (DHO) model (right) at
300 K. Each spectrum shows the sum of the ground-state bleach and stimulated emission terms (first two terms on the right-hand sides of eqs 6 and 7)
corresponding to the S1−S0 electronic transition in azulene. See Figure S2 for the rephasing and nonrephasing contributions to these spectra and
Figures S3 and S4 for the spectra at delays t2 > 0. First 60 fs of |SR(t3, 0, t1)| (bottom) (eq 6). See Figure S6 for |SNR(t3, 0, t1)|.
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practical methods that could easily go beyond the second-order
cumulants or Brownian oscillators.
In conclusion, we derived a general and exact expression for

computing finite-temperature vibrationally resolved two-dimen-
sional electronic spectra with wave function-based methods.
The inclusion of temperature is the key to simulating spectra of
larger systems or solvated molecules, due to the multitude of
low-frequency modes that are thermally excited at room
temperature. By combining the exact expression with the
thawed Gaussian approximation, we developed a practical and
efficient method for computing two-dimensional spectra beyond
zero temperature and beyond the displaced harmonic oscillator
model. With the help of the newly developed method, we
identified an asymmetry in the time domain signal that could
serve as evidence for the changes in mode frequencies, mode−
mode coupling, or anharmonicity. This asymmetry cannot be
described with the conventional and widely used second-order
cumulant approach.

■ COMPUTATIONAL METHODS

The ground electronic state of azulene was modeled at the
second-order Møller−Plesset (MP2) perturbation theory level;
the first excited state was modeled using the second-order
Laplace-transformed density-fitted local algebraic diagrammatic
construction [LT-DF-LADC(2)] scheme,98−101 as imple-
mented in the Molpro 2015 package.102 The cc-pVDZ basis
set was used throughout (see ref 89). We first evaluated the
Hessians in the ground and excited states at the respective
optimized geometries. Then, starting from the minimum of the
ground state, an on-the-fly ab initio classical trajectory was
evolved in the excited electronic state for 1130 steps with a time
step of 8 au ≈ 0.19 fs (total time of ≈219 fs).
Linear spectra were computed by Fourier transforming the

first 500 steps of the wavepacket autocorrelation function (see
ref 83). With regard to the simulation of two-dimensional
spectra, t1 and t3 times were propagated up to ≈106 fs (500
steps); t2 delays ranged from 0 (results shown in the main text)
to 25 fs (130 steps), in intervals of 5 fs or 26 steps. Condon
approximation, which was justified for the S1← S0 absorption of
azulene in ref 89, was employed. Gaussian broadening with a
half-width at half-maximum of 90 cm−1 was used in both linear
and two-dimensional spectra. Linear spectra were shifted in
frequency and scaled in intensity to match at the maximum
intensity peak of the experiment; two-dimensional spectra were
shifted by the same frequency shifts as the linear absorption
spectra and scaled according to the maximum of the fully
absorptive two-dimensional spectrum (eq 3).
Data supporting this publication can be found at 10.5281/

zenodo.4552858.
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