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Abstract

Neurological symptoms occur in approximately one-third of
hospitalized patients with coronavirus disease 2019 (COVID-
19). Among these symptoms, hypoxic encephalopathy de-
velops in one-fifth of severe cases, while ischemic strokes due
to thrombotic complications are common in one-third of
COVID-19 intensive care patients. Brain involvement of severe
acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is
eventuated by several routes, including hematogenous spread,
transsynaptic entry through infected neurons, olfactory nerve,
ocular epithelium, vascular endothelium, and impaired
blood—brain barrier. Besides the high angiotensin-converting
enzyme-2 (ACE2) binding affinity, and FURIN preactivation,
SARS-CoV-2 maintains efficient neuronal entry while evading
immune surveillance by using basigin and neuropilin-1 re-
ceptors. However, the neurological manifestations and their
pathogenic mechanisms are still debated in COVID-19
patients.
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Introduction

Although severe acute respiratory syndrome-coronavirus-2
(SARS-CoV-2) mainly targets the epithelial cells of the
respiratory tract, resulting in diffuse alveolar damage,
among the other tissues brain cells are also potential target
of wviral attack [1]. In this respect, neurological abnor-
malities have been described in approximately one-third

of patients who required hospitalization for coronavirus
disease 2019 (COVID-19) [2]. Neurological symptoms
appear largely with nonspecific clinical manifestation. In
SARS-CoV-2 infection, these seem to be dependent on a
successive series of events such as excessive neuro-
inflammation due to cytokine storm, hypoxia, blood
pressure imbalance because of the angiotensin II
converting enzyme receptor-2 (ACE2) involvement, and
severe ischemic stroke due to diffuse intravascular coag-
ulation [2,3]. According to epidemiological studies, acute
symptomatic seizures are observed in more than one-
fourth of COVID-19 patients. Hypoxic encephalopathy
and ischemic strokes due to thrombotic complications
indicate the frequent brain involvement in COVID-19
intensive care unit patients, by one-fifth and one-third,
respectively [4—6]. In this context, the most serious
neurological signs seen in COVID-19 patients occur with
widespread microthrombi and infarction patches in the
brain. These histopathological findings are explicated
with the increase in the susceptibility to cerebrovascular
events due to hypercoagulability [7]. Recent evidences
strongly suggest that clinical findings regarding the
mechanisms of neurological symptoms caused by SARS-
CoV-2 invasion of the central nervous system (CNS)
have not yet been clarified and systematically classified. In
COVID-19 patients, the role of ACEZ2 for the trans-
synaptic spread of the virus in the CNS, the effect of the
hyperimmune response on the spread across the blood—
brain barrier (BBB) and the persistence of SARS-CoV-2
in the brain are still debated [8].

Potential routes of brain entry

Various assumptions regarding the entry of SARS-CoV-2
into the CNS are widely discussed in recent studies. In
SARS-CoV-2-infected patients, it is proposed that
neuro-invasion is eventuated by several routes; hema-
togenous transportation of infected immune cells via the
circulatory system of the brain tissue, transsynaptic
entry through the infected neurons or olfactory nerve,
entry from ocular epithelium, and the virus invasion
from the impaired BBB [9,10] (Figure 1). Although
ACE2 and transmembrane protease serine 2
(TMPRSS2) have been localized to epithelial cells in
the nasal mucosa, whether the virus entry is limited to
the olfactory epithelium or attacks the olfactory neurons
is controversial [9,11]. Despite the olfactory neuron
seems to be one of the major routes for the virus spreads,
dissemination of the SARS-CoV-2 via hematological
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Potential entry routes of SARS-CoV-2 to the central nervous system (CNS) and the mechanisms of neuronal damage. Taken through the olfactory
pathway, virus would have access to the CNS using transneuronal/synaptic routes and reaches to brain respiratory center. In the hematogenous entry
route, endothelial cells may become infected, microthrombi develop due to endothelial dysfunction. CNS infection arises with the SARS-CoV-2 entrance
to the brain following blood—brain barrier disruption by cytokine storm. Astrocytes incorporate the viruses either via direct contact with infected endothelial
cells, or ACE2 receptors. In response to virus infection, microglial cells trigger T cell, antigen-presenting cell activation and induce synapse loss. Following
neuro-invasion and replication of SARS-CoV-2, impairment of ACE2 activity due to exploitation by SARS-CoV-2, activation of AT1R by Ang Il, and
glutamate mediated inhibition of ACE2 activity contribute to the development of neurotoxicity and neuroinflammation. Excessive extracellular glutamate
accumulation in SARS-CoV-2 infection triggers oxidative stress and neuroinflammation via NMDA receptors, while SARS-CoV-2 infection targets
glutathione (GSH) biosynthesis and makes the patients more vulnerable to the detrimental effects of virus by decreasing GSH levels (Abbreviations:
ACEZ2: angiotensin ll-converting enzyme receptor-2; AMPAR: a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; Angll: angiotensin II;
AT1R: Ang Il receptor type 1; BBB: blood—brain barrier; BSG/CD147: basigin; CICR: calcium-induced calcium release; CR: cytokine receptor; GSH:
reduced glutathione; mt: mitochondria; NMDAR: N-methyl-p-aspartate receptor; nNOS: neuronal nitric oxide synthase; NOX: nicotinamide adenine

dinucleotide phosphate oxidase; NRP1: neuropilin 1; ROS: reactive oxygen species; SARS-CoV-2: acute respiratory syndrome-coronavirus-2).

pathway has been reported in various studies with
widely ranging frequencies between 1% and 41%
[12,13]. Indeed, there have been few comprehensive
studies, which identify the neuro-invasive potential of
the SARS-CoV-2. In postmortem studies of COVID-19
patients, virus detection in frontal lobe neurons, pres-
ence of viral particles in brain capillary endothelial cells
despite negative polymerase chain reaction testing of
the cerebrospinal fluid and increase in plasma bio-
markers due to astrocytic or neuronal injury have been
attributed to the neural invasion. Thus, rising in glial
fibrillary acidic protein (GFAp) level as a marker of
astrocytic activation/injury and increasing neurofilament
light chain protein (NfL) concentration as a marker of
intra-axonal neuronal injury due to brain damage indi-
cate the hematogenous spread of virus [14,15].

Furthermore, interleukin (IL)-6, IL-1P, tumor necrosis
factor (TNF), and IL-17, the cytokines, which are
elevated during cytokine storm associated with SARS-

CoV-2 infection, lead to the disruption of the BBB and
facilitate the entry of the virus to brain. Whereupon
SARS-CoV-2 can infect neurons and glial cells through
ACE2 receptors and launches a neuroinflammatory
response with reactive astrogliosis, and microglial acti-
vation [16—18]. Nevertheless, it is claimed that certain
neurological complications of COVID-19 are due to
increased penetration of proinflammatory cytokines
from impaired BBB rather than viral entry. Cytokine
release—driven neuroinflammatory response that can
activate microglial cells in the CNS cause to the release
of astroglial marker, S100B protein, which reflects the
increase in the BBB permeability [19,20]. As in other
parts of the body, the ACE2 receptor is expressed in the
brain by endothelial, neuronal, and glial cells. After the
spreading of virus to CNS, it contacts with ACE2 on
neurons, glia, and vascular endothelium [21,22]. How-
ever, it has been suggested that receptors such as
neuropilin-1 (NRP1) play a role in viral entry in neurons
lacking ACE2 expression [23].
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Functions of receptors in brain invasion of
SARS-CoV-2

As a rule, SARS-CoV-2 uses ACE2 as the principal
binding receptor and is required for proteolytic
processing of the spike (S) protein by TMPRSS2 for cell
entry [24]. Although data related to ACEZ2, TMPRSS2,
and furin distributions in the olfactory pathway are
insufficient, these cells seem to express ACEZ, but not
TMPRSS2 or furin. But deterioration of the sense of
smelling in COVID-19 patients is simultaneous with the
emergence of neurological symptoms [25,26]. Actually,
the ACEZ is intensely expressed in the pons and me-
dulla oblongata of the human brainstem, which consists
of the medullary respiratory centers of the brain. This
finding partly elucidates the mechanism of severe res-
piratory distress in many COVID-19 patients [27].

Considering the above data, the expression of ACE2
receptor in the brain indicates that SARS-CoV-2 has a
neuro-invasive ability [28]. Following SARS-CoV-2 entry
to the CNS, ACE2 receptors mediate the development
of neurotoxicity, neuroinflammation, and neuro-
degeneration via ensuring viral entrance and replication
[29]. SARS-CoV-2 S protein binds to its receptor ACE2
via its receptor-binding domain (RBD) and is proteo-
lytically activated by human proteases. SARS-CoV-2 is
preactivated by proprotein convertase FURIN, dimin-
ishing its reliance on target cell proteases for entry. But a
certain amount of TMPRSS? is still needed. The high
ACE2 binding affinity of the RBD, FURIN preactivation
of the spike, and hidden RBD in the spike potentially
allow SARS-CoV-2 to maintain efficient neuronal entry
while evading immune surveillance [30]. This means
that TMPRSS?2 is simultaneously activated to allow the
coronavirus S protein to enter the cell [24]. It should be
added to the activation of TMPRSS2, that the FURIN/
PCSK3 cleavage of the S protein facilitates the inter-
action of SARS-CoV-2 with the ACE2 receptor and viral
invasion [31]. Another route is S protein, which also
binds to alternative or the additive molecule basigin
(CD147/BSG) (Figure 1). This molecule is a novel re-
ceptor glycoprotein of the immunoglobulin super family
and serves as the mediating factor of the viral invasion
[32]. SARS-CoV-2 can also use basigin [33] and NRP1 as
well as ACE2 during entry into neurons [23]. Proteases
such as TMPRSS11 A/B, cathepsin B and L. and FURIN
allow viral cell entry and replication via NRP1 docking
receptors [30].

Unexpectedly, ACE2 expression significantly declines in
the brain of individuals with Alzheimer’s disease (AD).
"This deficit is dependent on the increased amyloid-beta
(AB) peptide load and tau pathology and hyperactivity of
the classical axis of the renin—angiotensin system
[34,35]. Apart from AD, the presence of ACE2 has not
been demonstrated in many neurons [36], despite
increasing reports of neurological symptoms being
common in COVID-19 patients [2]. However,
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apolipoprotein E (ApoE) is a potential link between AD
and COVID-19. ApoE, as a AB chaperone, confers a 14-
fold increase in susceptibility to AD, while constitutes a
risk factor for severe SARS-CoV-2 infection and provides
a twofold increase in neural entry of virus [37,38].
Paradoxically, having a decrease in ACE2 function in
aged patients, coupled with the age-associated reduc-
tion in mitochondrial functions make the host more
vulnerable to SARS-CoV-2 infection. Considering the
more severe course of COVID-19 in elderly patient
populations, these observations suggest that a new
explanation is needed for the viral entry mechanism
[39,40]. These findings support the claim that ACEZ2 is
not the sole gateway for entry of SARS-CoV-2. In this
contexg, it is suggested that the SARS-CoV-2 enters the
neuron by binding with its S protein to the NRP1 re-
ceptor. Thus, NRP1, FURIN, and TMPRSS11A levels
are elevated in SARS-CoV-2-infected cells of these pa-
tients. As mentioned above, the olfactory epithelial cells
show high expression of NRP1 in COVID-19 patients
[23,41]. In addition, vascular endothelial growth factor-
A (VEGF-A) is a physiological ligand for the b1b2 pocket
in NRP1 [42]. After brain invasion, primary effect of
SARS-CoV-2 emerges on glial cells. Secondary effect
results in neuronal damage [43].

In the brain, through the conversion of angiotensin 11
(Ang II) into angiotensin-(1—7) (Ang-(1-7)), ACE2
decreases oxidative stress and alleviates neuronal
apoptosis, besides the maintenance of BBB function
[44,45] (Figure 1). Contrarily, impairment of ACE2 ac-
tivity due to exploitation by SARS-CoV-2 contributes to
the development of neuroinflammation and apoptosis
[46]. By activating Ang II receptor type 1 (AT1R), Ang
II stimulates both internalization and ectodomain
shedding of ACE2. Thus, ACEZ expression in addition
to its enzymatic activity are inhibited [47,48]. Further-
more, cytotoxic levels of glutamate can significantly
impair ACE2 activity in cortical neurons and induces
excitotoxic damage in the nerve cells. Thereby following
endothelial dysfunction, ischemic stroke, and neuronal
injury develop [49].

The neurotoxicity of glutamate is launched mainly by an
ample amount of Ca’*" influx emerging from over-
stimulation of the @-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor (AMPAR) GluR1
[50]. The increase in the intracellular [Ca2+] can mainly
lead to mitochondrial dysfunction and reactive oxygen
species (ROS) generation [51,52]. Because SARS-CoV-2
infection targets glutathione (GSH) biosynthesis,
decreased GSH, and selenoprotein levels make the pa-
tients more vulnerable to the detrimental effects of
virus-induced oxidative stress and proteolysis [53]. The
excitotoxicity of excessive glutamate accumulation par-
ticipates in the progression of inflammatory neuro-
degeneration via oxidative stress and/or inducible nitric
oxide synthase (iINOS)-mediated mechanisms [54,55].
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N-methyl-p-aspartate (NMDA) receptor activation due
to excess glutamate causes neuronal damage by
increasing oxidative stress and inflammation, unlike
alpha7 nicotinic acetylcholine receptor (a7 nAChR)
[55,56] (Figure 1). Against excessive extracellular
glutamate accumulation triggered by diverse inflamma-
tory and oxidative processes, memantine protects cells
from glutamate excitotoxicity by blocking the extra-
synaptic NMDA receptors [57]. Because memantine is
an antagonist of NMDA receptors, it diminishes the
SARS-CoV-2-related oxidative stress and inflammation
in neurons [58].

Neurological manifestations of COVID-19

In the clinical studies of the hospitalized COVID-19
patients groups consisting of 214 and 841 cases, neuro-
logic manifestations have been observed in 36.4% and
57.4% of the cases, respectively [2,59].

It is still debated whether or not ACEZ2 is the main route
of entry of SARS-CoV-2 into neuronal cells and what
strategies might block viral infection, and whether there
are humoral antibody responses against SARS-CoV-2 in
the CNS of infected patients. Since in some patients
with COVID-19 and neurological symptoms, there is
robust antibody response to the virus within the CSE in
patients with mild COVID-19, neurological manifesta-
tion is frequently emerged as nonspecific signs like
dizziness by 7% and headache by 14% [60]. It is thought
that the loss of taste and smell is based on the spreading
of the virus to the olfactory neurons, however, due to the
lack of convincing proof, it is claimed that disruption of
sensory-neural mechanisms may depend on the SARS-
CoV-2 encephalitis [2,60]. Nevertheless, the preva-
lence of hypogeusia and hyposmia was 5.6% and 5.1%,
respectively [2]. In fact, it is thought that increase in
the olfactory and gustatory dysfunctions are directly
correlated with the increase in levels of 1L.-6 in COVID-
19 cases [61]. Although the recovery times in most cases
are accompanied by simultaneous swab negativization,
and normalization of IL-6 levels, in one-fourth of cases
taste and smell dysfunctions may persist a longer period
after the recovery [61,62]. Actually, these manifesta-
tions have been linked to the infection of cell receptors
with the virus rather than possible neurological or
ischemic damage [61]. Actually, COVID-19 cases
involving the CNS resembles traditional cases of acute
disseminated encephalomyelitis [63] and acute necro-
tizing hemorrhagic encephalopathy [64]. Recently, it
has been reported that Guillain—Barré syndrome, which
occurs with immune attack on peripheral nerves, has
been observed in COVID-19 cases [65]. ACE2 is
expressed on both surface membrane and in the cyto-
plasm of some neurons, astrocytes, and oligodendro-
cytes. Expression of ACE2 is also densely localized in
the substantia nigra, ventricles, middle temporal gyrus,
posterior cingulate cortex, and olfactory bulb [66].
COVID-19 patients have increased Ang II. The

overexpression of ACE2 and the disturbance of balance
due to increased Ang II enhances the mortality of
COVID-19 patients [3]. Acute ischemic stroke (AIS)
has been described in approximately 1—3% of patients
with COVID-19 [2,67,68]. Intracranial hemorrhage is
seen in about 0.5% of the patients with COVID-19 in
large population studies [2,59]. Increase in procoagulant
factors in COVID-19 patients, such as serum levels of
fibrinogen, platelet, [L-6 and D-dimer, contribute
thromboembolic complications and higher rate of mor-
tality and morbidity [69]. ACE2 exploited by SARS-
CoV-2, and high Ang II cause endothelial dysfunction
in the cerebral arteries, by increasing blood pressure
(approximately one-third of all patients) and creating
the risk of cerebral hemorrhage and hemorrhagic stroke
[70,71]. In these cases, downregulation of the ACE2
receptors and elevated Ang Il levels are proportional
with viral load and mortality rate [3,72]. AIS rate asso-
ciated with an inflammatory and hypercoagulable state
is observed up to 5% of patients with severe COVID-19.
In these patients, the risk of death due to AIS reaches
up to 38% [73]. Coagulopathy underlies the occurrence
of stroke. Cytokine storm-mediated by SARS-CoV-2 can
produce the hypercoagulable state, causes vascular wall
damage, and precipitates microthrombosis [74].
Furthermore, the overactivation of the complement
cascade, and its interactions with cytokines plays
important role in cerebrovascular thrombosis. However,
precise data on this subject could not be yet acquired
[75,76], ACE2 receptor has an important role in devel-
oping neurologic manifestations of SARS-CoV-2 infec-
tion. Cerebral hemorrhage and stroke aggravate COVID-
19 outcomes [77]. Protecting patients from AIS, which
is one of the most dangerous complications of COVID-
19 and causes the lethality of more than a third of
severe cases, requires a complex treatment program.
These include immunomodulatory drugs, anti-
inflammatory drugs, and prophylactic antibodies, anti-
viral drugs and vaccines; however, the most suitable
treatment combination is still being under investigation.

Conclusion

The large number of sensitive transmembrane receptors
make most of the human cells highly susceptible to the risk
of SARS-CoV-2 infection and viral attack. The serious
danger of SARS-CoV-2 infection is not only due to its
extremely contagious behavior but also due to its attack to
many vital and critical human cell and tissue types simul-
taneously and is deadly. Because the neurological symptoms
and their mechanisms could not be comprehensively clari-
fied, in COVID-19 patients, the spread and persistence of
the virus in the brain cells are still under debate.
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