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Abstract

Cardiac innervation density generally reflects the levels of nerve growth factor (NGF) produced by the heart—changes in NGF
expression within the heart and vasculature contribute to neuronal remodelling (e.g. sympathetic hyperinnervation or dener-
vation). Its synthesis and release are altered under different pathological conditions. Although NGF is well known for its sur-
vival effects on neurons, it is clear that these effects are more wide ranging. Recent studies reported both in vitro and in vivo
evidence for beneficial actions of NGF on cardiomyocytes in normal and pathological hearts, including prosurvival and
antiapoptotic effects. NGF also plays an important role in the crosstalk between the nervous and cardiovascular systems. It
was the first neurotrophin to be implicated in postnatal angiogenesis and vasculogenesis by autocrine and paracrine mecha-
nisms. In connection with these unique cardiovascular properties of NGF, we have provided comprehensive insight into its
function and potential effect of NGF underlying heart sustainable/failure conditions. This review aims to summarize the recent
data on the effects of NGF on various cardiovascular neuronal and non-neuronal functions. Understanding these mechanisms
with respect to the diversity of NGF functions may be crucial for developing novel therapeutic strategies, including NGF action
mechanism-guided therapies.
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Introduction

Neurotrophins (NTs) are a highly homologous family of di-
meric polypeptides, including nerve growth factor (NGF),
brain-derived neurotrophic factor (BDNF), neurotrophin 3,
and neurotrophin 4/5. Neurotrophic factor activity is medi-
ated by binding to two types of cell surface receptors, the
p75 neurotrophin receptor (p75NTR) and receptor tyrosine
kinases (Trks), which display high affinity and specificity for
mature forms of NTs.1–3 NGF preferentially binds to TrkA,
BDNF, and neurotrophin 4/5 preferentially activate TrkB,
and neurotrophin 3 acts via TrkC3,4 and has lower affinity
for TrkA and TrkB.5 On the other hand, p75NTR, which lacks
intrinsic enzymatic activity,5 binds all NTs with similar affinity,
including proneurotrophins.1,6

The activity of NTs has been implicated in several func-
tions, including axonal growth, synaptic plasticity, survival,
myelination, and differentiation7,8 in the central nervous

system and peripheral nervous system.9 Individual members
of this family sustain differentiation and survival of distinct
but overlapping populations of sensory and sympathetic
neurons.10 Strong evidence has emerged that NTs exert im-
portant cardiovascular functions, which largely exceed their
roles in the neural regulation of heart function.7,11,12 The first
evidence of secretion of neurotrophic factors by heart cells
was obtained in 1979, when Eberdal et al. showed that heart
explants support neurite extension from sensory neurons
in vitro.13 The heart is innervated by sympathetic, parasympa-
thetic, and sensory neurons derived from neural crest cells,
all of which may require NTs during development. Indeed,
NTs play an important role in the regulation of the sympa-
thetic nervous system, acting as trophic survival factors but
also as regulators of cardiac nerve outgrowth and axonal
arborization.14,15

Apart from their neuronal functions, NTs exert cardiovascu-
lar actions under both physiological and pathological
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conditions.5 In early cardiovascular development, NTs and
their receptors are essential for the appropriate formation of
the heart and the regulation of vascular growth. In
postnatal life, these factors control the survival of endothelial
cells (ECs), vascular smooth muscle cells (VSMCs), and
cardiomyocytes and regulate angiogenesis and vasculogenesis
by autocrine and paracrine mechanisms.7 In connection with
these unique cardiovascular properties of NTs, we have pro-
vided comprehensive insight into NGF functions and potential
effects of NGF underlying heart sustainable/failure conditions.
The angiogenic actions of NGF are mediated through direct ef-
fects on vascular ECs through regulation of the EC survival,
proliferation, and migration7,16,17 or indirectly by influencing
the action of other endogenous growth factors, such as vascu-
lar endothelial growth factor (VEGF).18,19 Moreover, recent
studies reported both in vitro and in vivo evidence for benefi-
cial actions of NGF on cardiomyocytes in normal and patholog-
ical hearts, including pro-survival and antiapoptotic
effects.7,14,20

Identification of the molecular mechanisms involved in the
interactions between cardiomyocytes and other types of
cells, such as neurons, and exploration of the extensive and
diverse effects exerted by NGF within the cardiovascular
niche may enhance our understanding of heart development,
function, and disease. Cardiac innervation density generally
reflects the levels of NGF produced by the heart. Further-
more, NGF supply from the innervation field influences the
neuronal plasticity that allows the adult nervous system to
modify its structure and function in response to stimuli.21 Un-
balanced heart innervation may occur in a wide variety of car-
diovascular pathologies due to prevalent impairment of NGF
expression by the myocardium (e.g. in diabetes22,23), uncon-
trolled norepinephrine (NE) release by neurons [e.g. in heart
failure (HF)24,25] or local myocardial remodelling that follows
ischaemic injury or NGF-associated hypertrophy [i.e. myocar-
dial infarction (MI)14,24,26,27]. Therefore, we reviewed recent
progress on the roles of NGF in cardiovascular development,
function, and pathology as potent therapeutic targets for ac-
celerating nerve regeneration and functional heart recovery
by promoting myocardial neovascularization and inhibiting
myocardial apoptosis.

Cardiac autonomic nervous system
(sympathetic and parasympathetic)

The heart is innervated by sympathetic, parasympathetic, and
sensory neurons, all of which may require NTs during devel-
opment and in postnatal life. Sympathetic innervation of
the heart originates mainly from the right and left stellate
ganglia (SG). Cardiac parasympathetic activity is mediated
through the vagus nerve, which originates in the medulla28

(Figure 1). Sympathetic axons innervate the atria, cardiac

conduction system and ventricles, where they stimulate in-
creased heart rate (chronotropy), conduction velocity
(dromotropy), and contractility (inotropy) via NE activation
of β1-adrenergic receptors.30 Cholinergic nerve fibres are
most abundant in the sinoatrial and atrioventricular (AV)
nodes, the atrial myocardium, and the ventricular conducting
system.30,31 Stimulation of cardiac parasympathetic nerves
projecting to these regions leads to acetylcholine release,
which evokes prominent bradycardia (slow heart rate), nega-
tive dromotropic responses (delayed AV conduction) and
inotropy (decreased atrial contractility) via activation of
postjunctional M2 muscarinic receptors.30,32

Cardiac diseases such as chronic HF and MI are associated
with abnormal cardiac autonomic control, including high
levels of sympathetic activity, impaired parasympathetic con-
trol and subnormal arterial baroreflex sensitivity.32–34 Sympa-
thetic nerve sprouting and perturbed innervation are thought
to play a role in arrhythmias.28,35 In fact, the association be-
tween increased sympathetic nerve sprouting and an electri-
cally remodelled myocardium may result in ventricular
tachycardia, ventricular fibrillation (VF), and sudden cardiac
death (SCD).34,36 With the increasing understanding of the
autonomic nervous system (ANS) and its role in the patho-
physiology of cardiac diseases, autonomic modulation may
play an important role in the treatment of various cardiovas-
cular diseases.37 The role of cardiac target-derived factors as
regulators of neuronal maturation, synaptic transmission,
neuronal elongation, and axonal collateral sprouting has been
well established. Changes in neurotrophic factor expression
within the heart and vasculature, such as NGF,34,38 contribute
to neuronal remodelling (e.g. sympathetic hyperinnervation
or denervation). These issues have been reviewed in detail
in this paper and will be summarized here briefly.

Intrinsic cardiac nervous system

Heart innervation consists of extrinsic (nerves coming from the
brain and thoracic paravertebral ganglia) and intrinsic ANS.
The intrinsic cardiac nervous system (ICNS) that has been col-
lectively called the heart’s ‘little brain’39 is a neural network
that consists of epicardial ganglionated plexi (GP) and the liga-
ments of Marshall.40,41 The ganglia contain efferent postgan-
glionic parasympathetic and sympathetic neurons, local
circuit neurons, and afferent neurons42 and act as an integrat-
ing network that processes afferent and efferent information
involved in cardiac regulation. The function of GP is to modu-
late the autonomic interactions between the extrinsic and in-
trinsic ANS, which affects the sinus rate, AV conduction,
refractoriness, and inducibility of atrial fibrillation (AF).43,44

GPs are connected with each other by interconnecting neu-
rons and create an extensive and complicated epicardial neu-
ral network.40,43,45–47. The number of cardiac ganglia is
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species-dependent, ranging from 19 in the mouse39,48 to over
800 in humans.49–51 Ganglia contain 200 to 1000 neurons that
innervate neighbouring cardiac structures and connect with
sympathetic and parasympathetic nerve fibres from the ex-
trinsic ANS.43,52 They are surrounded by a fat pad composed
of epicardial fat and ligament and are mostly positioned near
the large vessels and posterior surface of the atrium, and
50% of all cardiac ganglia are located near the heart hilum, es-
pecially on the dorsal and dorsolateral surfaces of the left
atrium.39,40,43,51–53 For instance, the sinus node is primarily in-
nervated by the right atrial GP, whereas the AV node is inner-
vated by the inferior vena cava-inferior atrial GP (also known
as the inferior right or right inferior GP).43

Cardiac ganglia are much more than a vagal relay station
but are highly complex structures including efferent
pre-ganglionic and post-ganglionic parasympathetic neurons
and presumed putative post-ganglionic sympathetic neurons,
all of which all lie in close proximity to the sensory nerves.
Ganglia show immunoreactivity to neuromodulators and neu-
rotransmitters including, but not exclusively to choline

acetyltransferase, vasoactive intestinal peptide, tyrosine hy-
droxylase, neuropeptide Y, neuronal nitric oxide synthase,
synaptophysin, substance P, and calcitonin gene-related
peptide.39,51 In contrast to the situation in the atria where
cholinergic somata and nerve fibres dominate, the situation
in the cardiac ventricles is reversed; there is a dominance of
adrenergic nerve fibres within the left and right coronary
subplexuses that innervate the ventricles39,54 as well around
the blood vessels.39,55

Recently, it has been shown that atrial GP neurons are
hypertrophied following HF,51,56 providing evidence of ana-
tomical and neurochemical changes following cardiac
disease.51 Not only do the intrinsic GPs participate in trigger-
ing and initiating AF, but they also modulate the electrical re-
modelling of the atria.42,57 These changes would be expected
to affect neuronal cell communication, detrimentally affect-
ing ganglionic physiology, and could in part, explain the atten-
uation in GP neurotransmission following HF.51,58 Clinical
studies demonstrate that the dysfunction of the ICNS
is associated with cardiac diseases, including AF and VF

Figure 1 The cardiac autonomic nervous system—four cardiac sensory (afferent) pathways. Cardiac afferent neurons are located at multiple levels of
the cardiac ANS, including intrinsic cardiac, stellate, middle cervical, mediastinal, nodose, and DRG. Bipolar neurons with cell bodies in the nodose gan-
glia and DRG have peripheral axons that project to the heart and central axons that synapse on second-order neurons contained in the nucleus tractus
solitarius of the medulla and the dorsal horn of the spinal cord, respectively. Spinal cord neurons project to and interact with neurons in higher centres
such as the medulla. ACh, acetylocholine; DRG, dorsal root ganglion; ICNS, intrinsic cardiac nervous system; NE, norepinephrine; (+) sympathetic stim-
ulation of the heart increases heart rate (positive chronotropy), inotropy, and conduction velocity (positive dromotropy); (�) parasympathetic stimu-
lation of the heart has opposite effects. Sympathetic and parasympathetic effects on heart function are mediated by beta-adrenoceptors and
muscarinic receptors, respectively (figure reproduced from Rajendran29).
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(Scherlag39,59,60, paragraph 4.2). The understanding of the
human ICNS function and the way GPs are involved in cardiac
control is increasingly important and may be crucial for re-
versing pathological autonomic imbalance and also for pro-
phylactic and corrective treatments of heart disease.

Nerve growth factor/TrkA axis in
cardiac development and physiology:
The effect on different cell types within
the cardiovascular niche

Proangiogenic effects

Increasing evidence has suggested that NGF plays an impor-
tant role in the crosstalk between the nervous and cardiovas-
cular systems. Accordingly, NGF is an essential factor in heart
formation and exerts a variety of effects on peripheral tis-
sues, including the vasculature. NGF was the first NT to be im-
plicated in post-natal angiogenesis and vasculogenesis by
autocrine and paracrine mechanisms.18,19,61–64 Raychaudhuri
et al.65 first described the proliferative action of NGF as a
rapid phosphorylation of TrkA and through ERK1/2 activation
in human dermal microvascular ECs. This was later confirmed
in human umbilical vein ECs, human choroidal ECs, and rat
brain ECs.7,62 Through TrkA, NGF supports EC survival
in vitro and in vivo and induces angiogenesis, which is, at least
in part, mediated by increased VEGF-A18,19,36,66 and possibly
VEGF receptors.66 More interestingly, NGF apparently in-
creases the ratio of large mature vessels and enhances the
maturation of VEGF-induced neovessels.18 Additionally, NGF
is a chemoattractant that is able to induce the migration of
human and pig aortic ECs1,7,61 and human aortic VSMCs,7,67,68

which in turn leads to repair of the cardiovascular niche, thus
exerting cardioprotective effects.

Nerve growth factor as a prosurvival factor for
cardiomyocytes

It is worth noting that among its pleiotropic effects, one
cardiovascular-associated property of NGF is its autocrine
prosurvival effect on cardiomyocytes. The secretion of neuro-
trophic factors by heart cells was first discovered in 1979 by
Ebendal et al.13 It is known that heart cells express and re-
lease NGF and express its receptor TrkA7,11,20,69; through ac-
tivation of this receptor, NGF triggers pro-survival and
antiapoptotic effects on cardiomyocytes in normal and
pathological hearts in vitro and in vivo.7,14,20,25,69 NGF overex-
pression is widely observed in cardiac pathologies (MI,
diabetes, and etc.) and likely plays a beneficial role in cardiac
cell survival and heart function14,20,36,64 in contrast to

normal, homeostatic cardiac tissue conditions in which
cardiomyocytes exhibit very weak NGF expression and
secretion.14,36,70,71 Accordingly, in infarcted human hearts
and in mice with infarcted hearts treated with an antibody
against NGF or the TrkA inhibitor K252a, there was cardio-
myocyte apoptosis and worsened cardiac function.7,64,69

However, increased NGF levels obtained by either gene trans-
fer or supplementation with recombinant NGF protein
protected neonatal and adult cardiomyocytes from apoptosis
and conferred immediate protection against injury caused by
ischaemia/reperfusion in the heart, showing a potential ther-
apeutic role for NGF in MI.7,20,64,72 Various cardiac
non-neuronal cells, such as cardiomyocytes,73 ECs, macro-
phages, and myofibroblasts, have been shown to participate
in NGF secretion in cardiac tissue in pathophysiological
situations.11,14,26,69,70,74–76 The ability of fibroblasts to secrete
NGF has already been reported in different fibroblastic cell
lines.14,77 In recent studies, clear evidence has been provided
that healthy cardiac fibroblasts but not cardiomyocytes se-
crete high levels of NGF in physiological conditions.14

Cardiac sympathetic nerve activity

Nerve growth factor is also a particularly important signalling
molecule in the crosstalk between the nervous and cardiovas-
cular systems. Sympathetic neurons in the first postnatal
week compete for target-derived NGF, as NGF levels in the
immediate postnatal period are still subsaturated, with apo-
ptosis occurring for those neurons that are unable to obtain
sufficient levels of NGF.78,79 NGF plays a critical role in sympa-
thetic nerve growth, survival, differentiation, patterning, and
synaptic strength. Moreover, the level of NGF in the
adult heart corresponds to the extent of sympathetic
innervation,12,14,15,22,23,70,78–80 with the atria having higher
protein and RNA levels than the ventricles.78,80 The rapid
effect of NGF on excitatory neurotransmission in vivo
and in vitro appears to be due to a TrkA-mediated
presynaptic potentiation of NE release from sympathetic neu-
rons via up-regulation of tyrosine hydroxylase and dopamine-
β-hydroxylase enzyme expression, which are involved in NE
production.81,82

Cardiac parasympathetic nerve activity

Nerve growth factor also increases the excitability of
airway parasympathetic neurons and augments dendritic
growth78,83; however, sympathetic neurons are significant in
promoting NGF synthesis by parasympathetic neurons.84

Sympathetic and parasympathetic fibres are closely apposed
in effector pacemaker and conduction areas, and mainte-
nance of this spatial association occurs through NGF synthesis
and release by cardiac ganglion (CG) neurons, which utilize
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NGF as an autocrine/paracrine factor.75,78 In addition to reg-
ulating NGF expression, Hasan and Smith75 demonstrated
that the consequence of cardiac sympathectomy is a de-
crease in the cholinergic phenotype of rat CG neurons. While
NGF is expressed by intact sympathetic innervation then al-
lows for the formation of axo-axonal synapses and reciprocal
modulation of heart function. Although NGF exerts a power-
ful trophic effect on sympathetic neurons, its release from CG
neurons may be critical for maintaining axo-axonal apposition
and parasympathetic inhibition of sympathetic function in
congestive heart failure (CHF).84 The relative expression
of mature and pro-NGF forms may also determine the
extent of sympathetic-parasympathetic axo-axonal associa-
tions in CHF.84

Cardiac sensory nerve activity

Nerve growth factor synthesis in the heart is also critical for
the development of the sensory nervous system12,22 because
cardiac sensory nerves develop in parallel with the NGF syn-
thesized in the heart,12,22,23 and cardiac sensory innervation
is rich both at epicardial sites and in the ventricular
myocardium.12,22,23,85,86 Cardiac nociceptive sensory nerves
that are immunopositive for calcitonin gene-related peptide,
including the dorsal root ganglion and dorsal horn, are mark-
edly impaired in NGF-deficient mice, while cardiac-specific
overexpression of NGF rescues the heart from these
deficits.22,23 Moreover, NGF has been shown to regulate the
expression of many neuropeptides in dorsal root ganglion
neurons and modulate their sensitivity to noxious
stimuli.21,26,87 It was also found that the reduced NGF
expression in diabetic hearts might explain the cardiac sen-
sory denervation and neuropathy in diabetic mice, and over-
expression of NGF in the hearts reversed sensory denervation
and diabetic neuropathy in the mouse.12,22,23 The cardiac
sensory nervous system is responsible for pain perception
and for the initiation of the protective cardiovascular re-
sponse during MI.86,88 Therefore, a main cause of SCD in dia-
betes is silent myocardial ischaemia (characterized by the loss
of pain perception12,89) caused by sensory nerve impairment,
but according to the study by Ieda et al., NGF gene therapy of
the heart rescues neuropathy in diabetic rats,7,12,86,89 which
improves the electrophysiological activity of cardiac afferent
nerves during MI.23

Taken together, these findings indicate that NGF, in addi-
tion to its eminent role in neuronal growth, survival, and neu-
roprotection, has direct impact on the cardiovascular system
in terms of pro-survival and proangiogenic effects. This
unique crosstalk between the cardiovascular and nervous sys-
tems with respect to the many functions of NGF could be use-
ful in designing new preventive and therapeutic strategies for
vascular and heart dysfunction.

The role of nerve growth factor in
response to pathological cardiac stress

Ischaemic injury/myocardial infarction

Angiogenesis
While NGF is expressed in normal hearts,70,71 its synthesis
and release are altered under different pathological condi-
tions. NGF plays an important role in post-infarction
remodelling.90 Beyond its actions on cardiomyocytes, NGF ex-
erts beneficial actions via vascular effects, including the stim-
ulation of angiogenesis and pro-survival actions following
MI20,25,69,72 and increasing the density of both capillaries
and mature vessels (such as arterioles) in response to
hindlimb ischaemia1,16,18,25,91 and after arterial balloon injury
in rats in which the increased expression level of NGF and
TrkA persist during neointimal formation.7,67 Similarly, Diao
et al.92 found significantly milder muscle atrophy, EC prolifer-
ation, and angiogenesis after NGF and VEGF gene transfec-
tion in hindlimb ischaemic mice, suggesting the angiogenic
functions of NGF and VEGF. Moreover, type 1 diabetes
down-regulates the levels of NGF and TrkA in ischaemic skel-
etal muscles and concomitantly induces p75NTR expression in
capillary ECs,17,20 suggesting that p75NTR is responsible for
diabetes-induced impairment in neovascularization of ischae-
mic limb muscles.7 In contrast to Trk actions, ligand (NGF and
pro-NGF)-dependent activation of p75NTR, which is increased
following vascular injury (in pathological conditions such as
diabetes or atherosclerosis17,67,93), reportedly induces
EC7,9,36,73,94 and neointimal smooth muscle cell death.1,7,95

Interestingly, rather than initiating apoptosis of diabetic ECs
via p75NTR, NGF supplementation down-regulates p75NTR
expression by a mechanism that has not yet been clarified
and promotes EC survival and vascular regeneration.7,17

Studies examining the angiogenic actions of NGF have
demonstrated that NGF gene delivery to the infarcted hearts
of mice and rats increase capillary density and inhibit EC apo-
ptosis in the peri-infarct areas,7 ameliorate cardiomyocyte
survival and improve myocardial blood flow.20,69,90 Further-
more, exogenous administration of recombinant mature
NGF in the ischaemic rodent hindlimb model induced a
marked increase in arteriole length density.1,16,62,68,91

Sympathetic nerve remodelling
Myocardial infarction-associated complications are correlated
with anatomical (myocardial, vascular, and neural) and car-
diac electrical remodelling initiated by the infarction. As a
member of the NT family, NGF is critical for the differentia-
tion, survival, and synaptic activity of sympathetic nerves dur-
ing human development and after cardiac injury.15,90 In MI,
persistent up-regulation of NGF expression (produced via
macrophages and myofibroblasts) is observed within the isch-
aemic area of infarcted hearts, underscoring its involvement
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in post-infarction sympathetic nerve sprouting and
regeneration.14,23,26,36,74,78,96,97 Endothelin-1, a key regulator
of NGF expression in cardiomyocytes and a cardiac hypertro-
phic factor,11,78 is strongly induced in pathological conditions,
and the endothelin-1/NGF pathway may also be involved in
NGF up-regulation and nerve regeneration after MI.11,23,98

After MI, despite the increased expression of NGF-induced
sympathetic hyperinnervation, this alternation may also
represent an adaptive mechanism by which the heart
tries to maintain ventricular contractility at the cost of
eventually triggering life-threatening ventricular arrhythmias
(VA),24,26,27,99 VF, and SCD.23,99 Novel findings indicate that
modulation of NGF expression may regulate sympathetic in-
nervation patterns, providing potential access points for
novel therapeutic strategies to prevent lethal arrhythmias
and SCD. Hu et al.90 revealed that targeted intracardiac ad-
ministration of NGF small interfering RNA in a rat MI model
reduced nerve sprouting, decreased sympathetic nerve den-
sity, attenuated angiogenesis, augmented infarct size, and ex-
acerbated cardiac dysfunction. Intriguingly, NGF may also
modulate beta-adrenergic receptors (β-AR) expression in
cardiomyocytes, which a finding that has possible ramifica-
tions for arrhythmia generation because β-AR expression is
increased in some cardiac pathological states.78,84,100–102 In-
terestingly, while NGF stimulates axonal growth, its precursor
pro-NGF triggers axon degeneration and may be involved in
post-MI denervation.94

Oxidative stress
Previous studies showed that the mechanisms underlying
myocardial ischaemic injury might be associated with calcium
overload, mitochondrial dysfunction,30,103,104 increased reac-
tive oxygen species (ROS),98,103 activation and adhesion of
neutrophils (increased levels of NGF protein may attract
TrkA-expressing neutrophils/monocytes into the border
zone26),36,103 complement activation, endothelial dysfunc-
tion, cytokine release, or cellular apoptosis.26,103,105 The
NGF promoter contains activator protein-1, which is sub-
jected to redox regulation through its conserved cysteine
residue.98 Peroxynitrite induces activator protein-1 activa-
tion, which in turn activates the NGF promoter and enhances
the transcription of NGF.98 According to numerous studies, in
the border zone of the myocardium during reperfusion NGF
protects sensory and sympathetic neurites against ROS,
which are deleterious to cardiac cells.26,97,106,107 Abe et al.
showed that intracoronary administration of NGF during
brief episodes of ischaemia can protect against post-
ischaemic sympathetic dysfunction.26,97 It might be specu-
lated that, similarly to brain insult,26,108 up-regulation of
NGF within the failing heart can induce the activation of
ROS-detoxifying enzymes,108 and ameliorate ongoing neuro-
nal injury by suppressing the actions of ROS in nerve
terminals26; however, this mechanism has not been clearly
explained and verified. Contrary to this mechanism, it is a

well-investigated phenomenon that oxidative stress is in-
creased and has a critical role in sympathetic neural remodel-
ling (hyperinnervation) following MI and augments the
expression of NGF in infarcted rat hearts99 (more in para-
graph 4.2). The inhibition of the superoxide generation de-
creased the expression of NGF and attenuated sympathetic
neural remodelling following MI.109–111

Autophagy
Many studies have also suggested that autophagy plays an
adaptive role in protecting cardiomyocytes after ischaemic in-
jury and suppresses the acceleration of HF.103,112 In a recent
study, Wang et al.103 found that NGF improves myocardial is-
chaemia reperfusion injury in a mouse model and that the
protective effect of NGF is associated with increased
autophagy-mediated ubiquitination.

Collectively, up-regulation of NGF expression in post-
infarcted hearts exerts both harmful (pro-arrhythmia effects,
SCD, and fibrillation) and protective effects, such as myocar-
dial and vascular repair, diminished oxidative stress, and au-
tophagy stimulation.

Ventricular and atrial arrhythmias

Nerve growth factor is a key cytokine thought to promote au-
tonomic nerve sprouting in the ventricle96,113,114 and
atrium,113,115,116 and its production in target organs deter-
mines the density of innervation by the sympathetic nervous
system.96,117 Cardiac sympathetic left stellate ganglion (LSG)
activity increases markedly before VA onset in an ischemia
model,118 and the inhibition of LSG activity effectively re-
duces the incidence of VA.118–121 Accordingly, it was recently
reported that non-invasive light-emitting diode therapy might
significantly reduce both sympathetic activation, manifested
by a decrease in LSG neural activity and expression of NGF,
and inflammatory response in the myocardium, thus reducing
the incidence of acute MI-induced VAs.121 Cao et al.122 dem-
onstrated that heterogeneous cardiac nerve sprouting and
sympathetic hyperinnervation play important roles in
arrhythmogenesis and SCD in both human patients and the
animal models of MI. In a canine post-MI model, they demon-
strated that the induction of nerve sprouting by infusion of
NGF into the LSG resulted in an increased incidence of ven-
tricular tachycardia and VF.96,123 Furthermore, diffuse ven-
tricular sympathetic hyperinnervation following MI is
secondary to the local secretion of NGF in the peri-infarct
region.96,113,114 Retrograde transport of NGF by sympathetic
nerve fibrils from the infarcted region to the SG results in hy-
pertrophy of postganglionic neurons in SG80,96 (Figure 2A).
This, in turn, leads to the diffuse sympathetic hyperinnerva-
tion of the left ventricle at regions remote from the infarct re-
gion, thereby promoting VA.113 Nguyen et al.114 also reported
that MI results in an increased serum NGF level and can exert
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trophic effects in inducing neural remodelling in the SG after
MI in rabbits. Nerve sprouting and sympathetic hyperinnerva-
tion were associated with the dispersion of repolarization,
changes in calcium currents, and increased VF incidence.
Collectively, this evidence indicates that heterogeneous
remodelling and hyperadrenergic innervation are likely to
play significant adverse roles in the increased risk of
life-threatening arrhythmias after MI.123 Therefore, new ther-
apeutic approaches to abolish an unbalanced crosstalk
between SG and infarcted myocardium might prevent sympa-
thetic neural remodelling and cardiac cell dysfunction.

There has also been increasing evidence that abnormalities
of the ANS, which that includes sympathetic, parasympa-
thetic, and intrinsic neural network are involved in the path-
ogenesis of AF.45,124 The cardiac ANS plays an essential role
in epicardial GP regulation of AF onset and progression.40

AF-associated oxidative stress,42,125 may cause cardiac nerve
injury, which triggers the re-expression of NGF or other neu-
rotrophic factors in the non-neuronal cells around the site of
injury.42,102 NGF over-expression is associated with myocar-
dial hyperinnervation and atrial fibrosis,102,126 whereas in-
crease in atrial sympathetic innervation contribute to the
generation and maintenance of AF by exerting significant ef-
fects on automaticity, refractoriness, and conduction
velocity.43,102,113,127,128 It is known that increased parasympa-
thetic signalling is a key contributor to the refractory period
shortening in the atrium. Accordingly, the activity of GP,
which provides the majority of parasympathetic innervation

to the atria, is increased in the animal models of AF,113,129

and the heightened vagal tone was shown to precede the on-
set of AF paroxysms in patients.113,130 Similarly, as demon-
strated in dogs, there is sympathetic hyperinnervation in
the fibrillating atrium, with evidence of the heightened sym-
pathetic discharge from SG with rapid atrial pacing-induced
AF.113,115,127,129 Gussak et al.113 explain that NGF released
from fibrillating atrial myocytes in the left atrial appendage
is taken up by parasympathetic and sympathetic nerve fibrils
in the atrial myocardium and is retrogradely transported to
the atrial GPs and the SG, respectively, thereby leading to hy-
pertrophy of postganglionic neurons in these structures. This
hypertrophy of the ‘parent’ ganglia then leads to the diffuse
parasympathetic and sympathetic hyperinnervation through
all regions of the left atrium. These findings suggest that dys-
regulation and imbalance of autonomic nervous function are
key factors regulating the occurrence and persistence of AF.
Consequently, damage to the GP network could also reveal
the inhibition of the onset and progression of the AF.40

Recent years have seen the emergence of ablation as a
major therapeutic advance in the treatment of AF. Unfortu-
nately, both pharmacological and ablative therapies for AF
have suboptimal efficacy in patients with persistent
AF.113,131 Moreover, partial vagal denervation may facilitate
rather than prevent vagally mediated AF by increasing the
heterogeneity of refractoriness within the atria.43,128 Numer-
ous studies have demonstrated that myocardial injuries, such
as the previously mentioned MI or radiofrequency catheter

Figure 2 The role of NGF in response to pathological cardiac stress. (A). NGF induces complex, autonomic changes occurring secondary to acute myo-
cardial infarction, like the sympathetic hyperinnervation and hypertrophy of postganglionic neurons in SG. These effects may promote arrhythmias that
may be responsible for sudden cardiac death. (B). NGF exerts a protective effect on tissue repair like vascular endothelial dysfunction during athero-
genesis (detailed description in the text). MC, mast cell; NGF, nerve growth factor
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ablation, lead to cardiac nerve sprouting and sympathetic hy-
perinnervation in the animal models,102,122 which has been
known to be related to the rises of the level of
NGF.43,96,102,113,132 Radiofrequency catheter ablation for AF
increases the plasma concentration of NGF. High plasma
levels of NGF were found to be associated with high sympa-
thetic nerve activity estimated by heart rate variability and
high number of atrial premature contractions after
ablation.102

To summarize, the heterogeneity in afferent neural signals,
along with the remodelling of convergent neurons, may play
an important role in the genesis of arrhythmias and progres-
sion to HF.133 Due to the complexity of the pathogenesis un-
derlying AF, there are few effective therapies available.40

Therefore, a better understanding of the molecular mecha-
nisms underlying the genesis and maintenance of the AF dis-
ease state and the NGF role in the creation of electrical/
structural remodelling in the fibrillating atrium would facili-
tate the development of newer, dedicated therapies for this
arrhythmia.

Congestive heart failure

A key component of altered sympathetic nervous system pa-
thology is a reduction in sympathetic nerve density, which is
associated with a reduction in the tissue levels of NGF both
in experimental animals and humans.73,134 In CHF, NGF pro-
tein expression is decreased in ventricles, resulting in reduced
trophic support for sympathetic neurons.84,100,134,135 Func-
tionally, sympathetic nerves in CHF convert from a balanced
NE synthesis, release, and reuptake system to the one that
predominantly releases NE, resulting in excessive myocardial
stimulation and catecholamine toxicity.84,135 Govoni et al.36

explained that the reduction in NGF levels may be caused
by the fact that high catecholamine levels inhibit NGF expres-
sion. Pro-NGF has been shown to promote pruning, degener-
ation, and apoptosis of sympathetic axons in the relative
absence of the mature form84,136,137 and a reduction in ma-
ture NGF, accompanied by stable levels of the pro-form,
would potentially decrease sympathetic-parasympathetic ap-
position in the failing heart and disrupt autonomic
crosstalk.78,84 Accordingly, changes in mature NGF and
pro-NGF within CG neurons from CHF rats in a study by
Hasan and Smith84 were similar to those observed after
sympathectomy, suggesting a common mechanism is at play.
Similarly, during the progression of HF, HF induced by NE
infusion leads to a decline in NGF expression and production
by cardiomyocytes,24,25,78,100 which is mediated by alpha-
1-adrenergic receptor activation.24,36,70 Intriguingly, while
β-ARs have been shown to promote NGF expression, alpha-
1-adrenergic receptor stimulation promotes an attenuation
of NGF in the heart.84,100,101 This may be favoured
by increased apoptosis of myocytes20,24 and widespread

myocardial denervation36,70,78,100,101 as a ramification of
chronic elevated adrenergic tone and mechanical stretch.
Moreover, mechanical stretching is a pathophysiological stim-
ulus that is correlated with several cardiac diseases, such as
MI, HF, or arterial hypertension, and Rana et al. discovered
that in cardiomyocytes, cellular stretching leads to a decrease
in NGF mRNA and protein expression.24,36

Atherosclerosis/acute coronary syndrome

Basic and clinical studies indicate that atherosclerosis is an
inflammatory-fibroproliferative disease initiated by endothe-
lial dysfunction and develops as a result of a complex interac-
tion between various growth factors/cytokines, VSMCs, and
immune cells.138 NGF is secreted by both types of cells that
participate in the inflammatory process, structural cells (i.e.
ECs, smooth muscle cells, and fibroblasts) and cells of the
haemopoietic immune system that infiltrate into the site of
inflammation, such as mast cells (MCs), macrophages, and
lymphocytes.36,76,139 In fact, NGF mediates many inflamma-
tory and autoimmune states in conjunction with increased
accumulation of MCs21,140 that appear to be involved in
neuroimmune interactions and tissue inflammation.139

Because MCs are known to be a cellular component of the
coronary artery and these cells not only respond to NGF
action,141,142 but also produce and release NGF,141,143 the
presence and distribution of MCs in atherosclerotic and con-
trol coronaries have been also examined.141 NGF, acts as a
chemoattractant, thereby causing an increase in the number
of MCs as well as their degranulation,144,145 inducing the re-
lease of various mediators from MC.145 Interestingly, NGF re-
ceptors on MCs act as autoreceptors, regulating MC NGF
synthesis and release, while at the same time being sensitive
to NGF from the environment.144 The fact that the number of
MCs increases, whereas the availability of NGF decreases,
suggests that MCs do not play a decisive role in NGF synthesis
in atherosclerotic vascular tissue.146 However, is it still open
to further research to determine whether these MC popula-
tions, via their potential to synthesize and release NGF, at-
tempt to compensate for the reduced NGF in the coronary
wall and prevent atherosclerosis.141

Accordingly, recent studies have reported the potential im-
portance of NTs in atherosclerosis and related disorders,67,147

which leads to the hypothesis that NTs undergo significant
changes in acute coronary syndromes (ACS), the major
clinical complications of coronary artery disease and
atherosclerosis.147 Chaldakov et al.138 were the first to dem-
onstrate that the level of NGF was significantly reduced in hu-
man coronary arteries with advanced atherosclerotic lesions.
These results also revealed that the coronary adventitia of
atherosclerotic subjects displayed an overexpression of
p75NTR immunoreactivity67,93 and a significantly greater
number of MCs and vasa vasorum than those of
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controls.138,139,148 There is a possibility that the secretion of
NGF in pathological tissues is reduced because VSMCs, which
are the main vascular source of NGF,138,149 undergo atrophy
in atherosclerosis and/or the NGF turnover is higher in ath-
erosclerotic arteries than in normal arteries.138 It has been re-
ported that NGF derived from MCs and T lymphocytes exerts
a protective effect on tissue repair.138,150,151 Similarly,
Chaldakov et al.152 recently reported that the plasma levels
of NGF and BDNF are significantly reduced in patients with
metabolic syndrome and ACS.

The decreased vascular tissue content of NGF in human
coronary atherosclerosis suggests that a metabolic imbal-
ance due to the reduction in NT availability may operate in
the pathogenesis of obesity and related metabolic diseases,
such as type 2 diabetes, metabolic syndrome, and athero-
sclerosis. Important lines of evidence to support this hypoth-
esis include the following: (1) NGF shares a striking structural
homology with proinsulin152 and exerts certain effects on
lipid metabolism and energy homeostasis152,153; (2) pancre-
atic beta cells secrete NGF and express its receptor, TrkA,
and NGF enhances glucose-induced insulin secretion via an
autocrine/paracrine pathway (it is possible that pancreatic
NGF may be exported to the bloodstream where it functions
as an endocrine messenger; decreased NGF serum levels
was observed in diabetic patients154)152,154,155; (3) NGF
up-regulates the expression of low-density lipoprotein (LDL)
receptor-related protein,138,152,156 which is a member of
the LDL receptor gene family whose malfunction is
causally related to atherosclerosis138,152; (4) NGF inhibits
glucose-induced down-regulation of caveolin-1, which plays
a critical role in TrkA and p75NTR signalling, LDL receptor sig-
nalling, and lipid metabolism and obesity152; and (5) NGF,
through its serine protease activity, converts plasminogen
into plasmin,138,157 which is a crucial factor for the activation
of transforming growth factor-beta (a key inhibitor of
atherogenesis), strongly up-regulates interleukin-10,138,158

another inhibitor of atherogenesis, and induces the expres-
sion of urokinase plasminogen activator receptor138,159

(Figure 2B).
In summary, the studies carried out in the past three de-

cades have revealed that the key NT NGF not only stimulates
nerve growth and survival but also exerts trophic effects on
ECs, acting as angiogenic factor, and is involved in the main-
tenance of glucose, lipid and energy homeostasis, and regula-
tion of pancreatic beta cells and the cardiovascular system,
and is thus designated metabotrophin (from the Greek word
meaning ‘nutritious for metabolism’).155,160 Indeed, NGF
may operate as a metabotrophin, which means that it is
involved in the maintenance of cardiometabolic homeostasis
(glucose and lipid metabolism as well as energy balance,
cardioprotection, and wound healing), and the reduction in
NGF availability and/or utilization may play a critical role in
the pathogenesis of cardiometabolic dysfunctions, such as
coronary artery disease and atherosclerosis.

Altogether, NGF is an important factor in the degenerative
and regenerative processes that occur in the heart. NGF sup-
pression is related to abolishment of the angiogenic repair
process, elevation of cardiomyocyte apoptosis and generally
worsened cardiac function. Understanding these complex
cell–cell interactions and molecular mechanisms leading to
NGF-mediated cell dysfunction might provide insight into
new therapeutic approaches and treatments for cardiovascu-
lar diseases.

Conclusions

Although NTs are well known for their survival effects on neu-
rons, it is clear that their properties are more wide ranging.
Here, we focused on outlining the importance of the first dis-
covered member of this class of growth factors, NGF, in de-
termining and maintaining cardiovascular phenotypes and
homeostasis. Strong evidence has emerged that NGF exerts
important cardiovascular activities and unique ‘tropisms’ to
many cells within the cardiovascular niche. In addition to its
neuronal functions, NGF is an essential factor in heart forma-
tion and triggers a variety of effects on peripheral tissues, in-
cluding the vasculature and ECs and regulates angiogenesis
and vasculogenesis. This molecule contributes to the mainte-
nance of proper heart rate, conduction velocity, and contrac-
tility or, conversely, heart function disruption and disease,
which depends on its concentration within the niche; its syn-
thesis and release are altered under different pathological
conditions. The altered presence of NGF and/or its receptors
may be involved in the pathogenesis of vascular/heart dis-
eases, including hypertension, MI, HF, cardiac hypertrophy,
atherosclerosis, or ACS. Individual differences of NGF expres-
sion might also be responsible for differential nerve
sprouting, heterogeneous remodelling and hyperadrenergic
innervation and susceptibility to arrhythmia. Identification
of the molecular mechanisms involved in the interactions be-
tween cardiomyocytes and other types of cells and explora-
tion of the extensive and diverse effects exerted by NGF
within the cardiovascular niche may enhance our understand-
ing of heart development, function, and disease and may lead
to the design of new effective therapeutic strategies. A fur-
ther challenge is represented by the increasing knowledge
of the role of NGF in vascular, immune, metabolic, or nervous
system regulation, opening an interesting field for the devel-
opment of innovative NGF-based therapies in cardiovascular
diseases and a novel and demanding clinical aspect of the
use of NGF.
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