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Abstract

Background

Physical housing and household composition have an important role in the lives of individu-

als and drive health and social outcomes, and inequalities. Most methods to understand

housing composition are based on survey or census data, and there is currently no repro-

ducible methodology for creating population-level household composition measures using

linked administrative data.

Methods

Using existing, and more recent enhancements to the address-data linkage methods in the

SAIL Databank using Residential Anonymised Linking Fields we linked individuals to proper-

ties using the anonymised Welsh Demographic Service data in the SAIL Databank. We

defined households, household size, and household composition measures based on adult

to child relationships, and age differences between residents to create relative age

measures.

Results

Two relative age-based algorithms were developed and returned similar results when

applied to population and household-level data, describing household composition for 3.1

million individuals within 1.2 million households in Wales. Developed methods describe

binary, and count level generational household composition measures.

Conclusions

Improved residential anonymised linkage field methods in SAIL have led to improved prop-

erty-level data linkage, allowing the design and application of household composition mea-

sures that assign individuals to shared residences and allow the description of household

composition across Wales. The reproducible methods create longitudinal, household-level

composition measures at a population-level using linked administrative data. Such mea-

sures are important to help understand more detail about an individual’s home and area
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environment and how that may affect the health and wellbeing of the individual, other resi-

dents, and potentially into the wider community.

Introduction

It is well understood that physical housing conditions and household composition play an

important role in the health and wellbeing of individuals and are drivers of social and health

inequalities [1]. Influences emanating from the home environment, whether residential or

communal living, which may impact upon the individual are wide-ranging and include factors

related to immediate and surrounding environments such as physical housing attributes, resi-

dent behaviours and characteristics, and household composition (HC). Household Composi-

tion Measures (HCM) describe the grouping of individuals in the same home, enabling

household size and resident characteristics, including generational structures, to be calculated.

The ability to quantify an individual’s home environment and apply such HCM to individuals

at a population-level has multiple and wide-ranging research applications.

HC has established impacts on: physical health in terms of contagious disease exposure and

transmission patterns [2–6]; older age care, isolation, and role of family carers [7–10]; mental

health [11–15]; social factors including deprivation [1], inequalities linked to overcrowding,

multi-generational living and housing security [1, 11]; family justice and child wellbeing (effect

on health, educational [16], maltreatment and child protection [17–22]); as well as providing

further depth and granularity of the home environment for wider-ranging research.

Existing research using HCM are predominantly survey- or Census-based [3, 4], generally

containing smaller numbers or sampled estimates, and are mainly cross-sectional at a fixed

point in time, or use area-level distributions to estimate household structure [23]. HCM meth-

ods vary in detail from simple binary measures such as lone or multi households [18], house-

hold size combined with the presence of dependent children, to methods detailing residents’

biological relationships, ethnicity, and other detailed household characteristics within inter-

generational households [24, 25]. However, to the best of our knowledge, none have used rou-

tinely collected administrative data to ascertain a measure of HC or have the ability to use

longitudinal data to understand changes in HC over time.

Rationale

HCM need to be flexible to incorporate a variety of research outcomes. For instance, research

aims may need to define households by allocating individuals to a property at the same time,

calculate household size, or describe households through individual resident and household-

level characteristics. In this paper, we describe enhancements to address linking methodology

used in the Secure Anonymised Information Linkage (SAIL) Databank, and a methodology to

model housing composition using the Welsh Demographic Service data at a population-level

in Wales.

Methods

This study was approved by the Secure Anonymised Information Linkage (SAIL) Information

Governance Review Panel (project 1001) in Wales. All data were anonymised prior to access

and analysis.
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Enhanced linking fields

The SAIL Databank is a privacy-protecting Trusted Research Environment (TRE) which

houses routinely collected electronic health records (EHR) and administrative data sources

relating to the population of Wales, United Kingdom (UK). However, it also comprises rich

socio-economic and geographic data linked at individual-, and address-level. Linkage systems

have been developed over time to incorporate new data and best practices. The Residential

Anonymised Linking Field (RALF) was originally developed using the Royal Mail Postcode

Address File (PAF) [26]. However, since 2013 RALF linkage improvements have been devel-

oped enabling more granular methods, both spatially and temporally. This has been achieved

through the use of encrypted Unique Property Reference Numbers (UPRN) which are persis-

tently unique through time and contain richer information on housing type, houses in multi-

ple occupation, and communal residences. The enhanced RALF system also allows us to take

advantage of the drive at UK Government level to make the UPRN the standard unique identi-

fier for address-based data [27]. The methodology has allowed us to develop core data assets in

SAIL which capture the different environments in which the people of Wales live and go about

their daily lives. This has been achieved through a combination of administrative geospatial

data attributes. These include:

• Care Home Anonymised Linking Fields (CH-ALF) allow grouping of people into discrete

care homes and facilitates linking of further administrative data (e.g. size, number of places,

services offered) and to health and social care data of residents.

• Workplace Anonymised Linking Field (W-ALF) allows grouping of people into discrete

workplace settings and classification by industry type and setting.

• School Anonymised Linking Field (S-ALF) which allows pupils and teachers to be grouped

in discrete educational settings.

Using such linking fields, sophisticated geospatial models of the built environment have

been developed pertaining to a place of residence, education, or work which can be anony-

mously linked with a variety of data sources. A further benefit of the UPRN based linking fields

is that, at a high level, it allows us to group individuals by discrete spatial units, namely their

place of residence or RALF. However, the enhanced RALF can’t model relationships between

residents; therefore HCM development is the focus of the work described in this paper.

Study population

The Welsh Demographic Service Dataset (WDSD) contains individual-level demographic and

multiple address registrations for all individuals registered with a General Practice (GP) in

Wales and is hosted anonymously in the SAIL Databank [28–31]. Data is held in two datasets:

the individual-level dataset (WDSD-I) which contains: anonymous linking fields (ALF), sex,

and week-of-birth and death; and the address-level dataset (WDSD-A) containing: RALF and

address registration dates for each individual within a RALF.

For this study, individuals in WDSD-I were linked to WDSD-A using a common linking

key where they were registered to a RALF at a specified index date). Where an individual had

multiple RALF registration dates at index date, or was registered to multiple properties, the

earliest registration record was retained. Records with a date-of-death prior to address regis-

tration end dates were removed. An index date of 1st January 2016 was chosen for illustration

purposes, however, the methods can be run at any index date within the WDSD date range

(early 1990’s to current day).
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Household definition

A household was defined as all residents registered to the same RALF at index date, with

household size calculated as the total number of residents.

Household composition measures were based on household membership, combined with

age-based classifications to describe each household. Resident age was calculated at index date

(1st January 2016) and used to define children as 17 years or under, and adults as 18 years or

over. Households were further described as ‘adult only’, or ‘family’ depending on the absence

or presence of a child aged resident. Households were grouped according to size and various

household composition measures and presented as tabulations.

Sex and age were extracted from WDSD-I, with a derived tenancy duration measure created

from WDSD-A for each resident (total number of days between the start of address registra-

tion and index date).

Household composition measures

Survey methods obtain direct information from residents and allow classification of resident

relationships. However, in the absence of direct relationship data, we used anonymised WDSD

data, and therefore age-based assumptions were used for family generation classifications.

Choice of age boundaries is difficult due to the natural variation between generations with lit-

erature showing variation in central tendency and spread [32–34]. We therefore made a prag-

matic decision drawn from evidence of age ranges between child and parents [34]; analysis of

generated data in this study describing age differences between residents as shown in S1 Fig

could be used to inform future adaptations of the method to a data driven approach.

Adult to child HCM

Household composition was defined by combinations of the total number of children and

adults with possible outcomes: ‘adult only’, ‘one adult with one or more children’, ‘two or

more adults with children’ (subdivided by one, two, or three or more children). A final cate-

gory of ‘children only’ captures any household with no residents aged 18 or over. This method

was designed to reflect similar measures used by Welsh Government [35, 36] based on UK

Census data and projection methods to allow meaningful comparisons.

Generational HCM: Relative age to youngest (AtY)

We allocated residents to one of three generations depending on the relative age difference to

the youngest (AtY) resident. The youngest resident and any other residents with an age differ-

ence of 0–17 years were classified as generation-one (child or sibling), an age difference of 18–

50 years as generation-two (parents), and an age difference of more than 50 years as genera-

tion-three (grandparents). Binary generation indicators were combined to create binary

HCMs of 100 (one-generation), 110 (two-generation), 111 (three-generation), or 101 (‘skip’

generation); with count HCMs indicating the total number of residents in each category. For

example, two residents aged 35 and 37 would be displayed as 100 (binary) and 200 (count);

three residents aged 2, 4 and 30 as 110 (binary) and 210 (count); five residents aged 2, 3, 30, 45,

70 as 111 (binary) and 221 (count).

Refined HCMs were created, prefixed with ‘family’ or ‘adult only’ to differentiate house-

holds based on the age of the youngest resident as a proxy for household maturity. ‘Family’

households contained at least one resident classed as a child, and ‘adult only’ households con-

tained no child aged residents.
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Using these measures we aimed to establish a mechanism for classifying households accord-

ing to a generalised household composition logic model as shown in Table 1.

Generational HCM: Relative age to next (AtN)

Residents were allocated to a generational category depending on calculated age difference to

the next eldest resident (AtN). The youngest, or index, resident was defined as generation one

in all scenarios. Subsequently, the age difference to the next eldest resident was calculated and

assessed; if the age difference was less than 18 years the individual was allocated to the same

generation (no increment), an age difference of 18 years or more resulted in allocation to gen-

eration-two (generational indicator incremented by one). The process was repeated for all resi-

dents within the household. Binary, count, and age-based prefixed codes were created in the

same approach as for the AtY method. With the AtN method, the two-generation ‘skip’ cate-

gory was not a possible outcome as generations were incremented by a maximum of one gen-

eration. The AtY method limits outcomes to a maximum three generations, whereas the AtN

method is restricted only by natural age expectancy, for example, a five-generation household

could exist if five residents are aged at least 18 years apart.

Fig 1 describes a modelled example of two households illustrating how each resident con-

tributed to the binary and count HCM classifications for AtY and AtN methods. The addi-

tional ‘adult only’ or ‘family’ prefix measures distinguish between similar household structures

but different household maturity.

Comparison of relative age methods. To facilitate comparison of AtY and AtN methods,

confusion matrices analysis was completed. Ideally, confusion matrix analysis requires a gold

standard classification to test differences. However, in the absence of a gold standard method

(using population-level linked data), we assumed AtY as gold standard and AtN as the test

Table 1. Generalised household composition logic model.

HH

Size

One-generation (Binary code:

100)

Two-generation (Binary code: 110) Three-generation (Binary code: 111)

1 Lone dwelling

2 Cohabiting partnerships Single-parent families

3 Larger adult groups/shared

residences:

• house sharing professionals

• student accommodation

• care homes

Child & parent relationships:

• multiple combinations of residents including

• single-parent families

• two parents, 1 to 5 children

• other combinations and ability to split by age-based measures, e.g. ‘adult only’

or ‘family’ households

Multi-generations:

• child & parent & grandparent

• other combinations of non-family

members

4+

https://doi.org/10.1371/journal.pone.0248195.t001

Fig 1. Modelled examples of age to youngest (AtY), and age to next (AtN) HCM methods.

https://doi.org/10.1371/journal.pone.0248195.g001
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model. To simplify comparison, results were restricted to households classed as one, two, or

three-generation households in either method. To facilitate the comparison households classed

as ‘split’ two-generation households from the AtY method were removed (N = 4,581 represent-

ing <0.5% of total properties), and any AtN household classification above three generations

were reclassified as three generations (N = 606).

Results

Household and resident characteristics

The final linked dataset consisted of 3.09 million residents registered to 1.19 million properties

in Wales at the index date of 1st January 2016. Records where an individuals’ registered date of

death preceded the address registration end date (n = 8,959) were removed along with dupli-

cate records (n = 18). Results were restricted to households sized seven or less (N = 1,177,095)

as they represent 99% of properties and 95% of residents. Fig 2 shows the total number of

properties and population by households of up to seven with further detail on larger house-

holds shown in S2 Fig.

Table 2 displays property and population numbers by household size and shows that house-

holds sized four or less account for 91% of total properties, and 81% of the total population.

Households are further detailed by sex, age, and tenancy duration with sub-grouping of house-

holds by ’family’ or ’adult only’ households (4,442 households with no adult aged residents

were excluded, as well as child data from family household results to allow comparisons of

adults). The proportion of females was generally higher in smaller households, most notably in

‘family’ households with 89% and 60% in households sized two, and three respectively. Age

and household size were positively related, with ‘adult only’ households ranging from a mean

of 61 years in single households to 38 years in households of seven. Age was generally uniform

at 39 years in ‘family’ households, except for households of two residents being younger (36

Fig 2. Distribution of household size by properties and number of residents.

https://doi.org/10.1371/journal.pone.0248195.g002
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years). The relationship between household size and tenancy duration varied by ‘adult only’

and ‘family’ households. Adult households sized one to four ranged between 14 and 16 years

of tenancy, decreasing to 8 years for seven resident households. Larger ‘family’ households of

four or more have longer tenancy periods at around 9 years, with shorter tenancy noted in

smaller households.

Household composition

Adult to child composition HCM. Fig 3 shows results of the adult to child composition

method. Adult only households account for the vast majority of households sized one and two,

followed by a decreasing trend to 15% in the largest households of six and seven, with a corre-

sponding increase of households with children. The proportion of single-parent households

are at their largest in households of three residents at 12%.

For indicative purposes, comparisons were made with the Welsh Government (WG) 2016

published data [35, 36], which, as WG classification combines households of five or more resi-

dents, only households sized two to four are discussed here. For households sized two, house-

hold composition types were similar with a one percent variance with around 90% ‘adult only’

households and the remainder single-parent households. For households of size three, the pro-

portion of single-parent households was equal at 12%, however, there was a disparity in ‘adult

only’ households with 45% reported by WG compared to 57% in the SAIL method, and 42%

(WG) compared to 31% (SAIL) for households with two adults and one child (varying meth-

ods should be noted, WG define dependent children as any person under 16 or under 18 and

in full-time education [37]). A similar disparity was noted for households sized four, adult

only households were reported as 20% by WG and 31% by SAIL, single-parent with children

Table 2. Household metrics by household size for all, ‘adult only’ and ‘family’ households.

Household Size

All households 1 2 3 4 5 6 7

Properties 329,044 365,227 213,046 165,692 67,365 25,810 10,911

Population 329,044 730,454 639,138 662,768 336,825 154,860 76,377

Female % 55% 52% 49% 49% 48% 48% 48%

Age (mean(SD)) 60.8(19.8) 55.3(20.3) 38.7(21.0) 30.7(19.1) 28.2(18.9) 27.6(19.3) 27.8(19.5)

Tenancy (mean(SD)) 14.5(13.7) 14.5(12.8) 11.5(10.7) 9.7(8.5) 8.6(8.0) 7.8(7.8) 7.3(7.8)

Adult only households 1 2 3 4 5 6 7

Properties 325,668 327,795 121,728 50,792 13,415 3,922 1,631

Population 325,668 655,590 365,184 203,168 67,075 23,532 11,417

Female % 56% 50% 45% 44% 43% 42% 42%

Age (mean(SD)) 61.4(19.1) 59.2(16.8) 48.4(17.8) 42.1(17.4) 39.9(17.5) 39.1(18.0) 38.2(18.2)

Tenancy (mean(SD)) 14.6(13.8) 15.6(13.0) 15.4(11.7) 14.5(10.5) 12.6(10.2) 9.8(9.9) 7.8(9.1)

Family householdsa 1 2 3 4 5 6 7

Properties - 36,660 91,115 114,836 53,932 21,881 9,278

Population - 36,660 157,310 254,556 147,640 72,872 36,700

Female % - 89% 60% 52% 50% 49% 48%

Age (mean(SD)) - 36.1(10.7) 38.9(11.1) 39.3(11.3) 38.8(13.1) 39.0(14.3) 39.3(14.8)

Tenancy (mean(SD)) - 5.3(6.0) 7.2(7.0) 8.8(7.2) 9.2(8.1) 9.2(8.6) 9.0(8.8)

a ’Family’ households = households with at least one child and one adult; data displayed restricted to adults only

https://doi.org/10.1371/journal.pone.0248195.t002
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households were 6% for WG and 12% SAIL, with WG reporting 74% of households with two

or more adults with one or more children compared to 65% for SAIL.

Generational HCM binary methods: Age to youngest (AtY), and age to next (AtN). Fig

4a and 4b show classification results for the binary AtY and AtN methods respectively. Around

Fig 3. Adult to child HCM.

https://doi.org/10.1371/journal.pone.0248195.g003

Fig 4. Comparison of all households and using prefix split for AtY and AtN methods.

https://doi.org/10.1371/journal.pone.0248195.g004
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75% of two resident households were classed as one-generation, the remainder by nature were

two-generation households. The majority of larger households were two-generational, with an

increasing proportion of three-generational households associated with increased household

size, up to a maximum of 31% with the AtY method. The general pattern of results evident

between methods is similar, with more variation in larger households with higher proportions

of one-generational households in the AtN method compared to AtY.

The overall generational pattern is visible within the prefixed binary AtY and AtN methods

in Fig 4c and 4d, but with additional differentiation between ‘family’ or ‘adult only’ type house-

holds. Commenting specifically on the AtY method, the notable feature is the division of two-

generational households between the two household types. In three resident households, two-

generational ‘adult only’ households account for half of all households and ‘family’ households

account for 41%. This pattern reverses within increased household size; within households of

four residents, 65% are two-generational ‘family’ households, and 27% are ‘adult only’, and

households of seven have 56% ‘family’ households and 9% ‘adult only’ households. Household

differentiation by type i.e. ‘family’ and ‘adult only’ is used for illustration purposes, however,

more detailed stratification, for example using more granular age categories, can be achieved

using SAIL data.

Generational HCM count methods: Age to youngest (AtY), and age to next (AtN). To

this point, the generational measures presented are binary, indicating the presence or absence

of at least one person within each generation. The following results indicate the total number,

or count of residents per generation to provide further granularity into household composi-

tion. Fig 5a and 5b compare results for count HCM for AtY and AtN for ‘adult only’ house-

holds, with Fig 5c and 5d comparing results for ‘family’ households, sized two to seven.

Within ‘family’ households, the most common structure was a nuclear family, i.e. two

parents and a corresponding number of children relative to household size; except for house-

holds of size two, which are predominantly single-parent families. In households of two to five,

Fig 5. Comparison of ‘adult only’ and ‘family’ households using count HCM AtY and AtN methods.

https://doi.org/10.1371/journal.pone.0248195.g005
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the next most common structure indicates single-parent families. Larger households tend

towards more than two adults in the parental generation category.

For ‘adult only’ households a similar pattern exists; showing a familial structure of more

mature families with grown-up children, with two parents generally being the most common.

Exceptions to this rule are noted in households of two indicating cohabiting partners, and

households of size seven indicating larger groups of cohabiting adults of the same generation.

Single generation households (for example, code: 700 for a seven-person single generation

household) are more common compared to family structures in larger household sizes and

suggest shared accommodation for larger groups of adults.

Comparison of relative age HCM to Adult to Child composition methods. Formal

comparison of the Adult to Child HCM method compared to relative age HCM methods are

not provided due to differences in approach, however, it is useful to comment on general dif-

ferences between the type of results and insights provided. The Adult to Child HCM is more

straightforward to interpret, and similar versions are currently used by government and statis-

tical bodies in Wales [35]. However, compared to the AtY method, there is less insight into

household composition. For example, households of size three using the Adult to Child HCM

method reveals around 60% of households are ‘adult only’; with AtY the ‘adult only’ group can

be further split into 69% single child with two parents (code 120); 20% two children with sin-

gle-parent (code 210); 10% three, same generation adults (code 300), with the remaining 1.5%

being three-generation households (code 111).

Comparison of relative age HCM methods. Visual differences between the two binary

approaches can be seen in Fig 4a and 4b, with similar results and overall trends between meth-

ods. The main difference is that the AtN approach offers an increased number of one-genera-

tion households for larger households, compared to the results offered by AtY. As previously

noted, the AtY method is used as a proxy for a gold standard classification method in the

absence of a true gold standard to allow formal statistical-based comparisons through confu-

sion matrices, the result of which show an accuracy of 96% for AtN compared to the proxy
gold standard AtY. However, for larger households of five or more, the accuracy reduced to

87%, reinforcing what can be assumed from visual comparisons. The reason behind this sepa-

ration is due to the varying methods of generational allocation. In a household with three resi-

dents aged 7, 22, and 35 the AtY method ignores the 22-year-old resident when assessing the

age difference between the youngest and eldest residents; the eldest resident, being 28 years

older, assumes classification as generation-two. However, with the AtN method, the middle

resident ‘bridges’ the gap between youngest and eldest residents resulting in age to next resi-

dent of 15 and 13 years, which being less than 18 years results in all residents assigned to the

same generation.

Discussion

Summary of main findings

We designed measures that can be applied to routinely-linked administrative data to group

residents into households, to describe household composition, and benefit from RALF meth-

odological enhancements. Two relative age-based algorithms were developed and returned

similar results when applied to population and household-level data, describing household

composition for 3.1 million individuals within 1.2 million households in Wales. To our knowl-

edge, this is the first application of HCM at a population-level in Wales. Methods were

designed flexibly to classify households at fixed or variable index dates to improve utility and

enable use within various research settings and for varying study designs, including facilitating

longitudinal research to model changes in living environments over time. Individuals’
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anonymised address registration records are available in SAIL from the early 1990’s to current

day with new data added frequently; this adds flexibility to the methods which can be run at

any specific index date, or at multiple time points to obtain measures of change for longitudi-

nal studies.

As methods aimed to classify over three million residents they are by nature somewhat gen-

eralist; alterations to the methods for specific research projects could be expected to generate

additional insight and accuracy. The methodology will be made available in the SAIL Data-

bank and can be used as a basis for future methodological enhancements.

Existing evidence

Physical and mental health, loneliness and isolation, caring needs, and child outcome research

have all incorporated HCM to some degree to explore interactions and risk factors. A recent

Public Health England report on COVID-19 outcomes noted that household composition was

important to understand disparities but this measure was unavailable [38]; such studies could

benefit from access to similar linked data and methods as we have described.

Research including HCM is predominantly based on surveys of relatively small numbers,

or other estimated household measures [39]; our methods estimate household composition

using individual-level data for a whole population. Current household composition metrics

at government level are provided through detailed Census and survey results, an expensive

and time consuming task, utilising the longitudinal data in the SAIL Databank we show

HCM methods can describe household composition over a wide time period in an efficient

manner.

Implications for research, practice, and policy

Applications include enabling creation of richer datasets to better capture information and

therefore understand more about individuals included in research studies. Linked data

research is predominantly based on individual-level demographic, health, and social data,

linked to area-level deprivation measures. Household-level data provides a conduit for addi-

tional data and insight into an individual’s situation for use within population health research.

Fig 6 describes the cyclical nature of how data relating to individuals, their households, and the

wider community can flow and be harnessed to improve research. Individuals represented in

Fig 6 would often be included in linked data research as disparate entities, however, HCM

methods can group individuals and allow their separate situations to be described and applied

to that group. For example, one child resident with serious ill-health could impact parents’

wellbeing; incorporating this information could be valuable to understand health outcomes of

those parents. Further examples include the household impact of living with a relative with

dementia; or the increased household risk of COVID-19 contraction where a young resident

tests positive for the disease.

A further application could be to supplement or improve linked administrative data. For

instance, poorly recorded ethnicity data inhibits important research [40], and creation and

application of a household ethnicity measure, pooling data from individuals in a household

could, under certain considerations, be beneficial.

Longitudinal data in SAIL allows measurement and tracking of change in HCM and can

assist with local and national government budgetary and public services planning, and could

facilitate planning and measurement of interventions specifically targeted at tackling

inequalities.
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Strengths and limitations

The relative age methods described (AtY and AtN) provide further granularity, coverage, and

insight compared to other currently available methods used for estimating household compo-

sition, such as in government reporting [35]. Whilst lacking finer detail associated with survey

methods; these methods, using population-level linked data provide the ability to assign people

to households, classify and describe households for research purposes, but importantly also

allow for longitudinal studies. Methodological improvements to the RALF process provide a

bedrock for future improvements in this area.

As a standalone measure, HCM can group residents within a household and describe HC

for use in research studies, or understand change in HC over time for policy purposes. Topical

examples for the application of HCM are evident in communicable disease transmission

research, such as influenza and COVID-19 with outcomes linked to HC [2–6, 41]. Highlight-

ing the relative strength of our methods, a recent study reported links between household size

and positive COVID-19 tests (28), however, as noted by authors the HCM was limited to area-

level estimates (based on 2011 postcode data). Our methods allow for individual- and house-

hold-level data so accuracy of household size is improved against such methods, as well as the

availability of up to date longitudinal data.

The existing method could be used to infer certain dwelling types for specific research proj-

ects. For example, a household ‘AtY’ code of 7-0-0 in combination with average household age

may allow student households to be selected for specific research aims.

Welsh Demographic Service address registration data is an important administrative data

resource used primarily by the NHS for operational purposes but has some limitations for

research. Accuracy of address registration records are dependent upon individuals updating

GP’s with address changes for themselves and family members, and accuracy is likely to vary

between groups of people. Furthermore, there is no NHS ‘point of capture’ address verification

necessitating subsequent data cleansing, and UPRN to address matching invariably causing

some degree of error; problematic with blocks of flats or houses in multiple occupation,

although implementation of the ‘Parent: Child’ UPRN system in SAIL has alleviated some

error.

The HCM methods use two main assumptions which, as they are based on a theoretical

approach to generational structure, should be understood. First, households are classified with

an assumption that all household residents are related, and that generations consist of a child,

Fig 6. Resident to household and community data model.

https://doi.org/10.1371/journal.pone.0248195.g006
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parent, or grandparent; further, fixed age differences informed generation boundaries. A gen-

eral model is necessary to estimate complexities present in household composition in the real

world and the assumptions used will introduce some estimate error.

Future methodology improvements

Aforementioned considerations concentrate on internal household and individual-level data

combinations, whereas future developments include linkage of administrative and Geographi-

cal Information System (GIS) derived data to refine housing type classifications enabling addi-

tional classification of houses in multiple occupation and communal residences (e.g. student

housing and halls of residence). Additional data possibilities are numerous and include the

ability to create measures such as access to health services, proximity to green space, air pollu-

tion exposures, and derivation of overcrowding measures using physical housing data.

Conclusion

Improved RALF methods in SAIL have led to improved property level linkage, allowing design

and application of household composition measures which assign individuals to shared resi-

dences and allow the description of household composition across Wales. HCM allow the

selection of distinct household types which may be beneficial for research; it also enables data

improvements in terms of quality and depth through mapping of individual characteristics

and exposures to the household, and therefore all residents within. Such measures are impor-

tant to help understand more detail about an individual’s home and area environment and

how that may affect the health and wellbeing of the individual, other residents, and potentially

into the wider community.

What is being added?

• We describe improvement to RALF methodology and potential future improvements;

• The first national-level description of household composition in Wales using population-

level administrative data;

• We provide a population-level profile of household-level descriptive statistics in Wales;

• We provide various breakdowns of household composition through various HCM

indicators;

• We provide the base for future work and improvements, and to allow wider inclusion of

household-level data into numerous future research projects.

Supporting information

S1 Fig. Age distribution of individuals relative to youngest resident for AtY, and AtN

methods.

(TIF)

S2 Fig. Household size distribution for households with over seven residents.

(TIF)
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