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Abstract

The NatA N-acetyltransferase complex is important for cotranslational protein modification and 

regulation of multiple cellular processes. The NatA complex includes the core components of 

NAA10, the catalytic subunit, and NAA15, the auxiliary component. Both NAA10 and NAA15 
have been associated with neurodevelopmental disorders with overlapping clinical features, 

including variable intellectual disability, dysmorphic facial features, and, less commonly, 

congenital anomalies such as cleft lip or palate. Cardiac arrhythmias, including long QT 

syndrome, ventricular tachycardia, and ventricular fibrillation were among the first reported 

cardiac manifestations in patients with NAA10-related syndrome. Recently, three individuals with 

NAA10-related syndrome have been reported to also have hypertrophic cardiomyopathy (HCM). 

The general and cardiac phenotypes of NAA15-related syndrome are not as well described as 

NAA10-related syndrome. Congenital heart disease, including ventricular septal defects, and 

arrhythmias, such as ectopic atrial tachycardia, have been reported in a small proportion of 

patients with NAA15-related syndrome. Given the relationship between NAA10 and NAA15, we 

propose that HCM is also likely to occur in NAA15-related disorder. We present two patients with 
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pediatric HCM found to have NAA15-related disorder via exome sequencing, providing the first 

evidence that variants in NAA15 can cause HCM.
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1 | INTRODUCTION

The N-acetyltransferase (NatA) complex regulates multiple cellular functions, including cell 

survival and cell cycle control, through cotranslational protein modification (Arnesen et al., 

2006; Deng et al., 2019; Dörfel & Lyon, 2015; Lee et al., 2018; Linster et al., 2015; Lyon, 

2019; Mullen et al., 1989; Myklebust et al., 2015). The NatA complex is a trimer or tetramer 

composed of: NAA15-NAA10-HYPK, NAA15-NAA10-NAA50, or NAA15-NAA10-

HYPK-NAA50; NAA10 and NAA15 are the core components for the NatA activity 

(Arnesen et al., 2010; Deng et al., 2020). NAA10 is the catalytic subunit while NAA15 is an 

obligatory auxiliary subunit providing ancohoring to the ribosome and proper substrate 

specificity of NAA10 (Arnesen et al., 2005; Deng et al., 2019; Dörfel & Lyon, 2015; 

Gautschi et al., 2003; Lee et al., 2018; Liszczak et al., 2013; Lyon, 2019; Mullen et al., 

1989; Myklebust et al., 2015; Van Damme et al., 2011). Both NAA10 and NAA15 have been 

associated with neurodevelopmental syndromes with overlapping clinical features, including 

variable intellectual disability, dysmorphic facial features, and, less commonly, congenital 

anomalies such as cleft lip or palate (Cheng et al., 2018, 2020).

NAA10 has been associated with a variant of phenotypes including an X-linked disorder 

with developmental delay, dysmorphic features and lethal cardiac arrhythmias, Lenz 

microphthalmia syndrome, Ogden syndrome, and neurodevelopmental disorders (Casey et 

al., 2015; Esmailpour et al., 2014; Johnston et al., 2019; Myklebust et al., 2015; Popp et al., 

2015; Ree et al., 2019; Rope et al., 2011; Sauiner et al., 2016; Sidhu et al., 2017). The 

largest report of patients with NAA10-reated syndrome, as published by Cheng et al. in 

2020, included 23 individuals from 23 families. Characteristic features included 

developmental delay, intellectual disability (ID), autism spectrum disorder, muscular 

hypotonia, dysmorphic facial features, and less commonly cardiac disease, including 

hypertrophic cardiomyopathy in a small number of patients (Cheng et al., 2020; Støve et al., 

2018).

NAA15 was implicated in human disease after several studies identified de novo, loss-of-

function NAA15 variants in large cohorts of patients with autism spectrum disorder and/or 

ID (Stessman et al., 2017; Zhao et al., 2018). In a large cohort of 38 patients with NAA15 
variants from 33 families, common features included variable developmental delay, autism 

spectrum disorder or behavior abnormalities, muscular hypotonia, congenital cardiac 

defects, and skeletal or connective tissue abnormalities (Cheng et al., 2018, 2020). Notably, 

NAA10- and NAA15-related disorders have much phenotypic overlap, including variable 

ID, motor impairment, behavior abnormalities, and skeletal anomalies. Patients with 

missense variants have also been reported. These variants have been shown to affect either 
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stability or activity of the NatA complex (Cheng et al., 2018). However, the clinical 

spectrum of NAA15-related syndrome is less well-delineated than that of NAA10-related 

syndrome and less is known about the cardiac phenotype. Herein, we present the first two 

patients with NAA15-related disorder who presented with pediatric HCM, providing 

evidence that variants in NAA15 are associated with pediatric HCM.

2 | METHODS

Clinical trio exome sequencing for Patient 1 was performed at the Division of 

GenomicDiagnostics at Children’s Hospital of Philadelphia via methods previously 

described (Gibson et al., 2018). Clinical trio exome sequencing for Patient 2 was performed 

at GeneDx. Informed consent for publication of this information was obtainedfrom both 

families. Literature review using terms “NAA10”and “NAA15” was performed and three 

articles describingclinical information or clinical reports of patients with NAA15-related 

disorder were identified.

3 | RESULTS

Three publications were identified which reported clinical information for 38 individuals 

with NAA15-related disorder. Phenotypic findings are summarized in Table 1. The most 

commonly reported features include: intellectual disability, speech and motor delays, 

behavior issues, and mild dysmorphic features.

4 | CASE REPORTS

4.1 | Patient 1

Patient 1 initially presented to medical attention at 2 months of age with tachypnea and 

tachycardia. He was the product of a naturally conceived, uncomplicated pregnancy to a 38 

year-old G4P3-P4 mother. He was born at 37 weeks gestation weighing 2.55 kg (z = −1.78) 

and measuring 47.5 cm (z = −2.21) in length. He had no major complications in the neonatal 

period. Echocardiographic evaluation (Figure 1) demonstrated HCM, with features including 

hyperdynamic left ventricle (LV) systolic function, quasi-obliteration of the LV cavity in 

systole, asymmetric septal hypertrophy (9 mm, Z-score + 8) and mild to moderate 

obstructive HCM with peak gradient of 52 mmHg (mean 22 mmHg). There was mild mitral 

regurgitation and mild diastolic dysfunction (by mitral inflow E/e’, an echocardiographic 

measure of diastolic dysfunction focusing on mitral inflow to estimate LV compliance). His 

electrocardiogram (ECG) showed sinus rhythm with a normal QTc and met voltage criteria 

for LV hypertrophy. A comprehensive evaluation for inborn errors of metabolism and 

storage diseases was unremarkable. No family history of cardiomyopathy, arrhythmias, or 

neurodevelopmental disorders was reported. Chromosomal SNP microarray was normal. 

Expedited trio exome sequencing was recommended due to his new diagnosis of infantile 

cardiomyopathy. Clinical trio exome sequencing with confirmed parentality identified a de 

novo, pathogenic variant in NAA15 [NM_057175.3]: c.1009_1012delGAAA, 

p.Glu337Arg*5. No other reportable or clinically significant variants were identified.
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Patient 1 is now 17 months old with a history of severe infantile eczema, chronic 

constipation, lower eyelid entropion, and muscular hypotonia (Table 1). His cardiac function 

and degree of hypertrophy have remained stable on propanolol monotherapy. He has global 

developmental delays, first achieving sitting at 9 months and walking at 17 months. He has 

significant expressive speech delay. Growth paramters at last evaluation were notable for 

height at 77.5 cm (z = −1.45), weight at 10.4 kg (z = −0.30), and head circumference at 47.5 

cm (z = 0.22). Physical examination was notable for epicanthal folds, cupped and prominent 

ears, muscular hypotonia, and dry skin with erythema and excoriation.

4.2 | Patient 2

Patient 2 is an 8-year-old male who presented at 6-years-old to cardiology for evaluation of a 

heart murmur identified at a routine pediatrics visit. Echocardiogram was notable for normal 

LV systolic function, trivial LV outflow obstruction (peak 11 mmHg, mean 6 mmHg) 

secondary to a localized septal thickening (10 mm, Z-score + 5) and systolic anterior motion 

of the mitral valve (Figure 1). His ECG showed normal QTc and lateral q waves, suggestive 

of septal hypertrophy. Subsequent evaluations noted persistent focal septal hypertrophy 

(maximally 14 mm, Z-score + 10), consistent with a diagnosis of mild-moderate HCM 

without obstruction. He does not currently require any cardiac medications.

He was the product of an uncomplicated pregnancy to a 31-year-old G1P0-P1 mother. He 

was born at 38 weeks 6 days gestation weighing 2.77 8 kg (z = −1.28) and measuring 46.4 

cm (z = −1.36) in length. He had no major complications in the neonatal period. His medical 

history is notable for muscular hypotonia, amblyopia, recurrent otitis media, unilateral mild-

to-moderate conductive hearing loss, and lateral penile chordee (Table 1). He had global 

developmental delays, with sitting at 7 months, walking at 19 months, and first word at 18 

months. Neuropsychological testing was notable for full scale intellectual quotient (FSIQ) of 

94. He is currently receiving special education services for specific learning disabilities, 

including attention difficulties, deficits in working memory, and fine motor delay. No family 

history of cardiomyopathy, arrhythmia, neurodevelopmental disorders, or congenital 

anomalies was reported. Physical examination at 7 years old was notable for epicanthal 

folds, upslanting palpebral fissures, prominent forehead, depressed nasal bridge with broad 

nasal tip, and bilateral fifth finger clinodactyly of both fingers and toes. Growth was notable 

for height at 122.7 cm (z = −1.29), weight at 24.6 kg (z = −0.56), and head circumference at 

50.5 cm (z = −1.42).

A multi-gene cardiomyopathy panel identified a variant of uncertain significance (VUS) in 

FLNC (NM_001458.5, c. 8019C>G, p. His2673Gln) and a single intronic VUS in GAA 

(NM_000152.5, c. 858 + 4C>G). Chromosomal microarray was normal. Clinical trio exome 

sequencing with confirmed parentality identified a de novo, likely pathogenic variant in 

NAA15 [NM_057175.3]: c.79A>G, p.R27G. No additional reportable or clinically relevant 

variants were identified.

4.3 | Variant interpretation

The de novo variant identified in Patient 1, NAA15 c.1009_1012delGAAA, results in a 

frameshift in the transcript followed by a premature stop codon five amino acids 
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downstream. The variant has been previously reported in two unrelated individuals with 

NAA15-related syndrome who have heterotaxy, congenital heart disease, developmental 

delay, and muscular hypotonia (Cheng et al., 2018; Zaidi et al., 2013). Functional analysis 

has shown almost complete absence of mutant NAA15 mRNA, supporting that this variant 

results in nonsense-medicated delay resulting in loss of function allele (Cheng et al., 2018). 

This variant meets criteria to be classified as pathogenic using American College of Medical 

Genetics criteria PVS1 and PS2 (Richards et al., 2015).

The variant identified in Patient 2, NAA15 c.79A>G, is a de novo missense variant in exon 2 

of 20. It is not present in large population cohorts (Karczewski et al., 2020). In silico 

analyses support a deleterious effect (Choi & Chan, 2015; Ng & Henikoff, 2003; Schwartz 

et al., 2014). Missense variants occur significantly less often than expected per investigation 

of population databses (Karczewski et al., 2020). Other missense variants have been reported 

in NAA15 with variable features ranging from isolated neurodevelopmental disability to 

congenital heart disease (Cheng et al., 2020). This variant meets criteria to be classified as 

likely pathogenic using ACMG criteria PS2-moderate, PM2, PP2, and PP3 (Richards et al., 

2015).

5 | DISCUSSION

Both patients reported here presented for genetics evaluation due to hypertrophic 

cardiomyopathy and were subsequently identified to have likely pathogenic or pathogenic de 

novo variants in NAA15. They also other common features of the disorder, including 

muscular hypotonia, developmental delays, mild dysmorphic features, and ophthalmologic 

findings. Similar to several patients with missense variants in NAA15, Patient 2 has a history 

of mild developmental delay and specific learning disabilities, but relatively preserved 

intellectual functioning on neuropsychological testing (Cheng et al., 2018). A review of 

previously reported patients with NAA15-related disorder, as summarized in Table 1, noted 

one patient with a history of cardiac arrhythmias and no other patients with HCM (Cheng et 

al., 2018, 2020). Other rare findings in our patients include lower eyelid ectropion, refractive 

errors, and conductive hearing loss. Reassuringly, both patients have had relatively stable 

cardiac function since diagnosis; however, it is too early to predict the clinical course of 

NAA15-related HCM.

Given the functional relationship between NAA10 and NAA15 and previous reports of HCM 

due to NAA10 variants, it is logical that pathologic variants in NAA15 could also lead to 

HCM. It is possible that NAA10 and NAA15 are more frequently responsible for genetic 

predisposition to HCM than was previously recognized, due in part to the variability of 

manifestations and to relatively mild intellectual impairments, which may not prompt a 

clinical genetics evaluation.

Further identification of patients with NAA15-related syndrome is needed in order to fully 

delineate the phenotypic spectrum of this diagnosis, including the proportion of patients with 

HCM. Early identification of HCM is key for management and treatment of the disease. 

Given the variable age of onset seen in our two patients, and the variable age of onset of 

HCM as a whole, it is critically important that clinicians are aware of the risk for HCM in 
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NAA15-related syndrome and provide appropriate cardiac surveillance over the lifespan. In 

conclusion, NAA15-related syndrome should be considered as a differential diagnosis for 

any pediatric patient presenting with HCM and developmental delay.
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FIGURE 1. 
Representative cardiac testing from NAA15 patients. Echocardiographic images from 

Patient 1 (a-b) at diagnosis at 2 months and Patient 2 (c-d) at age 7 years. (a) Apical five-

chamber image demonstrating asymmetrical septal hypertrophy measuring 9 mm in end-

diastole (z score + 8). In supplemental video, there is hyperdynamic LV systolic function 

with near-complete cavitary obliteration in systole. With color Doppler (not shown), there is 

mild mitral regurgitation, no aortic insufficiency and flow acceleration beginning in the mid-

LV cavity (peak 52/mean 22 mmHg). There is mild diastolic dysfunction by mitral inflow 

E/e’ (echocardiographic measure of diastolic dysfunction focusing on mitral inflow to 

estimate LV compliance, data not shown). (b) Parasternal long axis image in end-diastole re-

demonstrating moderate asymmetric septal hypertrophy. (c) Apical five-chamber 

demonstrating a focal area of septal hypertrophy measuring 10 mm (z score + 5). In 

supplemental videos, there is normal LV systolic shortening. With color Doppler, there is no 

mitral or aortic regurgitation, and minimal flow acceleration beginning at the area of septal 

hypertrophy (peak 11/mean 6 mmHg). (d) Parasternal long axis images in end-diastole with 

septal hypertrophy. There is systolic anterior motion of the mitral valve in the supplemental 

video. (e) Parasternal short axis demonstrates otherwise-normal appearing LV cavity. (f) 
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EKG from Patient 1 is normal sinus rhythm with left ventricular hypertrophy and reciprocal 

ST segment changes. (h), EKG from Patient 2 with normal sinus rhythm and mid-precordial 

q waves suggestive of septal hypertrophy [Color figure can be viewed at 

wileyonlinelibrary.com]
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TABLE 1

Summary of clinical features of NAA15-related disorder

 Patient #1  Patient #2

 NAA15 variant c.1009_1012delGAAA c.79A > G

 Transcript NM_057175.4 NM_057175.3

 AA change p.Glu337fs p.Arg27Gly

 Inheritance de novo de novo

 Classification Pathogenic Likely pathogenic

 Publication Not previously published Not previously 
published

Cheng et 
al. 2018

Cheng et 
al. 2020

Total Percent

 Brain structure/function

 Intellectual disability Too young Mild 23/23 4/6 28/30 93.3

 ASD/ADHD/behavior
issues

Too young + 30/33 4/6 35/40 87.5

 Abnormal brain MRI Not done Not done 2/11 1/3 3/14 21.4

 Speech delay + + 32/33 3/5 37/40 92.5

 Seizures − − 6/26 4/5 10/33 30.3

 Motor impairment

 Motor delay + + 31/32 3/5 36/39 92.3

 Muscular Hypotonia + + 7/18 0/4 9/24 37.5

 Feeding difficulties + − 8/14 0/3 9/19 47.4

 Cardiovascular

 Congenital cardiac defects − − 4/19 1/4 5/23 21.7

 Major vessel anomalies − − 2/19 Unk 2/19 10.5

 Arrhythmias − − 1/19 Unk 1/19 5.3

 Hypertension − − 1/19 Unk 1/19 5.3

 HCM + + 0/19 0/6 2/27 7.4

 Other

 Mild dysmorphic features + + 18/28 4/5 24/35 68.6

 Skeletal or connective tissue 
defects

+ + 8/20 1/4 11/26 42.3

 Ophthalmologic +, entropion with corneal 
irritation; hyperopia

+, amblyopia 2/28 3/6 7/36 19.4

 ENT Bilateral hearing loss Mild to moderate 
conductive hearing 
loss; chronic OM

0/32 0/6 2/40 5.0

Abbreviations: +, positive/present; −, negative/absent; AA, amino acid; ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum 
disorder; ENT, otolaryngology; HCM, hypertrophic cardiomyopathy; MRI, magnetic resonance imaging; OM, otitis media; unk, unknown.

Am J Med Genet A. Author manuscript; available in PMC 2022 January 01.


	Abstract
	INTRODUCTION
	METHODS
	RESULTS
	CASE REPORTS
	Patient 1
	Patient 2
	Variant interpretation

	DISCUSSION
	References
	FIGURE 1
	TABLE 1

