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Abstract

Recent advances in pseudouridine detection reveal a complex pseudouridine landscape that 

includes messenger RNA and diverse classes of non-coding RNA in human cells. The known 

molecular functions of pseudouridine, which include stabilizing RNA conformations and 

destabilizing interactions with varied RNA-binding proteins, suggest that RNA pseudouridylation 

could have widespread effects on RNA metabolism and gene expression. Here, we emphasize how 

much remains to be learned about the RNA targets of human pseudouridine synthases, their basis 

for recognizing distinct RNA sequences, and the mechanisms responsible for regulated RNA 

pseudouridylation. We also examine roles of non-coding RNA pseudouridylation in splicing and 

translation and point out potential effects of mRNA pseudouridylation on protein production 

including in the context of therapeutic mRNAs.
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1. INTRODUCTION

Pseudouridine (Ψ) is an abundant RNA modification found in all domains of life 1–3. Like 

other modifications – and there are 172 different modified nucleosides identified to date4 – 

Ψ has distinct chemical properties that affect the structure of pseudouridylated RNA 

molecules 5–10. and their interactions with protein and other RNAs11–15. Study of Ψ is 

experiencing a rapid expansion since the identification of many new Ψ sites in ncRNAs and 

the discovery of the presence of Ψ in yeast and human mRNAs by high-throughput 

sequencing approaches16–19.

The biochemical roles of Ψ have been intensely investigated in a few cases and found to 

affect the function of tRNA and rRNA in translation20–22 and the function of snRNA in 
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splicing 23,24. However, it is currently difficult to predict the function of any individual Ψ. 

Genetic manipulation of pseudouridine synthases (PUS) impacts RNA metabolism and leads 

to cellular phenotypes 17,25,26, but whether and which Ψ mediate these effects are not well 

understood. The functions of endogenous Ψ in mRNA remain to be discovered. However, 

the striking effects of artificial RNA pseudouridylation on translation 27–29, mRNA 

processing 14 and innate immune sensing30–32 demonstrate the potential for individual Ψ to 

broadly affect human gene expression.

In this review, we describe current knowledge of Ψ locations, production, and function in 

human RNAs. We begin by reviewing the methods that have revealed a more extensive Ψ 
landscape than previously known. Next, we summarize the confirmed and suspected RNA 

targets of the 13 human PUS proteins, the mechanisms that confer their substrate specificity, 

and the evidence that RNA pseudouridylation is regulated. Finally, we move from the 

established biochemical effects of Ψ on RNA structure and RNA-protein interactions to 

speculate about the probable effects of Ψ in mRNA, with implications for mRNA 

therapeutics.

2. PSEUDOURIDINE DETECTION AND DISTRIBUTION

Bulk nucleoside fractionation by HPLC and detection by UV monitoring originally revealed 

Ψ as a very abundant component of yeast total RNA, “the fifth nucleoside” 33,34. Today, two 

approaches dominate the study of the abundance and locations of Ψ: mass spectrometry on 

purified RNA35,36 and high-throughput sequencing of transcriptomes17,18,37,38. As a result, 

Ψ has been mapped in most classes of RNA found in human cells including abundant non-

coding RNAs such as tRNA, rRNA, snRNA, and snoRNA, as well as less abundant lncRNA 

and protein-coding mRNA.

2.1 High-throughput sequencing-based methods to identify pseudouridine locations

A breakthrough in the study of Ψ came in 1993 with the development of a method to map Ψ 
sites using primer extension 39. Bakin and Ofengand showed that the stable adducts formed 

between Ψ and N-cyclohexyl-N’-β-(4-methylmorpholinium) ethylcarbodiimide p-tosylate 

(CMCT) block reverse transcriptase, producing truncated cDNA that could be sequenced to 

reveal the Ψ location with single-nucleotide resolution39,40. Three groups adapted this 

strategy to the Illumina sequencing platform to produce transcriptome-wide maps of Ψ 
17,37,38, including in human mRNA17,37. A fourth synthesized a modified carbodiimide to 

permit chemical coupling of biotin to Ψ residues to enrich Ψ-containing RNA fragments for 

sequencing 18.

RBS-seq uses a distinct chemistry 41 to detect pseudouridines, in addition to other modified 

nucleosides 19. An advantage of this approach, which detects Ψ as 1–2nt deletions in cDNA 

synthesized from bisulfite-treated RNA, is that it allows targeted sequencing to increase 

coverage of RNA sites of interest, such as validating mRNA Ψ sites from lowly expressed 

genes in Hela 37 and HEK293 17,18 cells. These sequencing-based methods differ in subtle 

but nevertheless important ways. Biotinylation and enrichment of Ψ-containing RNA 

fragments before sequencing should give the most comprehensive detection of Ψ sites from 

the fewest sequencing reads 18, but has the potential disadvantage of detecting very low 
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stoichiometry Ψ sites of uncertain biological significance. In contrast, transcriptome-wide 

RBS-seq detects mainly high-stoichiometry Ψ sites unless in very highly expressed genes19. 

A recent adaptation of CMC-dependent Ψ mapping offers targeted RNA Ψ quantitation and 

revealed Ψ stoichiometries ranging from ~30–80% in low-abundance human mRNAs42.

2.2 Mass spectrometry-based methods to map and quantify pseudouridine

Mass spectrometry is increasingly used to quantify the abundance of modified nucleosides in 

RNA43–45 and reveal regulation of RNA modification across tissues 46 and in response to 

environmental perturbations47. Analysis of RNA modifications by mass spectrometry 

usually targets purified RNA species. Ψ poses special challenges because it has the same 

mass as U. Ψ is only detectable by characteristic ions produced during fragmentation35,36. 

Direct sequencing by mass spectrometry produced a complete map of Ψ in human snRNAs 

from 293T cells 48 and determined absolute Ψ levels for human ribosomal RNA from TK6 

cells 49.

Mass spectrometry has been used to analyze bulk mRNA Ψ content, revealing that Ψ is 

present at ~0.2–0.6% of total U in mRNA from human HEK293T cells18. This global 

abundance is on par with the abundance of m6A50. Because Ψ is abundant in rRNA, which 

is a typical contaminant of poly(A)-selected mRNA, special care must be taken to obtain 

pure mRNA for analysis (e.g. multiple rounds of selection for poly(A), size selection to 

exclude tRNA, and depletion of rRNA). Furthermore, rRNA contamination varies between 

experiments, which is evident from differences in rRNA reads in RNA-seq datasets. 

Therefore, the best assurance that apparent changes in bulk mRNA pseudouridylation 18 

actually reflect regulated modification of mRNA is to perform RNA-seq on the sample 

subjected to analysis by mass spectrometry51.

2.2 Distribution of pseudouridine in mammalian RNAs

2.2.1 tRNA Ψ sites—Data for tRNAs are limited in most RNA sequencing studies, 

including pseudouridine profiling 17,18,37,38,41, due to problems synthesizing cDNA from 

these heavily modified RNAs. Pretreatment of RNA with demethylases improves tRNA 

coverage 52,53 and was recently combined with CMC-based pseudouridine profiling to 

produce a nearly comprehensive map of Ψ in human tRNAs from HEK293 cells 54, 

excluding positions close to the 3′ ends, which could not be mapped. Most Ψ were found at 

one of 17 positions that were previously known to be modified in human cytosolic tRNAs 
4,55, with Ψ55 in the TΨC loop as the most frequently occurring, followed by positions on 

either side of the anticodon stem-loop, Ψ27, Ψ28, Ψ38 and Ψ39 54. Several novel positions 

were reported (Figure 2), as well as new information about known positions in many tRNA 

isodecoders, tRNAs with the same anti-codon but different sequences for the tRNA body.

2.2.2 rRNA Ψ sites—Human ribosomes include 104 Ψ that have been experimentally 

validated by mass spectrometry in human TK6 cells 49, the majority of which were 

previously identified by primer extension and pseudouridine profiling 17,37,56. These 

pseudouridines occur at positions predicted to base-pair with H/ACA snoRNA guide 

sequences57. Approximately half of human Ψ sites are conserved from budding yeast and all 

are located within conserved functional domains 49,58,59.
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2.2.3 snRNA Ψ sites—The mammalian U1, U2, U4, U5 and U6 snRNAs contain a 

combined 27 Ψ 48,60,61 (Table 1). U2 snRNA is the most highly modified with 14 reported 

Ψ, of which three are conserved across species (Ψ34, Ψ41 and Ψ43 in the branch site 

recognition region in vertebrates; Ψ35, Ψ42 and Ψ44 in the corresponding positions in 

budding yeast). U1 snRNA has two conserved Ψ at the 5′ end (Ψ5 and Ψ6) and U5 has one 

(Ψ46). Additional Ψ in human U4, U5 and U6 snRNAs have not been reported in budding 

yeast.

2.2.4 mRNA Ψ sites—Several groups discovered widespread pseudouridylation of 

mRNAs and mapped their locations in human cells using transcriptome-wide pseudouridine 

profiling methods 17–19,37. Pseudouridines are present throughout mRNAs including in 5′-

UTR, 3′-UTR and coding sequences with no enrichment in any particular region. 

Differences in mRNA sites reported by different groups have been noted19,62. Technical 

differences in sequencing-based approaches for modification detection could result in 

capture biases, which might explain some of these differences. Cell type-specific differences 

in mRNA abundance are likely the major contributor to observed differences in Ψ 
identification because current methods are limited to the most highly expressed genes. We 

have also identified instances of cell type specific mRNA Ψ in mRNAs expressed at 

sufficient levels for site calling in different human cell lines (Unpublished), consistent with 

regulation of mRNA pseudouridylation.

3. ENZYMES THAT CATALYZE RNA PSEUDOURIDYLATION

Pseudouridylation is carried out by a class of proteins called pseudouridine synthases (PUS). 

Here we focus on the 13 pseudouridine synthases found in humans and provide context from 

the more extensive literature on their E. coli and yeast counterparts (reviewed in63,64).

3.1 PUS protein domains

PUS proteins are classified into 6 families. The RluA, RsuA, TruA, TruB, and TruD families 

are named for their E. coli counterparts, while the PUS10 family is unique to some archaea 

and eukaryotes (Figure 3). All PUS carry a common 8-stranded beta sheet catalytic fold and 

rely on a spatially conserved aspartate for catalysis despite sharing little primary sequence 

similarity 64. Comparing the available structures of 5 human PUS (RPUSD1 5VBB; 

RPUSD4 5UBA; PUS1 4J37; PUS7 5KKP; PUS10 2V9K) to their E. coli counterparts 

reveals conservation of the core catalytic domain. However, human PUS proteins typically 

carry auxiliary domains not present in their E. coli counterparts, which may contribute to 

specific substrate recognition. For example, PUS10 carries an N-terminal THUMP domain, 

which is thought to be involved in binding tRNA substrates 65. Human PUS1 carries a C-

terminal extension comprised of three alpha helices that preclude the tRNA binding mode 

employed by bacterial TruA66 and may constrain the RNA targets to be flexible as shown for 

yeast Pus167.

Flanking the catalytic cleft, PUS proteins are typically decorated with a series of alpha 

helices and loops. Two of these features, termed “forefinger” and “thumb” based on 

structures of E.coli PUS proteins complexed with target RNA, dock into the grooves of the 

target RNA stem, effectively “pinching it” 64–66,68.
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3.2 Catalytic mechanism

The isomerization of uridine to pseudouridine requires cleavage of the glycosidic bond 

between N1 and C1′, rotation of the base, and subsequent reattachment of the base to the 

ribose via C5 (Figure 1). PUS proteins are reliant on a highly conserved catalytic aspartate 

for this reaction, and mutation of this aspartate abolishes pseudouridylation activity. 

Proposed reaction mechanisms suggest aspartate acts as a nucleophile to achieve catalysis 
69–71, but uncertainties remain (reviewed in2).

Besides the catalytic aspartate, other amino acids within the catalytic cleft are well 

conserved within PUS families. Typically, there are five conserved amino acids within PUS 

protein active sites: the catalytic aspartate, a salt bridge partner for the catalytic aspartate, an 

aromatic amino acid to stack with the target uridine, a hydrophobic residue, and another 

residue providing nucleotide stacking interactions. Further, most PUS proteins also rely on 

an active site residue to facilitate base-flipping. While the exact identity of each of these 

amino acids, as well as other residues in the cleft may vary between families, their functions 

are often similar.

Studies of E. coli PUS structure indicate a base-flipping mechanism to bring the target 

uridine residue into the catalytic pocket, though the amino acid used to achieve this flipping 

differs between PUS families 66,68,72,73. In E. coli PUS this residue is often critical, and 

mutation leads to loss of pseudouridylation activity despite retaining the ability to bind to 

target RNAs 68,73.

However, mutation of the residue responsible for base flipping in hPUS1 has different 

effects based on the substrate tested and the amino acid used for replacement 74. One of the 

disruptive mutations is causative for Mitochondrial Myopathy and Sideroblastic Anemia 

(MLASA), and changes the arginine involved in base flipping to tryptophan 75. The mutant 

PUS1 produced is inactive and the tryptophan replacing the arginine was hypothesized to 

sterically block the enzyme active site and not be able to intercalate into the substrate stem 
74–76.

3.3 RPUSD3 lacks catalytic aspartate

RluA PUS family members are characterized by a conserved HRLD motif (Figure 4a). This 

motif contains the catalytic aspartate residue, as well as an arginine, which in RluA 

facilitates the flipping-out of the target uridine into the catalytic pocket 68. Alignment of the 

human RluA family members reveals a less conserved HRLD motif, with only RPUSD2 and 

RPUSD4 making a direct match. RPUSD1 is a near match, employing the residues HQLD, 

while RPUSD3 is highly divergent having the residues RASG. Most notably, RPUSD3 

carries a glycine at the conserved position for the catalytic aspartate indicating that RPUSD3 

is not an active PUS protein (Figure 4).

3.4 Classes of RNA targeted by PUS

Most of the RNA targets of human PUS remain to be discovered and may include all classes 

of non-coding RNA as well as mRNA. Some tRNA targets of human PUS can be predicted 

based on homology to yeast PUS with known target sites (Figure 2). Several stand-alone 
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PUS have been shown to modify human mRNA sequences including PUS1 18,67, PUS7 
62,67, TRUB162,67, TRUB2 62,67and RPUSD2 67. The RNA-guided PUS, DKC1, targets 

snRNA and rRNA sites3. DKC1 is not known to have mRNA targets, but Ψ can be detected 

at computationally predicted target sites in human mRNA (unpublished) as shown in 

budding yeast 37. Localization of PUS proteins affects their access to potential RNA targets. 

For example, alternative isoforms of PUS1 localize to the nucleus and mitochondria where 

they modify distinct tRNA pools 77. PUSL1, TRUB2, RPUSD3 and RPUSD4 have been 

detected in mitochondria 78–81, and PUS1, PUS7, TRUB1 and RPUSD4 have been shown to 

at least partially localize to the nucleus 62,77,82,83. PUS10 is predominantly nuclear at 

steady-state and re-localizes to mitochondria in response to apoptotic signals 84.

4. SPECIFICITY OF RNA PSEUDOURIDYLATION

4.1 Stand-alone PUS targets and recognition

Of the 13 human PUS proteins, 12 are considered “stand-alone” pseudouridine synthases, 

meaning they recognize their targets without the use of accessory RNAs. With high-

throughput assignment of Ψ sites to specific PUS proteins, it is becoming clear that various 

PUS proteins rely on specific sequence and/or structural features to recognize their targets 
62,67. For example, human TRUB1 recognizes pseudouridines within the context of a 

GUUCNANYC sequence motif occurring in a stem loop structure that resembles canonical 

TRUB family tRNA substrate 62,67. Human PUS7, on the other hand, recognizes targets with 

a UNUAR motif 62,67. This motif is not sufficient to direct pseudouridylation by PUS7 as 

the majority of motifs are not detectably pseudouridylated in human cells17,18,37. RNA 

structural features, as yet to be defined, are likely to be important for human PUS7 as they 

are for yeast PUS785 and yeast PUS167. Both the TRUB1 and PUS7 motifs resemble motifs 

previously defined in yeast, and yeast Pus4 was capable of modifying many targets of 

human TRUB1 67. This finding is consistent with conservation of target features among 

evolutionary related PUS proteins.

Higher eukaryotes including humans have expanded PUS families that could support 

pseudouridylation of more diverse RNA targets. PUS1 has a paralog PUSL1 that is predicted 

to be catalytically active but is not redundant with PUS1 for mRNA pseudouridylation in 

human HEK293T cells18. Likewise, depletion of TRUB1 eliminates pseudouridylation of 

mRNA targets in cells that express its paralog TRUB262. Consistent with this lack of 

redundancy in cells, TRUB1 and TRUB2 modify distinct sets of mRNA targets in vitro67. 

Nothing is known about the targets of human PUS7L, which is also predicted to be an active 

PUS. Finally, the human RPUSD family includes four proteins of which three contain the 

residues needed for catalytic activity (Figure 4).

4.2 RNA-guided pseudouridylation of rRNAs and snRNAs by H/ACA snoRNPs

The catalytic subunit of the snoRNPs, DKC1, is guided by base pairing interactions between 

box H/ACA snoRNAs and the target RNA, which provide the specificity for 

pseudouridylation of the substrate (reviewed in3). The conserved snoRNP complex contains 

DKC1, GAR1, NHP2, NOP10 and the guide RNA. Box H/ACA snoRNAs typically consist 

of two hairpins that contain an internal pseudouridylation pocket where the RNA target site 
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is converted to Ψ and two conserved sequence elements, the H and ACA motifs, that recruit 

the protein components. H/ACA snoRNPs target pseudouridylation of nascent rRNA in the 

nucleolus (reviewed in58).

A subset of box H/ACA snoRNAs called small Cajal body specific RNAs (scaRNAs) are 

predicted to guide pseudouridylation of the snRNAs based on sequence complementarity 
56,86–89. (Table 1). This hypothesis is further supported by experiments showing that 

pseudouridylation of many snRNAs sites in human cell extracts is dependent on RNA 
86,90,91 and that snoRNAs predicted to modify particular snRNAs specifically interact with 

the target snRNA in cells92 (Table 1). Only one human scaRNA (SCARNA10) has been 

experimentally verified to direct pseudouridylation of its computationally predicted target, 

Ψ46 in human U5 snRNA 86. Some snRNA Ψ lack a predicted guide snoRNA and might be 

modified by stand-alone PUS. Indeed, both RNA-dependent and independent mechanisms 

mediate snRNA pseudouridylation in budding yeast. The stand-alone PUS, Pus1 and Pus7, 

pseudouridylate yeast U2 snRNA at two positions93,94. Pseudouridylation of these sites is 

not lost in mammalian cells lacking PUS1 and PUS7 activity showing that distinct 

mechanisms modify conserved sites in different organisms 95,96. Micrococcal nuclease 

sensitivity of pseudouridylation in vitro indicates that some currently unassigned snRNA Ψ 
are targeted by RNA guides (Table 1). Recent studies have revealed that fewer base pairs (6–

8) than the canonical (>10) base pairs and more mismatches are tolerated for 

pseudouridylation 97,98. Therefore, some of the orphan snoRNAs or snoRNAs that target 

other positions might target these sites.

Cajal bodies (CBs) are sites of snRNP maturation and assembly where snRNA 

pseudouridylation may occur99. The scaRNAs that are predicted to guide snRNA 

modifications are enriched in CB due to a CB retention signal 100 and a protein anchor 101. 

A mutation in U2 snRNA that accumulates in the cytoplasm, preventing re-entry of U2 

snRNA into Cajal bodies, is deficient in pseudouridylation 88. There is still uncertainty as to 

where in the cell U6 snRNA is pseudouridylated101,102. Furthermore, snRNAs are still 

pseudouridylated in cells lacking canonical Cajal bodies (e.g. cells lacking coilin) suggesting 

CBs aren’t strictly required for snRNA pseudouridylation 61,88,103, although residual Cajal-

like bodies remain in cells lacking coilin and might still function as sites for 

pseudouridylation. Further studies are necessary to determine which snoRNAs 

pseudouridylate what positions in the snRNAs and where pseudouridylation of each snRNA 

takes place.

5. REGULATION OF RNA PSEUDOURIDYLATION

5.1 Regulation of pseudouridines in ncRNA

The Ψ content of mammalian (pork and mouse) tRNA differs between tissues46, suggesting 

that tRNA pseudouridylation could be regulated in human cells. The complete tRNA Ψ 
landscape has been determined in only one human cell line26. Thus, it is an open question 

whether tRNA Ψ are regulated in humans, and if so, at which sites. Quantitative mass 

spectrometry identified positions with sub-stoichiometric Ψ in the human 80S ribosome49, 

raising the possibility that these sites could be increased under some conditions. Consistent 

with this possibility, inhibition of the mammalian Target of Rapamycin (mTOR) slightly 
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increased bulk Ψ levels in rRNA from mammalian (CHO) cells at sites that remain to be 

determined104. It is unclear whether Ψ sites in the human snRNAs are fully modified and 

whether the stoichiometry or the locations of Ψ vary across cell types or other conditions, as 

demonstrated in budding yeast. Notably, pseudouridines in yeast U2 and U6 snRNAs that 

are induced during different stresses affect both splicing and organismal growth 105–107.

5.2 Regulation of pseudouridines in mRNA

An exciting possibility is that regulated mRNA pseudouridylation controls mRNA 

metabolism in response to changing cellular conditions. Stress conditions induce changes in 

the expression of PUS proteins and/or the pseudouridine landscape in yeast and human cells. 

For example, serum starvation results in differential mRNA pseudouridylation in HeLa 

cells37 and treatment with H2O2 alters mRNA Ψ in HEK293T cells 18. Heat shock causes 

re-localization of yeast Pus7 from the nucleus to the cytoplasm and results in 

pseudouridylation of new targets in the cytoplasm17. Nutrient deprivation in yeast induces 

changes in mRNA pseudouridylation by multiple PUS37 through mechanisms that may 

involve changes in mRNA structure67.

Sequences that are non-optimal targets for a given PUS are likely to be sensitive to changes 

in PUS expression. For example, non-optimal targets of human TRUB1, which show low 

levels of pseudouridylation with normal levels of TRUB1 expression, show the greatest 

increase in pseudouridylation levels upon overexpression of TRUB1 62. Tissue and cell type 

specific expression of the 13 human PUS provide a mechanism for regulated cell type 

specific pseudouridylation (Figure 5) and may contribute to differences in mRNA 

pseudouridines detected in different cell types 17–19,37. The extent of tissue-specific and cell 

type specific mRNA pseudouridylation in human cells is currently unclear since most 

pseudouridine profiling has been limited to interrogation of highly expressed genes.

6. EFFECTS OF PSEUDOURIDINE ON RNA STRUCTURE AND FUNCTION

6.1 RNA structure

The conservation of Ψ in structured non-coding RNA likely reflects effects of Ψ on RNA 

conformation, thermodynamic stability and structural dynamics. Ψ forms Watson-Crick base 

pairs with A that have similar geometry but greater thermodynamic stability than U-A 

pairs5,6. Ψ also stabilizes single stranded RNA conformations in solution in addition to 

enhancing the formation of RNA duplexes7. These effects of Ψ are due to its preference for 

the C3′-endo sugar conformation and enhanced base stacking5–7. In addition, water bridges 

between adjacent nucleosides and the H1N that distinguishes Ψ from U have been 

visualized in crystal structures of tRNA8 and modeled in molecular dynamics simulations5. 

Such water bridges may increase the rigidity of RNA backbones containing Ψ.

The functional consequences of changing a U to a Ψ are frequently summarized as 

‘stabilizing RNA structure’ 2,3,108. Although true, this simplification obscures context-

dependent differences, which are large enough to have biological significance. Systematic 

comparison of RNA duplexes containing all 8 possible NΨ and ΨN neighbors with the 

corresponding NU and UN sequences measured sequence context differences in the 
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stabilizing effect of Ψ versus U of >1 kcal/mol9. Sequence context also affects the stacking 

potential of Ψ in single-stranded RNA 5. In addition to these differences that depend on 

local sequence context, the net effect of Ψ on RNA structure depends on the folding 

potential of the surrounding sequence and the position of the Ψ. For example, positioning a 

Ψ within the loop region can antagonize hairpin formation 10. This is likely due to the 

ability of Ψ to stabilize the A-form helical conformation of single-stranded RNA7, which 

would increase the energetic cost of loop closure thereby favoring the extended RNA 

conformation.

The biological effects of Ψ must originate in chemical differences between U and Ψ, which 

primarily affect RNA backbone conformation and the stability of base pairs. Because Ψ can 

form stable pairs with G, C and U in addition to A, it has been proposed as a “universal” 

base pairing partner6. Despite intensive study of the structural effects of Ψ on short, 

synthetic RNA oligos, it is currently impossible to predict the structural outcome of site-

specific RNA pseudouridylation in longer RNAs. The systematic investigation of sequence-

context effects on the stability of Ψ-containing duplexes is an important step towards 

accurate predictions9. It will be important to determine the structural consequences of RNA 

pseudouridylation in cells, which is possible using improved methods to probe RNA 

structure in vivo (reviewed in109).

6.2 Effects of pseudouridine on interactions with RNA-binding proteins

Pseudouridine alters RNA-protein interactions for several RNA binding proteins that 

regulate nuclear RNA processing, cytoplasmic RNA localization and/or stability. The 

cytoplasmic RNA-binding protein PUM2 recognizes an RNA sequence motif (UGUAR) that 

is frequently pseudouridylated in human cells, likely by PUS717,37,62,67. Incorporation of Ψ 
into this motif (UNΨAR) reduced the affinity of PUM2 binding by ~3-fold in vitro11. 

Similarly, substitution of uridines with Ψ within CUG repeats, which are associated with 

myotonic dystrophy type 1, reduced binding of the splicing factor MBNL1 by ~4–20 fold in 
vitro 12,13. Artificial pseudouridylation of a single position in a polypyrimidine tract strongly 

inhibited binding of the splicing factor U2AF2 14. In an another example, artificial 

pseudouridylation of an individual position in the Sm binding site of U7 snRNA inhibited 

snRNP assembly by 2-fold in xenopus oocytes 15. Inhibition of U2AF binding and U7 

snRNP assembly by Ψ were both attributed to the known effects of Ψ on RNA backbone 

conformation. Consistent with this interpretation, incorporation of a locked nucleic acid also 

inhibited binding of U2AF214. Likewise, substitution with 5′FU, which also favors the C3′-

endo conformation and rigidifies the RNA backbone, inhibited snRNP assembly. These 

examples show that diverse RNA-binding proteins are sensitive to pseudouridylation of their 

target RNAs. Given the preference of RNA-recognition motifs (RRMs) for nucleotides in the 

C2′-endo conformation at the binding interface110, Ψ may broadly antagonize RBP binding 

by favoring the C3′-endo conformation. However, the observed effects of Ψ on RBP 

binding depend on sequence context and position relative to the binding motif, by 

mechanisms that remain to be explained.

Pseudouridines might also affect RBP binding indirectly by modulating RNA structure. As 

an example, binding of the yeast RNA helicase Prp5 to the branch site stem loop in the U2 
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snRNA was stabilized in the presence of the two Ψ that are endogenously found in this 

region 111. Structure probing revealed that these Ψ stabilized the stem structure suggesting 

that the effects on protein binding were indirectly mediated by changes in RNA secondary 

structure 111. It will be interesting to see how binding of particular RBPs in specific contexts 

is affected by RNA pseudouridylation in vivo. This could be achieved by combining 

transcriptome-wide Ψ and RBP-binding profiles with genetic manipulation of PUS proteins 

to identify Ψ-sensitive binding sites in cells.

6.3 Non-catalytic functions of PUS proteins

Some functions of PUS are independent of their pseudouridine synthase activity. For 

example, bacterial TruB acts as a tRNA folding chaperone independent of catalysis and this 

activity is important for bacterial fitness 112. Depletion of human PUS10 leads to a defect in 

miRNA precursor processing that can be rescued by catalytic null PUS10 54. PUS10 

interacts with pri-miRNAs and the microprocessor complex suggesting a direct mechanism 

for this non-catalytic function in miRNA biogenesis. Depletion of human RPUSD3 results in 

decreased 16S rRNA levels and a reduction in mitochondrial translation 78,79. The 

mechanism is unknown and unlikely to be downstream of changes in RNA 

pseudouridylation because RPUSD3 lacks the conserved aspartate required for PUS catalytic 

activity (Figure 4). These examples highlight the possibility of additional non-catalytic 

functions of PUS proteins in RNA metabolism.

7. BIOLOGICAL FUNCTIONS OF PSEUDOURIDINE IN STABLE NON-

CODING RNA

7.1 tRNA

A general function of pseudouridine in tRNA is to stabilize the folded structure that is 

required for tRNAs to function in translation (reviewed in113). For example, the presence of 

a single Ψ at position 39 in the anti-codon stem of tRNA-Lys increases the melting 

temperature by 5°C 114. The fact that microorganisms lacking various tRNA modifying 

pseudouridine synthases are temperature sensitive for growth is consistent with the idea that 

Ψ stabilizes essential tRNA structure. Notably, not all tRNAs are equally sensitive to the 

lack of Ψ at a particular position. A thorough genetic investigation of the roles of yeast 

PUS3, which installs Ψ38 and Ψ39 in at least 19 tRNAs and is required for growth at 

elevated temperatures, made the surprising discovery that over-expression of a single Pus3 

target tRNA, tQ(UUG), was sufficient to rescue growth above 38°C 20. These results provide 

strong genetic evidence that the temperature-sensitive growth defect is due to compromised 

function of a tRNA target.

In principle, tRNA pseudouridylation could affect any aspect of tRNA biogenesis and 

function, including charging by amino acyl tRNA synthetases (aaRS), decoding on the 

ribosome, degradation of the tRNA, or processing to produce tRNA-derived small RNAs 

(tsRNAs). We are not aware of evidence directly demonstrating a role for Ψ versus U in the 

fidelity of tRNA aminoacylation, but changing the nucleotide identity of a normally 

pseudouridylated position, Ψ35, from U to A increased misacylation in vitro115. Unmodified 

tI(UAU) is charged with reduced efficiency compared to the properly modified anticodon, 
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ΨAΨ116. The effects of deleting tRNA modifying PUS on charging in cells have been 

investigated in a few cases with negative results20. Thus, it remains an open question 

whether tRNA pseudouridylation affects the efficiency of aminoacylation, particularly in 

human cells. New sequencing-based methods to determine the fraction of charged tRNA 

species 117 offer a sensitive and quantitative approach to investigate the effects of PUS 

depletion on aminoacylation of specific tRNAs.

Pseudouridines affect the function of certain tRNAs in ribosome binding and decoding. Few 

studies have directly investigated human tRNAs, and the effects of pseudouridine on tRNA 

function may differ between isodecoders as well as between different tRNA families. The 

importance of Ψ for tRNA function varies by tRNA in ways that are currently unpredictable. 

For example, only one of three tested yeast tRNAs required Ψ39 for nonsense suppressor 

tRNA activity, a difference between tRNAs that did not correlate with differences in the 

predicted stabilities of their anticodon stems20. In some cases, the physiological and 

translational consequences of perturbed tRNA pseudouridylation might be compounded by 

coupled defects in additional tRNA modifications, as shown for bacterial tRNAs lacking 

Ψ55 due to inactivation of TruB118.

Data on translation defects caused by lack of tRNA pseudouridines in human cells are 

limited. Knocking out human PUS proteins has been reported to have no effect on global 

protein synthesis in the case of PUS1054, and to actually increase protein synthesis in the 

case of PUS725, the latter by a mechanism involving tRNA fragments (tRF) that is distinct 

from altered decoding by intact tRNAs. Ribosome footprint profiling119 offers a potentially 

powerful approach to identify decoding events that are sensitive to tRNA modifications (see 

for example120). Using this approach, cells lacking PUS10-dependent pseudouridylation 

were observed to have slight changes in codon occupancy by ribosomes, but codons read by 

PUS10 target tRNAs were not preferentially affected54. Similarly, ribosome profiling of 

seven PUS KOs in budding yeast revealed codon-specific changes in ribosome occupancy 

that were not easily explained by the known tRNA targets121. Improved ribosome profiling 

methods that better capture differences in decoding rate122 may reveal stronger correlations 

between loss of pseudouridines in specific tRNAs and slowed translation of cognate codons. 

A complete census of PUS-dependent pseudouridylated sites in human tRNAs will be 

needed to interpret the results of ribosome profiling in PUS KO cells.

The evidence that mammalian tRNA pseudouridines may be regulated to be tissue-specific46 

suggests that pseudouridine could contribute to fine-tuning of tRNA function to correspond 

to the unique translatomes of different cell types. Coordination between mRNA expression 

and adaptive changes in tRNA modifications has been characterized for other modifications 

(reviewed in 123).

7.2 tsRNA

Ψ affects the biogenesis and function of certain tRNA-derived small RNAs that regulate 

translation (translational control by tsRNAs reviewed in124,125). Knocking out PUS7 in 

human embryonic stem cells reduced the levels of specific 5′ tRNA fragments (tRF) shown 

to be pseudouridylated by PUS7 in cells25. Transduction of synthetic Ψ-containing 5′ tRFs, 

but not unmodified tRFs, led to a global reduction in protein synthesis25 by a mechanism 
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that may target the integrity of the cap binding complex, as shown previously for larger 5′ 
tRFs126. Given the diversity of functions ascribed to tsRNAs, and the incomplete 

understanding of their biogenesis and regulation, it is likely that additional pseudouridine 

synthases may affect human gene expression via effects on tsRNAs.

7.3 rRNA

The rRNA modifying pseudouridine synthase DKC1 is an essential gene in human 

cells127,128, which may be due to its conserved role in ribosome biogenesis (reviewed 

in58,129) rather than an absolute requirement for rRNA pseudouridylation. Yeast cells 

expressing catalytically inactive cbf5-D95A, the ortholog of DKC1, lack rRNA Ψ and are 

viable 130. However, ribosomes isolated from these slow-growing mutants show biochemical 

defects in tRNA binding in vitro and altered translation fidelity in vivo 22. Mammalian cells 

deficient in DKC1 likewise show defects in translation initiation and fidelity21,22. The 

mechanisms responsible for specific translation defects is unclear, but may arise from the 

effects of pseudouridines on RNA conformational dynamics, as demonstrated for one 

conserved pseudouridylated rRNA domain, helix 69131–135.

Phenotypes caused by deletion or overexpression of individual H/ACA snoRNAs suggest 

important cellular functions for individual rRNA Ψ in human cells136. For example, 

ribosomes from cells lacking SNORA24, which guides pseudouridylation of two sites in 18S 

rRNA, show altered ribosome dynamics in vitro and translation fidelity defects in vivo137.

7.4 snRNA

Mammalian snRNAs are heavily modified with pseudouridines that are concentrated in 

functionally important regions of RNA-RNA and protein-RNA interactions. Based on the 

known effects of Ψ on RNA structure and RBP binding, these Ψ are predicted to be 

important for multiple steps in pre-mRNA splicing.

7.4.1 U1 snRNA—Ψ5 and Ψ6 in U1 snRNA are within the region that base pairs with 

the pre-mRNA 5′ splice site, where they could stabilize base pairing between U1 snRNA 

and the pre-mRNA and thereby affect 5′ splice site selection and consequently splicing. The 

G-Ψ base pairs between the 5′ end of U1 snRNA and the pre-mRNA are important for 

splice site selection and contribute to U1:5′ splice site stability 138,139. Thermal melting 

experiments demonstrated the strengthened stability of Ψ-containing duplexes with U1 

snRNA in a variety of 5′ splice site contexts 140,141. U1 snRNA Ψ might be particularly 

important to promote interactions with weaker splice sites.

7.4.2 U2 snRNA—Spliceosome assembly and splicing of a pre-mRNA substrate was 

inhibited when U2 snRNA was lacking Ψ6, Ψ7 and Ψ15 in HeLa nuclear extracts. Chimeric 

snRNAs lacking individual Ψ gave reduced splicing efficiency, demonstrating that 

individual U2 snRNA Ψ contribute to pre-mRNA splicing 24.

Although the functions of Ψ in the branch site recognition region (BSRR) of U2 have not 

been interrogated in human cells, these Ψ were required for spliceosome assembly and 

splicing of reporters in Xenopus oocytes 23. Consistent with stimulatory effects of Ψ in the 
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BSRR in Xenopus oocytes, human Ψ35 stabilizes the U2 snRNA-pre-mRNA duplex in vitro 
142. NMR studies revealed that Ψ35 also altered the structure of this duplex; by changing the 

orientation of the branch site adenosine on the opposite strand, Ψ promoted bulging, perhaps 

poising it for more efficient splicing 142 (but see differences dependent on sequence context 
143). In yeast, loss of highly conserved Ψ35, Ψ42 and/or Ψ44 in the BSRR of U2 snRNA 

inhibited splicing and caused temperature sensitive growth 111. Loss of Ψ42 and Ψ44 

reduced the affinity and ATPase activity of Prp5 for U2, which resulted in a decrease in 

spliceosome assembly providing a mechanistic basis for their effects on splicing 111. These 

Ψ alter the RNA secondary structure of the branchpoint-interacting stem loop in the U2 

snRNA, which might facilitate the binding of Prp5 111. Two additional Ψ in human U2 are 

well-positioned to stabilize helix II of the U6/U2 duplex at the core of the spliceosome 
144,145.

7.4.3 U4 snRNA—The functions of constitutive Ψ in human U4 and U6 snRNAs have 

not been investigated, but their positions suggest likely effects on spliceosome assembly and 

activation. Two Ψ in U4 snRNA are in the regions of base pairing between U4 and U6 

snRNA, Ψ4 in stem II and Ψ79 in the human specific stem III respectively. In contrast to 

yeast, where Brr2 is pre-loaded on U4 146–148, stem III occludes the Brrr2 loading sequence 

on human U4 as seen in the human tri-snRNP and pre-B complex cryo-EM structures 149. 

Ψ72 and Ψ79 are within the Brr2 helicase loading sequence which facilitates U4/U6 

unwinding to allow U6 snRNA 150 to base pair with the pre-mRNA substrate 5′ splice site 
144,145. Therefore, Ψ in the U4 snRNA could influence the stability of the U4/U6 duplex and 

consequently affect di-snRNP or tri-snRNP assembly, helix unwinding, or Brr2 helicase 

activity – all of which could impact splicing.

7.4.4 U6 snRNA—Ψ31 in U6 snRNA is also within stem III of the U4/U6 duplex. Ψ40 

is located in the nucleotide 5′ to the ACAGA-box which pairs with the 5′ splice site in pre-

mRNA following unwinding of U4. This Ψ has the potential to affect splicing by 

influencing the stability of the interaction between U6 snRNA and the 5′ splice site of some 

pre-mRNAs. Ψ86 is located within the telestem of the U6 mono-snRNP, which is mutually 

exclusive with the U2/U6 helix II (part of the U2/U6 catalytic interaction network) 151. 

Stabilization of the telestem by Ψ86 may be important for U6 snRNP assembly or U4/U6 

di-snRNP assembly since the factor SART3 binds to the telestem region and promotes 

U4/U6 annealing 151. Within the spliceosome Ψ86 is located at the end of a bulge 

immediately 5′ to the U2/U6 helix II 144,145, where it could play a stabilizing role.

7.4.5 U5 snRNA—U5 Ψ are poised to stabilize U5 secondary structure and base pairing 

with pre-mRNA. The U5 snRNA holds the 5′ exon in place during the first and second steps 

of splicing and contacts the 3′ exon after the first step of splicing by base pairing interaction 

between Loop I in U5 and the pre-mRNA 152. Ψ43 and Ψ46 are within Loop I and Ψ53 is 

within the stem of Loop1, which could enhance internal U5 stem or U5-pre-mRNA pairing. 

Prp8 stabilizes the interactions between Loop I and the 5′ exon 153. Structures of the human 

spliceosome show that Prp8 makes contacts with the backbone phosphates in the U5 loop I 

region (Ψ46) as it base pairs with the 5′ exon 154,155. Given that Ψ rigidify the RNA 

backbone, these Ψ might be important for Prp8 interactions with U5.
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Ψ in the snRNAs are predicted to impact numerous RNA-RNA and RNA-RBP interactions 

during the splicing cycle, but their individual functions have mostly not been interrogated. 

Studies to establish snRNA Ψ function will be greatly facilitated by identification of the 

enzymes/RNA guides that direct pseudouridylation at each position of the human snRNAs. 

Whether human snRNA Ψ affect alternative splicing or splicing efficiency of endogenous 

cellular pre-mRNAs is an open question. These questions could be answered by deleting the 

snoRNAs that target individual Ψ in snRNAs followed by RNA-seq and splicing analysis. 

To investigate the mechanism by which snRNA Ψ affect splicing one could perform 

psoralen crosslinking followed by snRNA-pull down to quantify snRNA-pre-mRNA or 

snRNA/RNA interaction in snoRNA deleted compared to wildtype cells. Similarly, the effect 

of snRNA Ψ on interactions with RNA-binding proteins throughout the splicing cycle could 

be investigated by profiling of RBP binding (e.g. CLIP-seq) in cells lacking individual 

snRNA Ψ.

8. POTENTIAL FUNCTIONS OF PSEUDOURIDINE IN mRNA

8.1 Translation Fidelity

The frequent occurrence of pseudouridines within mRNA 17–19,37 poses an important 

question: how does a ribosome decode a pseudouridylated codon? While the Watson-Crick 

face of the nucleotide is preserved between pseudouridine and uridine, it is clear that 

pseudouridine is not always treated as a uridine by the ribosome. Artificial 

pseudouridylation of stop codons caused >70% stop codon read-through in rabbit 

reticulocyte lysate27, with similarly efficient read-through observed in E.coli lysate29, 

suggesting a conserved mechanism. Pseudouridylated stop codons were also read through at 

an undetermined efficiency in vivo in budding yeast cells27,156, with different amino acids 

incorporated depending on the stop codon 27.

The mechanism by which Ψ promotes stop codon readthrough is incompletely understood. 

Ψ minimally affects peptide release by E. coli release factors in vitro157,158 suggesting Ψ 
promotes readthrough by increasing mistranslation by near or non-cognate tRNAs. 

Consistent with this possibility, the structure of yeast tRNASer IGA anticodon complexed 

with a ΨAG stop codon in the context of the Thermus thermophilus 30S ribosomal subunit 

revealed accommodation of this non-cognate codon:anticodon pair in a manner that was 

similar to a non-pseudouridylated codon 159. However, this structure did not illuminate how 

the chemical structure of Ψ allows for efficient mistranslation of stop codons. 

Pseudouridylated stop codons appear to be terminated correctly (produce full-length protein 

of the expected size) in human HEK293T cells in the context of synthetic mRNAs in which 

all U residues are replaced with Ψ160. To our knowledge, Ψ-mediated nonsense suppression 

has been described exclusively in engineered systems, and there has been no characterization 

of readthrough at an endogenous pseudouridylated stop codon in cells.

Decoding of sense codons can also be affected by Ψ, but the results from different 

experimental systems do not paint a consistent picture. Incorporation of single Ψ into UUU 

phenylalanine codons caused misincorporation in one reconstituted bacterial translation 

system157 and decreased the yield of full-length peptide without producing detectable 

miscoded peptides in another161. Mechanistically, Ψ affected multiple steps in translation in 
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vitro that could impact fidelity, including increasing the rate of misincorporation of valine by 

Val-tRNAVal at a ΨUU phenylalanine codon and suppressing the surveillance mechanism 

that detects codon:anticodon mismatches in the ribosomal P site157,162,163. Fully 

pseudouridylated mRNAs transfected into human cells produce some amount of functional 

protein 30,157,160,164 although various Ψ-dependent mistranslated peptides were detected in 

one study157. The effect of Ψ on the yield of functional protein depends strongly on the 

specific codons used 157,164. The mechanisms underlying this sequence dependence are 

unknown, highlighting how much remains to be understood about the translational 

consequences of mRNA pseudouridylation in cells.

8.2 Innate Immunity

Cells are equipped with innate immune sensors, including various Toll-like receptors 

(TLRs), retinoic acid inducible protein (RIG-I), and protein kinase R (PKR), which detect 

foreign nucleic acid 165. RNA modifications have been thought to provide a mechanism for 

discerning “self” RNA from non-self RNA, and indeed, incorporating RNA modifications, 

including pseudouridine, in foreign RNA allows for escape from innate immune detection. 

This makes RNA modification a powerful tool in the field of RNA therapeutics where RNAs 

must make it into cells without triggering an immune response, and remain stable long 

enough to achieve therapeutic goals. In addition, the presence of modified nucleosides in 

viral genomic RNA could contribute to immune evasion during infection166.

8.2.1 TLRs—Toll-Like Receptors (TLRs) are membrane-associated proteins which detect 

various pathogen associated molecular patterns (PAMPS) and subsequently stimulate 

production of proinflammatory cytokines. The RNA-sensing TLRs, TLR3, TLR7 and TLR8 

reside within endosomal membranes. TLR3 recognizes dsRNA, while TLR7 and TLR8 

recognize ssRNA. Upon target recognition, TLRs activate a signaling cascade that results in 

the expression of proinflammatory cytokines and interferon. In vitro transcribed RNA is 

immunostimulatory when transfected into HEK293 cells engineered to express either TLRs 

and inclusion of Ψ in the RNA suppressed this response (most pronounced for TLR7 and 

TLR8) 167.

8.2.2 RIG-I—Retinoic Acid Inducible Protein (RIG-I) is a cytosolic innate immune sensor 

responsible for detecting short stretches of dsRNA or ssRNA with either a 5′-triphosphate or 

5′-disphosphate group (a feature common to various RNA viruses). Activation of RIG-I 

relieves its autoinhibition, releasing its CARD domains to interact with MAVS and set off a 

signaling cascade that ultimately results in expression of immune factors. Inclusion of Ψ in a 

5′-triphosphate capped RNA abolishes activation of RIG-I 168,169, providing another 

mechanism for pseudouridine-mediated suppression of innate immune activation. Further, 

the polyU/UC region of the HCV genome is also potent activator of RIG-I and complete 

replacement of U with Ψ in this RNA fully abrogates downstream IFN-beta induction, 

despite RIG-I still binding to the modified RNA 31,169, but with reduced affinity169. Durbin 

et al present biochemical evidence that RIG-I bound to pseudouridylated polyU/UC RNA 

fails to undergo the conformational changes necessary to activate downstream signaling169.
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8.2.3 PKR—RNA-dependent Protein Kinase (PKR) is a cytosolic resident innate immune 

sensor. Upon detection of foreign RNA, PKR represses translation through phosphorylation 

of translation initiation factor eIF-2alpha. Molecules which activate PKR are varied, but 

include dsRNA formed intra- or inter-molecularly, and 5′ triphosphate groups. Inclusion of 

Ψ in various PKR substrates reduces PKR activation and downstream translation repression 

relative to unmodified RNAs. For example, a short 47-nt ssRNA potently activates PKR 

when synthesized with U but not with Ψ (~30-fold reduction with Ψ) 170. Ψ also modestly 

reduced PKR activity when this short RNA was annealed to a complementary unmodified 

RNA 170. Likewise, in vitro transcribed, unmodified tRNA acted as much more potent 

activator of PKR than tRNAs transcribed with pseudouridine 171. It should be noted that it is 

unclear whether a fully pseudouridylated tRNA adopts canonical folding and what impact 

this may have on PKR recognition of this substrate. Finally, transfection of an unmodified 

mRNA caused a greater reduction in overall cellular protein synthesis in cell culture 

compared to the same mRNA fully pseudouridylated 32. Consistent with this result, fully 

pseudouridylated mRNA reduced PKR activation and subsequent phosphorylation of 

eIF-2alpha 32.

8.3 Consequences for therapeutic applications

The success of mRNA therapeutics depends on the ability to synthesize functional protein 

from exogenously supplied mRNA and to deliver these RNAs without triggering an immune 

response. As described above, pseudouridylation of in vitro transcribed RNA is capable of 

reducing stimulation of the innate immune system in in vitro models. These findings also 

hold true in vivo. Indeed, while systemic injection of a uridine-containing in vitro 

transcribed reporter RNA triggered elevated INF-alpha levels in mice, use of fully 

pseudouridylated reporter dampened this response 30.

It is also important that therapeutic RNAs encoding proteins are translated well. Multiple 

studies have reported enhanced protein production from pseudouridylated reporter RNAs 

relative to their unmodified counterparts both in vitro and in vivo. However, the mechanisms 

are unclear and the effect differs between studies and the specific mRNA sequence 

tested30,32,157,160,161. Pseudouridine likely affects multiple facets of mRNA function, 

including reduced immune stimulation by several mechanisms31,32,167–171, prolonged half-

life of pseudouridine-containing RNA 30, as well as potentially deleterious effects of Ψ on 

translation fidelity and efficiency27,157,160,161.

8.4 Potential effects of pre-mRNA pseudouridine on pre-mRNA processing

Human PUS1, PUS7, TRUB1 and RPUSD4 have been shown to at least partially localize to 

the nucleus in human cells62,77,82,83 and PUS1, PUS7 and TRUB1 are known to 

pseudouridylate mRNAs62,67. Furthermore, PUS7 stably associates with chromatin and 

associates with DNA at active Pol II promoters and enhancers82. The nuclear localization 

and/or chromatin association of these PUS raise the possibility that they might act on 

nascent pre-mRNA. Given the many molecular effects of Ψ on RNA-protein and RNA-RNA 

interactions, if Ψ are indeed deposited in pre-mRNA they could function in splicing at 

multiple levels. The potential for Ψ to impact pre-mRNA splicing was shown: artificial 

pseudouridylation in the polypyrimidine tract of an adenoviral pre-mRNA substrate 
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inhibited binding of the 3′ splice site recognition factor U2AF2 and abolished splicing of the 

intron14. For a detailed discussion of the likely effects of Ψ and other RNA modifications on 

splicing see a recent review172.

9. CONCLUSIONS AND PERSPECTIVES

Pseudouridine (Ψ) is the most abundant modified nucleoside in nature. Recent advances in 

Ψ detection have revealed a rich and dynamic landscape that includes regulated Ψ in tRNA, 

rRNA and snRNAs, where they were long known to occur, and identified many previously 

unknown Ψ in mRNA and additional non-coding RNAs. Despite intensive investigation of 

the structural and biochemical effects of Ψ in various systems, the biological roles of most 

endogenous Ψ remain unknown. With current technology54, some important questions 

should soon be answered such as identifying the pseudouridine synthases (PUS) responsible 

for all sites of Ψ in human tRNA and snRNA. Other recent technical achievements establish 

promising approaches to elucidate the RNA sequence and structural features recognized by 

PUS to enable site-specific pseudouridylation62,67. The more challenging questions all relate 

to Ψ function in the context of cellular RNA metabolism. Why are some tRNAs more 

dependent on Ψ than others? How do individual Ψ in snRNAs affect the accuracy, efficiency 

and regulation of splicing? How does the ribosome decode Ψ (and why are the effects of Ψ 
on translation so context-dependent?) How do Ψ-containing RNAs evade immune detection, 

and what are the implications of these mechanisms for naturally pseudouridylated viral 

RNAs and for therapeutic RNA applications? The future challenges are Psi(Ψ)-zable indeed.
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Figure 1. Chemical structures of uridine and pseudouridine
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Figure 2. tRNA pseudouridylation.
Biochemically identified Ψ sites in cytoplasmic (A) and mitochondrial (B) human tRNAs 

are marked by shaded circles with the PUS indicated where known. Sites identified 

exclusively by high-throughput sequencing are shown as open circles.
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Figure 3. Pseudouridine is catalyzed by human PUS.
Domain schematic of human PUS grouped and color coded by family.
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Figure 4. RPUSD3 lacks a catalytic aspartate:
(A) Multiple sequence alignment of human RluA family members and E. coli RluA. The 

HRLD motif is denoted by a line above the alignment and the position of the catalytic 

aspartate is indicated by the asterisk (*). (B-G) An overlay (B) or individual structures of the 

catalytic pocket of E. coli RluA (B, PDB 2I82), human RPUSD3 (C, model), RPUSD1 (E, 

PDB 5VBB), RPUSD2 (F, model), and RPUSD4 (G, PDB 5UBA). The residues at the 

catalytic and salt bridge positions are shown as sticks. The structure of E. coli RluA includes 

5FU in position of the pseudouridylated residue. Models were generated using SwissModel. 

The multiple sequence alignment was generated using ClustalOmega and formatted using 

BoxShade.
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Figure 5. Expression of human PUS across human tissues.
Gene expression in transcripts per million (TPM) of the 13 human pseudouridine synthases 

across different tissue types. PUS are clustered based on expression similarity. The figure 

was created using the GTEx Portal on 02/13/2020
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Table 1.
Locations and targeting of Ψ in human snRNAs by Box H/ACA snoRNAs.

Position of Ψ in human major and minor snRNAs. Ψ Synthase Box H/ACA snoRNA predicted or 

experimentally validated (bold) to target Interaction snoRNA/mRNA – experimental evidence for interaction 

between target snRNA and the predicted snoRNA guide. References are specific to the table as follows: 1 

Reddy and Busch 1988, 2 Gong et al. 2017, 3 Kiss et. Al. 2004, 4 Gu et al. 2005, 5 Vitali et al. 2003, 6 Shattner 

et al. 2006, 7 Darzacq et al. 2002, 8 Deryusheva et al. 2017, 9 Kiss et al. 2002, 10 Deryusheva et al 2012, 11 

Zerby et al. 1997, 12 Jorjani et al. 2016, 13 Yamauchi et al. 2016, 14 Jady et al. 2001, 15 Massenet et al. 1999, 
16 Zerby et. Al. 1996

Human Position Ψ Synthase MN sensitivity Interaction
snoRNA/snRNA References

U1 Ψ5 SCARNA16 Yes 1, 2, 3

Ψ6 SCARNA18 Yes 2, 4

U2 Ψ6 1

Ψ7 SCARNA14 1, 2, 5, 6

Ψ15 1

Ψ34 SCARNA8 Yes 1, 2, 7

Ψ37 SCARNA15 Yes 1, 2, 3

Ψ39 SCARNA4 Yes 1, 2, 3

Ψ41 SCARNA4 Yes 1, 2, 3

Ψ43 SCARNA8 Yes 1, 2, 8

Ψ44 SCARNA8 Yes 1, 7

Ψ54 SCARNA13 Yes 1, 3

Ψ60 10

Ψ88 1

Ψ89 SCARNA1 Yes 1, 2, 3

Ψ91 1

U4 Ψ4 Yes 1, 11

Ψ72 Yes 1, 11

Ψ79 SCARNA26 Yes Yes 1, 2, 11, 12

U5 Ψ11 13

Ψ43 SCARNA11 Yes Yes 1, 2, 14, 3

Ψ46 SCARNA10
SCARNA12 Yes Yes 1, 2, 14, 7

Ψ53 SCARNA13 No Yes 1, 2, 14, 6

U6 Ψ9 13

Ψ31 SNORA79 Yes Yes 1, 2, 16, 6

Ψ40 SCARNA23 Yes Yes 1, 2, 16, 3

Ψ86 SNORA79 Yes Yes 1, 2, 16, 6
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Human Position Ψ Synthase MN sensitivity Interaction
snoRNA/snRNA References

U12 Ψ19 SCARNA21 Yes 15, 6

Ψ28 SCARNA20 Yes 15, 6

U4atac Ψ12 SCARNA21 15

U6atac Ψ83 15
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