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A B S T R A C T   

For the COVID-19 pandemic caused by SARS-CoV-2, there are currently no effective drugs or vaccines to treat 
this coronavirus infection. In this study, we focus on the main protease enzyme of SARS-CoV-2, 3CLpro, which is 
critical for viral replication. We employ explicit solvent molecular dynamics simulations of about 150 com-
pounds docked into 3CLpro’s binding site and that had emerged as good main protease ligands from our previous 
in silico screening of over 1.2 million compounds. By incoporating protein dynamics and applying a range of 
structural descriptors, such as the ability to form specific contacts with the catalytic dyad residues of 3CLpro and 
the structural fluctuations of the ligands in the binding site, we are able to further refine our compound selection. 
Fourteen compounds including estradiol shown to be the most promising based on our calculations were pro-
cured and screened against recombinant 3CLpro in a fluorescence assay. Eight of these compounds have signif-
icant activity in inhibiting the SARS-CoV-2 main protease. Among these are corilagin, a gallotannin, and 
lurasidone, an antipsychotic drug, which emerged as the most promising natural product and drug, respectively, 
and might thus be candidates for drug repurposing for the treatment of COVID-19. In addition, we also tested the 
inhibitory activity of testosterone, and our results reveal testosterone as possessing moderate inhibitory potency 
against the 3CLpro enzyme, which may thus provide an explanation why older men are more severely affected by 
COVID-19.   

1. Introduction 

COVID-19 infection begins with the exposure of a human host to the 
recently discovered SARS-CoV-2, a positive-sense RNA virus belonging 
to the coroviridae family. The first critical stage in the development of a 
COVID-19 diseased state involves viral entry whereby the viral pathogen 
employs its surface spike glycoprotein in binding to the host’s angio-
tensin converting enzyme 2 (ACE2) [1–4]. Following invasion of the 
host cells, the next critical stage that is central to a successful coloni-
zation of host cellular processes and establishment of the infection is 
viral replication. SARS-CoV-2 employs a multiplex array of indepen-
dently functional enzymatic units called the replication-transcription 
complex (RTC) for its replication and transcription functions. The 
host’s ribosome is hijacked and appropriated for translating the 

infecting SARS-CoV-2’s mRNA from which crucial viral enzymes, 
structurally important protein units, as well as new viral genomes 
needed to create functional viral units, are produced. 

SARS-CoV-2’s genome in its full assembly involves a replication 
complex featuring 14 open reading frames (ORFs) of which ORF1a 
encoding for polyprotein 1a (PP1a) and ORF1ab that encodes for PP1ab 
are integral. The genome assembly runs from an ORF1a segment at the 5′

end, followed immediately by an ORF1b section, and terminating with a 
segment of about 8 kb units that contains genetic codes for critical 
structural proteins and accessory factors at the 3′ end [5]. The ORF1ab is 
thus a linear arrangement of the separate ORF1a and ORF1b units. 
Important structural proteins, including the spike protein employed in 
viral entry, the membrane and envelope proteins, as well as the nucle-
ocapsid are encoded at the 3′ end. At the 5′ end of the genome, non- 
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structural proteins (NSPs) involved in various enzymatic functions are 
encoded. A total of sixteen such NSPs (named nsp1 through nsp16) have 
been identified in SARS-CoV-2 and known to be responsible for different 
specific catalytic functions, which are crucial for a successful viral 
replication and transcription. The autocatalytic activity of the two 
important RTC proteases, the papain-like protease PLpro and the main 
protease 3CLpro, on the two large polyproteins is responsible for the 
generation of functional enzymes without which the entire replication 
architecture becomes nonfunctional. PLpro cleaves the polyprotein 
PP1ab at three positions producing nsp1, nsp2, and nsp3, while 3CLpro 

processes PP1ab and PP1a at eleven points to generate nsp4 to nsp16. 
This makes the main protease the most important enzyme in the RTC 

and therefore it represents an attractive target for the development of 
therapeutics for the treatment of COVID-19. And indeed, since the 
outbreak of the disease in late 2019 and the recognition of its pandemic 
status, hundreds of research articles have been published exploring the 
possibility of evolving small molecules inhibitors of 3CLpro. Computa-
tional design involving ligand docking protocols is a significant per-
centage of these publications. In our first work, we conducted large-scale 
virtual screening of diverse compound libraries against the three- 
dimensional structure of 3CLpro [6]. In total we screened over 1.2 
million compounds, where we incorporated protein dynamics via so- 
called ensemble docking [7]. Using this approach we identified impor-
tant structural factors within the enzyme substrate site as well as 
encoded in the docked compounds that we believe are crucial for sub-
strate recognition. 

In the present work we use all-atom, explicit-solvent molecular dy-
namics (MD) simulations of the 147 best binding compounds docked to 
3CLpro to further delineate good 3CLpro binders from poor ones regard-
less of initially computed affinities. As the present pandemic mandates 
fast action, we decided to focus our current attention on existing drugs 
with possible drug repurposing for the treatment of COVID-19 in mind as 
well as natural products, which exhibit a wide range of pharmacophores 
and a high degree of stereochemistry creating a great source of possible 
hits. A detailed analysis of the MD simulations involving geometric and 
energetic arguments identified 34 ligands with binding to 3CLpro pre-
dicted to be superior compared to the other compounds investigated 
here. From this list, 14 compounds were chosen and, for comparison 
with estradiol, augmented by testosterone, which were then tested for 
their 3CLpro inhibition capabilities using an in vitro assay. This step 
revealed eight novel non-covalent inhibitors comprising five existing 
drugs, four of them being approved by the FDA (U.S. Food and Drug 
Administration) and one being under investigation, and three natural 
products. Our analysis provides important information about the inhi-
bition of the SARS-CoV-2 main protease as well as new leads for the 
development of treatment options against COVID-19. 

2. Results and discussion 

2.1. Selection procedure 

This study addresses the dynamical aspects of prospective inhibitors 
of the 3CLpro enzyme of SARS-CoV-2, previously identified using 
ensemble docking [6]. A scheme of our selection procedure employed in 
our previous and current work is given in Fig. 1. The current work starts 
with 147 independent 20 ns MD simulations for ligand-main protease 
complexes involving the top-performing compounds identified by our 
previous virtual screening approach. Of this number 61 are FDA- 
approved drugs, 38 are drugs approved by other countries’ national 
regulatory agencies (non-FDA) and investigational drugs (INV), 39 are 
natural products (NP), while the remaining nine compounds are steroids 
(ST), most of which also have FDA approval status. The steroids were 
included because some of them were identified as good binders by the 
initial study [6]. In consideration of the observed gender-related dif-
ferences in the clinical presentation of COVID-19 [8] we additionally 
aim to understand differences (if any) at the steroids’ level of interaction 

with the virus’ main protease. Apart from these, we also simulated 
different reference compounds (REF) involving previously identified 
inhibitors of the SARS-CoV-2 enzyme, including eight ligands from Jin 
et al. [9], and four recently identified inhibitory α-ketoamides [10]. In 
total, 160 compounds were considered in this work, which are listed in 
Table S1 and for which 20 ns MD simulations were performed. To 
progress the predicted inhibitors to the next simulation phase, we 
employed the following three selection criteria:  

1. the root mean square deviation (RMSD) of the ligand (mean 
RMSDligand ⩽6 Å),  

2. the distance to the binding site (mean and maximal dBS ⩽4 Å),  
3. the distance to the catalytic dyad residues H41 and C145 (mean and 

maximal ddyad ⩽4 Å). 

These selection parameters were computed for the last 5 ns of the 20 
ns MD simulations to make allowance for structural adaption in the first 
part of the trajectories. Ninety-five of the 147 selections from our pre-
vious work as well as three of the 12 reference compounds satisfied the 
filtering parameters, leading to 98 compounds for which the MD simu-
lations were subsequently extended to 100 ns. In addition, testosterone, 
which did not meet the selection criteria, was also simulated for 100 ns 
to have a representative of the male hormone system for comparison to 

Fig. 1. Scheme of the selection procedure..  
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estradiol, the only steroid satisfying the filtering parameters. The last 25 
ns of each 100 ns trajectory was subjected to the same filtering criteria 
1.–3. listed above, which were augmented with two additional criteria: 
the requirement of maximal RMSDligand ⩽6 Å and an energy parameter 
that reflects the interaction between the catalytic dyad residues (H41 
and C145) and the ligand requiring Eint⩽ − 2.4 kcal/mol. For the initial 
20 ns MD simulations, only the average RMSDligand was required to be 
lower than 6 Å to allow the ligands to adapt to a more energetically 
favorable binding pose, a phenomenon expected to temporarily increase 
the RMSDligand values. However, after 75 ns of MD simulations we 
expect the strong binders to have finally adopted a stable binding pose, 
which is why a maximal RMSDligand of 6 Å was additionally employed as 
a criterion in the second set of MD simulations. Applying these five se-
lection criteria yielded 34 compounds of the selection library as well as 
one reference compound meeting the filtering conditions, which were 
grouped based on the number of interactions with the catalytic dyad 
residues. More precisely, ligands interacting with both H41 and C145 
were considered the preferred binders as opposed to those interacting 
with just one catalytic dyad residue. Finally, the total binding free en-
ergy ΔGbind was computed and 14 compounds with lower ΔGbind values 
as well as testosterone were selected for in vitro testing using a 3CLpro 

inhibition assay, which revealed eight ligands with strong inhibitory 
activity. 

2.2. Filtering based on 20 ns MD simulations 

2.2.1. Ligand detachment 
Docking studies allow a good estimation if a compound fits well into 

the catalytic site of a potential drug target and therefore might be a good 
binder. To properly differentiate between good and poor binders using 
computational methods, not only a static analysis but also a dynamic 
investigation like MD simulations should be conducted [11]. It is 
possible that only weak interactions between the ligand and the binding 
site exist, which cause a ligand to leave the binding site under dynamical 
force. Indeed, during the 20 ns MD simulations some of the ligands 
display very high distances to the catalytic dyad, which raises the 
question of whether these ligands remain bound to the binding site. To 
answer this question, we calculated the distance between the center of 
mass (COM) of the ligand with respect to the COM of the binding site 
residues, where the binding site of 3CLpro was defined as all amino acids 
within 10 Å of the covalently bound ligand N3 in the structure of the 
3CLpro-N3 complex [9], yielding a total of 72 residues. Based on this 
quantity denoted dCOM, the following detachment criterion was formu-
lated: a ligand is detached when it resides at a dCOM above 15 Å for at 
least 2 ns. This criterion is applied to the whole trajectories, instead of 
focusing on only the last 5 ns. This analysis reveals three ligands of 
different classes as detaching from the binding site, for which dCOM is 
plotted in Fig. 2. Conivaptan (FDA) and 2-hydroxyestrone (ST) are 
leaving the binding site already after around 1 ns, while the dCOM of the 
natural product with the ID ZINC000008764269 remains below 15 Å for 
the first 5 ns before increasing beyond the cutoff value. Once detached, 
these compounds did not reenter the binding site during the 20 ns MD 
simulations. Interestingly, also the reference ligand N3 moves away 
from the binding site, even though not for a sufficiently long duration to 
have been considered a detachment event. It is important to note that N3 
is a Michael acceptor inhibitor, which inactivates 3CLpro irreversibly by 
forming a covalent bond with C145 [9]. In contrast, N3 was not cova-
lently bound in our MD simulation setup and for this reason the 
nonbonded interactions seem not to be strong enough resulting in 
reorientation of the ligand. 

For each compound class the ligand exhibiting the smallest dCOM 

values is also shown in Fig. 2. Interestingly, UK-432,097 (INV), theaci-
trin A (NP), and 17-α-hydroxypregnanolone (ST) already appeared 
among the ligands with the smallest distances to the catalytic dyad 
residues in their respective class in our previous docking study [6]. Only 
indocyanine (FDA) did not stand out in the previous study, where it even 

displayed a higher distance to the catalytic dyad than conivaptan which 
detached from the binding site within 5 ns of the MD simulation. 

2.2.2. Ligand flexibility 
To further quantify the reorientation and flexibility of the ligands 

that remained in the binding site within the 20 ns MD simulations, we 
computed the RMSDligand values. High RMSD values indicate unsatis-
factory binding with low affinity towards the binding site. An RMSD 
value over 2 Å suggests a pose that is significantly different from the 
reference structure, which in our case was set to the starting structure of 
each MD production run. However, we recognize that subject to 
dynamical forces, there may be need for readjustment of the docking- 
generated binding poses to adapt to conformational changes in the 
binding site of 3CLpro; because of this we chose a relatively high and 
slightly forgiving cutoff of 6 Å for the mean RMSDligand. The values 
obtained for the selection library range from 1.3 Å to 25.2 Å, and from 
3.3 Å to 9.7 Å for the reference ligands. Nine ligands display RMSDligand 
mean values over 10 Å, which include the three ligands that detached, 
namely conivaptan (FDA, 19.5 Å), ZINC000008764269 (NP, 25.2 Å) 
and 2-hydroxyestrone (ST, 21.7 Å), as well as dolutegravir (FDA, 11.0 
Å), tucatinib (INV, 11.2 Å), telomestatin (INV, 11.5 Å), bavacoumestan- 
A (NP, 11.1 Å), allopregnanolone (ST, 10.8 Å), and androstenedione 
(ST, 11.2 Å). It is important to point out that all these compounds feature 
a rigid chemical structure with few or no rotatable bonds present. This 
feature most likely renders the compounds incapable of employing 
intramolecular readjustment for adapting to the dynamically adjusting 
3CLpro binding site. Instead, the entire ligand molecules have to be 
involved in adjusting to the enzyme binding site with consequential 
increase in RMSDligand. 

A significant number of the steroids (three out of nine) also show 
high fluctuations at the binding site, most likely due to weaker in-
teractions compared to steroids with low RMSDligand such as estradiol 
(3.0 Å) or estetrol (3.4 Å) (Fig. 3). The main difference between these 
steroids lies in their moieties at the D ring. Estradiol and estetrol contain 
one or three hydroxy groups at the D ring, respectively. It is possible that 
binding site interactions involving the D ring moieties might be 
impaired in androstenedione and 2-hydroxyestrone harboring carbonyl 
moieties or allopregnanolone having an acetyl group in their D ring. 
Surprisingly, cortisol, which was identified as one of the best binders 
among the FDA-approved compounds previously [6], is not falling 
below the catchment RMSD cutoff with an RMSDligand of 7.7 Å. Similar 
to the steroids with extremely high RMSD, the D ring of cortisol contains 

Fig. 2. The distance between the COMs of the ligand and the binding site 
residues, dCOM, of selected ligands during 20 ns MD simulations. The dis-
tance is shown for the detaching ligands conivaptan (CVT, orange), 2-hydrox-
yestrone (HES, red) and ZINC000008764269 (N11, dark red). The cutoff 
distance at 15 Å is indicated by a black line. The reference compound N3 (blue) 
does not detach despite transient motions away from the binding site. For 
comparison, the distances of the ligands displaying the smallest dCOM in each 
ligand class are shown (from dark to light green): indocyanine (IDC, FDA), UK- 
432,097 (UK4, INV), theacitrin A (TCA, NP) and 17-α-hydroxypregnanolone 
(AHP, ST). 
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not only a hydroxy group but additionally an hydroxyacetone group 
which might hinder interactions under dynamical forces. 

Besides cortisol, there are various ligands that showed great binding 
affinity in the initial virtual screening [6] but poor dynamical charac-
teristics with respect to their flexibility at the binding site. These include 
naldemedine (6.3 Å) and enasidenib (7.8 Å) that ranked among the top 
binding FDA-approved drugs as well as ritonavir (6.6 Å), which is 
currently under investigation for a potential treatment of COVID-19 
[14]. Furthermore, several non-FDA and INV ligands, which were able 
to surpass the best-binding FDA drug nilotinib (5.2 Å) in the docking 
studies [6], display here an RMSDligand above the cutoff, especially the 
previously mentioned INV drug telomestatin (11.5 Å), a compound with 
an inflexible macrocyclic core. These findings highlight the importance 
of fully incorporating structural dynamics while searching for prospec-
tive inhibitors of 3CLpro. We also observed that more than half of the 
reference compounds surpass the RMSDligand cutoff, namely carmofur, 
N3, PX-12, shikonin, tideglusib and two α-ketoamides, as well as 
testosterone (8.5 Å). 

2.2.3. Distance between ligand and binding site 
Inhibition of 3CLpro requires interaction of the ligand with the en-

zyme’s binding site as a sine qua non regardless of the nature of inhibi-
tion, competitive or irreversible. Preferably, such interactions should 
involve direct contacts with the catalytic dyad residues H41 and C145. 

To identify the compounds in close binding proximity, we set the cutoff 
for the mean and the maximum distance to both the binding site (dBS) 
and the dyad (ddyad) at 4 Å. These distances are defined as minimum 
distances between ligand and the respective group of residues over the 
last 5 ns of the MD simulations, yielding a maximum and a mean for 
them. All compounds that were not already identified as detaching 
before, remain associated with the enzyme with dBS mean values ranging 
between 1.6 Å and 3.1 Å. In contrast, several of the ligands violate the 
averaged and/or maximal ddyad cutoff values. These include the anti-
biotic ertapenem (FDA, maximal ddyad = 4.7 Å), epigallocatechin gallate 
(EGCG, NP, maximal ddyad = 5.1 Å), and adozelesin (INV, maximal ddyad 

= 7.5 Å) that had represented the top drugs in their respective categories 
in the previous docking study [6]. This again underpins the importance 
of analyzing dynamical features beyond docking. 

2.3. Filtering based on 100 ns MD simulations 

2.3.1. Ligand detachment 
After applying the various cutoffs using the last 5 ns of the initial 20 

ns MD simulations, the remaining 95 ligands of our compound selection, 
3 remaining reference compounds, as well as testosterone for compari-
son with estradiol and estetrol were simulated for 100 ns to detect the 
most strongly binding ligands. During these longer simulations another 
ligand (the FDA approved drug crizotinib) detached from the 3CLpro 

Fig. 3. The binding pose and 3CLpro-steroid interactions for estradiol and 2-hydroxyestrone. Cartoon representation of the binding site of 3CLpro (β-sheets in 
lilac, α-helices in light blue) with (A, top) estradiol and (B, top) 2-hydroxyestrone bound to it. The ligands are shown as green sticks, the side chains of H41 and C145 
are shown in ball-and-stick representation in cyan and orange, respectively, with the N atoms (blue), O atoms (red), and the S atom of C145 (yellow) being 
highlighted. (A/B, bottom) The interactions of the two ligands with the binding site were analyzed and plotted with LigPlot+ [12,13]. Hydrogen bonds are indicated 
by yellow dashed lines between the atoms involved and the donor–acceptor distance is given in Å, while hydrophobic contacts are represented by gray arcs with 
spokes radiating towards the ligand atoms they contact. The contacted atoms are shown with spokes radiating back. (C) The RMSDligand of estradiol (green) and 2- 
hydroxyestrone (red) is shown over simulation time. The cutoff value at 6 Å used to distinguish between good (e.g., estradiol) and poor (e.g., 2-hydroxyestrone) 
binders is marked as a gray dotted line. (D) The steroid scaffold is shown with functional moieties at the D ring of some of the steroids analyzed in this study 
highlighted: estradiol (R = a, green), 2-hydroxyestrone and androstenedione (R = b, red), estetrol (R = a plus hydroxy groups shown in light-blue), and allo-
pregnanolone (R = c, blue). 
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binding site after around 85 ns. The dichlorfluorphenyl moiety of this 
compound was highly mobile and flexible in the binding site during the 
MD simulation. Being solvent-exposed it was observed to leave the 
binding site first, following which the entire molecule also detached. For 
this reason, crizotinib was exlcuded in subsequent analysis. The fact that 
ligand detachment could be observed even after around 85 ns highlights 
the importance of a more detailed screening of the most promising li-
gands by extending the initial MD simulations to at least 100 ns. 

2.3.2. Ligand flexibility and distance to the catalytic dyad 
To identify the best binding ligands based on the 100 ns MD simu-

lations, the same selection criteria as before were applied using the last 
25 ns of these longer simulations. In addition, for the RMSDligand also the 
maximal values are now considered. In the following, the statistics 
provided is in relation to the total amount of ligands in the second MD 
selection round without the reference ligands (i.e., 100% = 95 ligands). 
The mean RMSDligand ranges between 1.4 Å and 12.0 Å, dBS between 1.7 
Å and 2.1 Å, and ddyad between 1.9 Å and 8.8 Å. All ligands stay close to 
the binding site but four ligands (corresponding to 4% of 95 ligands) – 
olsalazine (FDA, 8.2 Å), entospletinib (INV, 13.3 Å), amrubicin (non- 
FDA, 8.5 Å), and estetrol (ST, 12.7 Å) – seem to loose contact with the 
catalytic dyad as they display maximal ddyad values above 8 Å. The 
criterion of a maximum ddyad below 4 Å is not met by 22 ligands (23%), 
most of them belonging to the FDA-approved drugs (12 ligands, 13%). 
Sixty ligands (63%), including 21 of the 22 ligands surpassing the 
maximum ddyad cutoff, are very flexible as indicated by maximal 
RMSDligand values above 6 Å. Only deferasirox (FDA) displays a maximal 
ddyad above the cutoff (4.6 Å) without simultaneously exceeding the 
maximum RMSDligand cutoff (5.6 Å). Deferasirox harbors four rotatable 
bonds, which enable rotation of the three aromatic rings at the central 
triazole and therewith adjusting the position of the hydroxy and carboxy 
moieties at the rings. However, the overall structure is quite rigid, so 
that the movement of the compound away from the catalytic dyad is 
mainly accompanied by overall translation. 

The criterion for the maximal RMSDligand cutoff is accomplished by 
36 (38%) ligands. This leads to 35 ligands (37%) that meet all three 
criteria, while out of the 3 reference drugs and testosterone only disul-
firam possesses RMSDligand, dBS and ddyad values below the respective 
cutoff. Interestingly, the two FDA-approved drugs nilotinib (maximal 
RMSDligand = 13.3 Å) and afatinib (maximal RMSDligand = 10.3 Å) as 
well as the non-FDA drug R-343 (maximal RMSDligand = 9.4 Å), which 
belong to the class of tyrosine kinase inhibitors that were shown to be 
able to inhibit related coronaviruses [15], display a maximal RMSDligand 
above 6 Å. These three, among others, were considered as top- 
performance ligands due to low binding free energies obtained from 
docking in the previous study [6]. 

2.3.3. Interaction of ligands with catalytic dyad residues 
For further selection of the top ligands, the interaction energy Eint 

composed of Coulomb and Lennard-Jones (LJ) interactions between 
ligand and either catalytic dyad residue was calculated and used as an 
additional criterion. The requirement is that a ligand needs to interact 
with one or both catalytic dyad residues, H41 and C145, using the cri-
terion Eint⩽ − 2.4 kcal/mol to be selected for further consideration. This 
removes tubocurarine (non-FDA) from the list since it does not interact 
strong enough with the dyad residues. Although it stays closely buried in 
the binding site with its benzylisoquinoline ring facing the dyad resi-
dues, the methyl ether and the tertiary nitrogen are unable to constitute 
strong interaction partners for H41 and C145, respectively. From the 
remaining 34 compounds, 15 ligands interact with only one of the two 
catalytic dyad residues and the other 19 ligands form contacts with both 
H41 and C145. The only reference compound left, disulfiram, interacts 
with H41 and is therefore also included in the final ligand selection. To 
get a better view on the class composition of the final ligand selection, 
statistics is provided in relation to the total amount of ligands in the 
respective class and to the total amount of ligands subjected to MD 

simulation (100% = 160 ligands, including steroids and reference 
compounds). Accordingly, 34 ligands (21%) are identified as top 
binders, including 10 out of 61 FDA-approved drugs (16%, 6%), 8 out of 
38 non-FDA-approved drugs (21%, 5%), 15 out of 39 natural products 
(38%, 9%), 1 out of 9 steroids (11%, 1%). The binding poses of these 
ligands in the active site of 3CLpro are shown in Figs. S1–S3. 

2.3.4. Best performing 35 compounds 
After narrowing down the tremendous amount of potential SARS- 

CoV-2 main protease 3CLpro ligands to a sufficiently small library of 
35 compounds (34 from our selection list [6] plus disulfiram as the only 
remaining reference compound), we analyzed the top binders further 
based on binding free energies, ΔGbind, calculated with the molecular 
mechanics Poisson–Boltzmann surface area (MM/PBSA) method [16]. 
Here, we divided the ligands into two groups, those interacting with 
both catalytic dyad residues, which are considered better binders, and 
those interacting with only H41 or C145. Each group was then ranked 
using the ΔGbind values, which in comparison to Eint not only consider the 
Coulomb- and LJ interactions, but also include solvent effects. For li-
gands interacting with both dyad residues, ΔGbind ranges from − 4.20 
kcal/mol to − 49.93 kcal/mol, while values between − 12.60 kcal/mol 
to − 42.38 kcal/mol are obtained for the compounds interacting with 
only one of the dyad residues (Table 1). 

Statistics is generated in relation to the total number of ligands in 
each class as well as for all ligands selected in the top binders list (100% 
= 35 ligands). 14 ligands interact with only H41, while epitaraxerol and 
fenoverine interact with C145 only. These include five FDA compounds 
(8%, 14%), two non-FDA and INV ligands (5%, 6%), seven NP (18%, 
20%), one ST (11%, 3%), and one REF (8%, 3%). The group of ligands 
binding both dyad residues includes 19 ligands in total, among these are 
five FDA compounds (8%, 14%), six non-FDA and INV ligands (16%, 
17%), and eight NP (21%, 23%). It is particularly noticeable that many 
NP compounds rank among the top binders, even six exist among the top 
ten (Table 1). They resemble each other structurally by harboring a lot of 
oxygen atoms mostly in hydroxy functional groups and involving mul-
tiple ring systems. These hydroxy groups were observed to mostly orient 
towards the dyad residues allowing the establishment of hydrogen 
bonds with the catalytic dyad. Furthermore, estradiol representing the 
female hormonal system is found to be the only steroid present among 
the top 35 binders, while testosterone as a prominent male hormone 
violates the selection criteria. 

2.4. Enzyme inhibition assay 

Of the 35 compounds in the selection list (Table 1), 15 were procured 
and a 20 μM concentration of each was employed in an enzyme-based 
fluorescence assay to determine their inhibitory activities against the 
SARS-CoV-2 main protease enzyme at 20 μM concentration in the 
presence of a peptide substrate. The choice which of the compounds to 
test in vitro was to a large extent based on ΔGbind, i.e., ligands with 
smaller binding free energy values were given preference. Moreover, 
compounds forming contacts with both H41 and C145 were also pref-
erentially considered, resulting in 10 compounds from this group (cil-
ostazol, rhoifolin, apixaban, corilagin, dihydroergotoxine, telcagepant, 
ZINC000011865175, lurasidone, hypericin, and proanthocyanidin A2), 
while dasatinib, teniposide, palbociclib, and estradiol, which were also 
chosen, interact with only one of the catalytic dyad residues. Other se-
lection criteria were chemical diversity among the compounds tested as 
well as availability. For instance, theacitrin C, which we wanted to 
include in the enzyme inhibition assay, is currently not commercially 
available. One out of the 15 compounds tested is testosterone, which we 
included as comparison to estradiol despite it not making it onto the 
final selection list that resulted from the in silico screening. 

In Fig. 4 the results from the enzyme inhibition assay show various 
degrees of 3CLpro inhibition for the 15 compounds. The three com-
pounds having zero inhibitory activity at a ligand concentration of 20 
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μM against the proteolytic properties of the main protease (teniposide, 
estradiol, and palbociclib) are from the selection group that interacts 
with only one catalytic dyad residue. This represents 75% of those 
screened from this group in the enzyme inhibitory assay. The only ligand 
efficiently inhibiting 3CLpro out of this group is dasatinib, which is an 
FDA-approved drug interacting with H41 only, provoking an activity 
loss of 58%. Out of the ten compounds from the selection group shown to 
interact with both catalytic dyad residues, seven of them (corresponding 
to 70%) were found to inhibit greater than 50% of the enzyme function. 
Of these, the natural product corilagin produces an 88% loss of the 
SARS-CoV-2 main protease activity, followed by 83% for 
ZINC000011865175, another natural product. Trailing closely behind 
these two are three drugs: lurasidone, an antipsychotic FDA-approved 
drug with 79% inhibition, and cilostazol and telcagepant both display-
ing 68% main protease inhibition. Cilostazol inhibits the phosphodies-
terase 3 and platelet aggregation and has been approved for peripheral 
vascular disease, while telcagepant was initially being developed as a 
treatment for migraine. After these, rhoifolin, a natural product and 

apixaban, an FDA-approved drug, were found to inhibit the enzyme by 
64% and 59%, respectively. Interestingly, the anticoagulant apixaban 
was found to reduce the mortality from COVID-19 by about 50% in a 
therapeutic dose (data from Mount Sinai Hospital, New York, USA) and 
the flavonoid rhoifolin has been previously proposed to be an efficient 
inhibitor of 3CLpro [17]. Comparing the 3CLpro activity of estradiol and 
testosterone, one can see that 3CLpro looses about 30% of its activity in 
the presence of testosterone but is fully active in the presence of estra-
diol. On account of this, we can exclude a potential 3CLpro inhibition 
activity of the female hormone estradiol as the cause behind the 
different COVID-19 progression between men and women [8]. In total, 
eight compounds could successfully be identified as potent 3CLpro in-
hibitors with more than 50% inhibition at 20 μM concentration 
comprising five FDA-approved drugs, two natural products, and one 
investigational drug. The binding poses of the top eight inhibitors are 
shown in Fig. 5, and their chemical structures can be seen in Fig. S4. 

2.5. Top eight inhibitors 

2.5.1. Interactions with 3CLpro 

It is interesting to note that all eight compounds found to inhibit 
3CLpro in our in vitro assay passed all employed filtering criteria and 
were additionally found to be capable of forming specific interactions 
with both catalytic dyad residues as well as establishing hydrogen 
bonding networks with other binding site amino acids (Fig. S5). A dif-
ference in the classes can be observed as the three natural products 
corilagin, rhoifolin and ZINC000011865175 contain many oxygen 
containing functional groups, while the FDA-approved drugs apixaban, 
dasatinib, cilostazol and lurasidone as well as the investigational com-
pound telcagepant contain more functional moieties comprising nitro-
gen. We analyzed the interactions with binding site residues using 
LigPlot+ [12,13] and extracted all residues exhibiting contacts, ac-
counting specifically for hydrogen bonding with one or several of the 
eight 3CLpro inhibitors (Table 2). Here, residues interacting with several 
ligands and those being involved in hydrogen bonding are considered as 
more important for inhibition than those not fulfilling these two criteria. 

The catalytic dyad residues H41 and C145 form hydrogen bonds 
exclusively with ZINC000011865175 but have less strong interactions 
with the other inhibitors (Fig. S5). While C145 interacts with all ligands, 
no interaction can be observed between H41 and rhoifolin. Besides 
C145, also M165, R188, and Q189 interact with all eight ligands. The 
latter two form hydrogen bonds with three ligands each, but similar to 
the catalytic dyad mainly weaker interactions with the other ligands. No 
hydrogen bond formation but other contacts with all eight ligands is 
recorded for M165. Also G143, H164, E166, and N142 are suggested as 
important residues for inhibitor binding forming both hydrogen bonds 
and other contacts with the latter as the main interaction type. D187 
establishes contacts but no hydrogen bonds with five ligands, while 
S144 exclusively forms hydrogen bonds with half of the ligands. Except 
from G143 and M165, these residues are all polar or charged and located 
either at the entrance to or at the inside of the binding site (Fig. 6). The 
latter might be responsible for tight inhibitor binding and the former 
might hinder ligand detachment due to a closure of the binding pocket, 
together accounting for the high 3CLpro inhibition activity. Hydrophobic 
residues interacting with few of the ligands are located rather at the 
surface close to the binding site and might be responsible for initial 
recruitment of binders to the active site. 

In order to better quantify the hydrogen bonding between the ligands 
and 3CLpro, the average number of hydrogen bonds formed with all the 
binding site residues during the 100 ns MD simulations were calculated 
for the top 35 ligands identified in silico (Fig. S6). Except from 
ZINC000011865175, lurasidone, and telcagepant, the top eight in-
hibitors belong to the ligands developing on average the most hydrogen 
bonds, between 2.75 and 5.00. From the other ligands interacting with 
both catalytic dyad residues, four ligands – proanthocyanidin A1, the-
acitrin C, dihydroergotoxine, and proanthocyanidin A2 – form a similar 

Table 1 
Characteristics of the 35 top ligands of 3CLpro identified by MD simula-
tions. The compounds selected for validation in a 3CLpro inhibition assay are 
highlighted in bold.  

No. Compound name Class ddyad 

[Å] 
dBS 

[Å] 
ΔGbind [kcal/ 

mol]  

Interaction with both catalytic dyad residues (H41 and C145) 

1 Cilostazol FDA 2.295  1.856  − 49.9 ± 4.8  
2 Proanthocyanidin A1 NP 2.151  1.696  − 45.4 ± 5.9  
3 Rhoifolin NP 2.101  1.745  − 44.1 ± 7.4  
4 Apixaban FDA 2.511  1.901  − 43.4 ± 5.2  
5 Theacitrin C NP 2.278  1.660  − 42.9 ± 7.1  
6 Corilagin NP 2.134  1.667  − 41.5 ± 5.1  
7 Dihydroergotoxine non- 

FDA 
2.456  1.810  − 40.8 ± 5.8  

8 Telcagepant INV 2.665  1.931  − 39.1 ± 4.0  
9 ZINC000002114470 NP 2.479  1.817  − 37.3 ± 5.6  

10 ZINC000011865175 NP 2.046  2.012  − 36.7 ± 3.5  
11 Lurasidone FDA 2.153  1.963  − 35.6 ± 3.4  
12 ZINC000049888572 INV 2.109  1.930  − 33.5 ± 5.1  
13 Hypericin INV 2.410  1.865  − 31.8 ± 3.8  
14 Pimozide FDA 2.382  1.928  − 30.6 ± 3.5  
15 Sotrastaurin INV 2.143  1.911  − 29.9 ± 3.6  
16 Proanthocyanidin 

A2 
NP 2.584  1.845  − 29.0 ± 5.4  

17 Enzastaurin INV 2.545  1.910  − 27.3 ± 4.0  
18 ZINC000008297065 NP 2.030  1.992  − 27.0 ± 4.4  
19 Telmisartan FDA 2.360  1.908  − 4.2 ± 6.1   

Interaction with one catalytic dyad residues (H41 or C145) 

20 Isocorilagin NP 2.250  1.683  − 42.4 ± 6.0  
21 Dasatinib FDA 2.361  1.881  − 37.4 ± 5.4  
22 Teniposide FDA 2.232  1.796  − 36.2 ± 6.4  
23 Palbociclib FDA 2.347  1.942  − 35.6 ± 3.4  
24 Tadalafil FDA 2.333  1.938  − 33.9 ± 3.2  
25 ZINC000012881832 NP 2.153  1.984  − 33.5 ± 6.0  
26 TMC647055 INV 2.336  2.083  − 31.8 ± 4.9  
27 Fenoverine INV 2.281  2.005  − 31.5 ± 3.3  
28 Zeylanone NP 2.827  1.954  − 29.5 ± 3.7  
29 Remdesivir NP 2.421  1.843  − 29.0 ± 5.4  
30 Estradiol ST 2.395  1.880  − 26.5 ± 3.9  
31 Disulfiram REF 2.317  2.102  − 24.1 ± 2.8  
32 Epitaraxerol NP 2.263  2.049  − 23.7 ± 3.1  
33 Theaflavin NP 2.482  1.847  − 23.5 ± 4.9  
34 Daidzein NP 2.504  1.760  − 22.9 ± 3.5  
35 Montelukast FDA 2.186  1.896  − 12.6 ± 7.5   
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Fig. 4. Activity of 3CLpro in the presence of the 15 tested compounds for their inhibition capacity. The activity of 3CLpro is provided relative to the control 
sample (black) without additional ligand. The group of compounds displaying interactions with both catalytic dyad residues is separated from the one with only one 
such interaction by a dashed vertical line and the compounds in each group are sorted by their ΔGbind values. Testosterone not belonging to the top 35 ligands is 
shown separately. The bars for compounds with a residual 3CLpro activity above 50% are colored in gray, while those with a residual activity below 50% are 
highlighted in blue with the compound names written in bold. A ligand concentration of 20 μM was used for the inhibition test, which was performed in triplicate per 
ligand. The standard deviation is shown as error bar. 

Fig. 5. The binding poses of the top eight binders. The top eight compounds identified by an enzyme inhibition assay following in silico screening are shown in the 
order of decreasing inhibitory activity: corilagin (NP), ZINC000011865175 (NP), lurasidone (FDA), telcagepant (INV), cilostazol (FDA), rhoifolin (NP), apixaban 
(FDA), and dasatinib (FDA). The same protein and ligand representations as in Fig. 3 are used. 
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amount of hydrogen bonds, while of those interacting solely with one 
catalytic dyad residue only two ligands – isocorilagin and remdesivir – 
exceed 2.75 hydrogen bonds on average. It is noticable that besides the 
top eight inhibitors, the compounds considered as the best binders as 
judged by ΔGbind show the most pronounced hydrogen bond formation 
with binding site residues. Thus, hydrogen bond formation considerably 
contributes to the binding free energy. Ligands, which were excluded 
from the list of potential 3CLpro inhibitors by the activity assay such as 
hypericin, teniposide, palbociclib, and estradiol are found to form less 
than 2.75 hydrogen bonds on average. Therefore we can conclude that a 
ligand being able to develop many hydrogen bounds with binding site 
residues is sought to be important for its strong binding and potential 
inhibition activity. However, some of the ligands like 
ZINC000011865175, lurasidone, and telcagepant as well as testosterone 
form on average less than 2.75 hydrogen bonds (Fig. S6), yet nonetheless 
are able to inhibit 3CLpro, in the case of the former three even strongly. 
Testosterone formed on average only 0.63 hydrogen bonds and also 
failed all other selection criteria, but surprisingly reduces the activity of 
3CLpro by 32%. Testesterone may thus be an endogenous inhibitor of the 
SARS-CoV-2 main protease and help to attenuate a COVID-19 infection. 

This would contribute to an explanation for the age-dependent severity 
of COVID-19, given the positive correlation between serum testosterone 
levels, disease progression and clinical outcomes in male Covid-19 pa-
tients, independent of patient age and comorbidities [18]. 

2.5.2. Distance to the catalytic dyad residues 
In addition to hydrogen bonds, we analyzed various other properties 

of the ligands, such as the number of aromatic rings and rotatable bonds, 
as well as their interactions with 3CLpro and plotted the resulting values 
against the experimentally obtained inhibition data to identify further 
characteristics contributing to the inhibitory activities. A fairly good 
correlation is obtained between experimental data and ddyad suggesting 
higher protease inhibition at closer distances from the catalytic dyad 
(Fig. 7). Comparing the chemical structures of the top eight inhibitors 
(Fig. S4) and the other experimentally addressed ligands, a decent 
number of ring systems can be found as a common feature among the 
ligands. Furthermore, good inhibitors seem to need a certain flexibility 
to adapt a strong binding position, which is not the case for e.g. the large 
and rigid hypericin and the tested steroids. It would be interesting to 
extend the experimental testing to ligands exhibiting descriptors found 
to be important, i.e. those with small ddyad values and those with pro-
nounced hydrogen bonding like proanthocyanidin A1 and theacitrin C, 
which were not experimentally investigated in the first testing round. 
This includes remdesivir, which according to our in silico screening could 
act as a 3CLpro inhibitor, while based on cell assays it is suggested to 
interfere with the RNA polymerase, i.e., nsp12 of SARS-CoV-2 [19,20]. 

3. Conclusion 

By carefully combining computational investigation methods with 
an enzyme inhibition assays we have identified eight chemical com-
pounds that showed inhibitory activity in the low micromolar range 
against the main protease enzyme central to viral replication in SARS- 
CoV-2. With functional groups known for covalent attack absent in the 
molecular structure of these eight compounds, a non-covalent inhibitory 
mechanism is strongly implicated. Of the eight identified inhibitors, four 
are approved drugs, one an investigational drug, and three are natural 
products, a feature that will likely shorten the time to clinical avail-
ability following successful completion of relevant testing proceedings. 
We expect that the findings presented in this work will be of importance 
in the development of novel therapeutics for managing COVID-19. In 
addition, we have presented important structural features that appear to 
underly 3CLpro enzyme inhibition as well as surprising inhibition 

Table 2 
Binding site residues interacting with the top eight inhibitors. The number 
of ligands interacting with the different binding site residues via hydrogen bonds 
exclusively or via any kind of interactions (including hydrogen bonds) is listed.  

Number of ligands 
involved 

Hydrogen bonds All interactions 

1 H41, C145, E166, V186 L27, S46, L50, Y54,L167, 
T169, V186 

2 L141, N142, G143,H164, 
Q189, T190 

T25, F140, L141,H172, 
A191 

3 R188, Q192 T26, H163, Q192 
4 S144 M49, S144, P168, T190 
5 — N142,D187 
6 — G143, H164 
7 — H41, E166 
8 — C145, M165, R188, Q189  

Fig. 6. The binding site with the residues predominantly interacting with 
the top eight inhibitors highlighted. The residues showing the most pro-
nounced interactions are colored in green and those forming hydrogen bonds 
are emphasized by a yellow color, while all other interacting residues are shown 
in gray. 

Fig. 7. Correlation between the distance to the catalytic dyad (ddyad) and 
the experimentally determined residual activity of 3CLpro for the top eight 
inhibitors. A linear regression without the outlier telcagepant colored in gray 
shows that lower ddyad correlates with stronger 3CLpro inhibition. 
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features for hormonal steroids involved in gender-based response to 
COVID-19 infection. While estradiol was found to be devoid of inhibi-
tory activity against SARS-CoV-2’s main protease enzyme, testosterone 
was discovered to possess relatively strong inhibitory activity against 
the enzyme. This observation may explain, at least in parts, why obese 
and/or elderly men with expected reduced testosterone titres appear to 
be more vulnerable to the infection compared with males with higher 
serum testesterone levels. Further analyses are required to explore the 
full implications and ramifications of these findings both for the devel-
opment of COVID-19 treatment and for understanding hormonal in-
volvements in host response to SARS-CoV-2 infection. 

4. Methods and materials 

4.1. Molecular dynamics simulations 

4.1.1. Simulation flow 
In our previous study [6], we docked FDA-approved drugs, non-FDA 

and investigational drugs as well as natural products to the main pro-
tease 3CLpro binding site of the SARS-CoV-2 virus. In the first screening 
step, we screened 1,227,186 ligands against the 3CLpro crystal structure 
(PDB code 6LU7) [9]. To consider protein flexibility, ensemble docking 
[7] was performed with the 168,540 best performing compounds from 
the first screening (Fig. 1). To this end, five different 3CLpro conformers 
were taken from a 500 ns MD simulation of the protein with the N3 
ligand bound to it. In order to select the ligands for the MD simulations 
for testing their stability in the binding site, we sorted the ligands based 
on the binding free energies predicted by docking and using the cutoff 
ΔGdocking⩽ − 7.5 kcal/mol and the distances to the catalytic dyad residues 
with cutoff ddyad < 3.5 Å. For each of the resulting 147 compounds we 
performed a 20 ns MD simulation of the 3CLpro-ligand complex using the 
crystal structure of the enzyme. Additionally, 20 ns MD simulations were 
performed for 13 other ligands of interest in connection with 3CLpro 

(Table S1) [9,10]. For 99 of these ligands the MD simulations were 
extended to 100 ns using the selection criteria explained in Section 2.1. 

4.1.2. Parameterization of the ligands 
Before the MD simulations could be started, generalized AMBER 

force field (GAFF) parameters [21] for the 160 ligands considered had to 
be derived. To this end, quantum mechanics calculations at the HF6- 
31G* level were performed using Gaussian 09 [22], followed by 
restrained electrostatic potential (RESP) calculations for determining 
partial charges [23,24] via Antechamber [21,25] as available in 
AmberTool 19 [26]. The GROMACS input files we then generated with 
the ACPYPE tool [27]. 

4.1.3. Simulation details 
All MD simulations were performed with GROMACS 2018 [28]. We 

used AMBER14SB [29] with Parmbsc1 parameters [30] as protein force 
field combined with the TIP3P water model [31] to explicitly simulate 
water. The, 3CLpro-ligand complexes were centered in a cubic box of size 
80× 80× 80 Å3, solvated with water, and Na+ and Cl− added at a 
concentration of 150 mM while at the same time neutralizing the sys-
tem. This results in a system size of ≈51,000 atoms in total. The energy 
of the systems was minimized via the steepest descent algorithm [32]. 
Afterwards, the systems were equilibrated, first in the NVT ensemble (i. 
e., with a constant number of molecules, volume, and temperature) for 
0.1 ns and second for 1 ns in the NpT ensemble at 310 K (37 ◦C, Nosé- 
Hoover thermostat [33,34]) and 1.0 bar (Parrinello-Rahman barostat 
[35]). The production runs of 20 ns or 100 ns lengths used the same 
settings as the NpT equilibration runs. Electrostatic interactions were 
processed with the particle-mesh Ewald method [36,37] in combination 
with periodic boundary conditions and a real-space cutoff of 12 Å. The 
Lennard-Jones (LJ) interactions were also cut at 12 Å. For the integra-
tion of the equations of motion, a leapfrog stochastic dynamics 

integrator was used with a time step of 2 fs. The LINCS algorithm [38] 
was applied to constrain all bond lengths during the MD simulations. 
The coordinates were saved every 20 ps. 

4.1.4. Analysis 
As explained in the Results and Discussion section, various quantities 

were calculated for each ligand to determine the stability of the com-
pounds in the binding site of 3CLpro. One of these quantities is the dis-
tance ddyad, which defines the minimum distance between the catalytic 
dyad residues (H41 and C145) and ligand and was calculated with the 
GROMACS tool gmx mindist. Another distance that was determined is the 
distance dBS, which is the minimum distance between the binding site 
and ligand. Here, the binding site was defined as the collection of 72 
residues that reside within 10 Å around the ligand N3 in the crystal 
structure of the 3CLpro-N3 complex (PDB code 6LU7) [9]. This distance 
was also calculated with gmx mindist. To identify the ligands detaching 
from the binding site, we defined a third distance called dCOM which 
measures the distance of the center of mass of the binding site residues to 
the center of mass of the ligand in question. This distance was computed 
with gmx distance. We further determined the root mean square devia-
tion (RMSD) of each ligand, called RMSDligand here, which indicates how 
flexible a ligand is in the binding site. To this end, we aligned the protein 
structures sampled during the MD simulations to the MD starting 
structure (excluding the ligand during the alignment) and then calcu-
lated the RMSD for the ligand using the gmx rms tool. 

To quantify the strength of the 3CLpro-ligand interactions, their 
interaction energy Eint = ECoul +ELJ consisting of Coulomb and LJ con-
tributions was determined, which was accomplished by rerunning the 
simulation using gmx mdrun -rerun to obtain the energies, which were 
processed using gmx energy to calculate ECoul and ELJ between the ligand 
and the catalytic dyad residues H41 and C145. For the 35 best ligands 
identified in silico, we also computed the binding free energy ΔGbind 

using the MM/PBSA method as implemented in g_mmpbsa (https:// 
rashmikumari.github.io/g_mmpbsa/) [16]. This analysis was applied to 
626 MD snapshots sampled every 40 ps between 75 ns and 100 ns of the 
MD simulations. Within the MM/PBSA scheme the binding free energy is 
defined as 

ΔGbind = 〈Gcomplex − Gprotein − Gligand〉 (1)  

where 〈⋅〉 indicates the average over the 626 snapshots in the current 
case. The free energy for each of these three entities is given as 

G = Ebonded +ECoul +ELJ +Gpolar +Gnonpolar − TS (2)  

where Ebonded describes the bonded interactions, which is like ECoul and 
ELJ obtained from the force field, Gpolar and Gnonpolar are the polar and 
nonpolar contributions to the solvation free energy, and the last term is 
the absolute temperature, T, multiplied by the configurational entropy, 
S, which can be estimated by a normal-mode analysis of the vibrational 
frequencies. However, this entropy term is not calculated by g_mmpbsa. 
The polar energy term Gpolar is obtained by solving the Pois-
son–Boltzmann equation, whereas the nonpolar term Gnonpolar is esti-
mated from a linear relation to the solvent accessible surface area 
(SASA). The parameters for the calculation of ΔGbind were set as T = 310 
K (37 ◦C), Dsolv = 80 for the dielectric constant of the solvent (corre-
sponding to water), Dsolute = 2 for the dielectric constant of the solute 
(corresponding to a globular protein), γ = 0.0226778 kJ/(mol⋅Å2) for 
the surface tension, sasrad = 1.4 Å as probe radius for the SASA 
calculation. ΔGbind was further decomposed into its per-residue contri-
butions to determine the interaction strength with the catalytic dyad 
(H41/C145) or other residues in the binding site. This was accomplished 
with the Python script MmPbSaDecomp.py, while the script MmPbSaStat. 
py was used for the calculation of ΔGbind. Both scripts are provided via 
the g_mmpbsa website. 

The energetic analysis of the 3CLpro-ligand interactions was 
augmented by an analysis of the hydrogen bonds formed between both 
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entities. This was accomplished with gmx hbond applied to the binding 
site and ligand as interaction partners and using a cutoff of 3.5 Å for the 
distance between hydrogen donor and acceptor and a maximal allowed 
deviation from linearity of 30◦. 

4.1.5. Visualization 
The protein–ligand systems were visualized using the PyMOL soft-

ware [39]. For the selection of the binding poses shown in this manu-
script, the ligand structures and orientations were clustered using the 
algorithmus of Daura et al. [40] as implemented in gmx cluster. A cutoff 
of 2 Å was used for the clustering and the most populated cluster per 
ligand chosen for visualization. Interactions between protein and li-
gands were analyzed and plotted using LigPlot+ [12,13]. Results were 
plotted using the Gnuplot software [41] and Python3 [42]. 

4.1.6. Data availability 
The AMBER force field (GAFF) parameters of the 160 organic mol-

ecules including drugs, natural products, and steroids that were derived 
as part of this work are available on Mendeley Data (https://doi.org/10 
.17632/phxtv76n5s.3). These parameters can be employed without 
further processing in MD simulations using GROMACS. Moreover, the 
Gaussian and GROMACS input files used for generating the force field 
parameters, along with bash scripts for automating the parameterization 
procedure are also provided at Mendeley Data. In [46] this dataset and 
how the data were obtained are described in detail. 

4.2. In vitro testing 

4.2.1. Cloning, expression and purification of SARS-CoV-2 3CLpro 

The codon optimized cDNA encoding SARS-CoV-2 3CLpro (Uniprot 
entry: P0DTD1) was synthesized and implemented in the ampicillin 
resistant vector pGEX-6P-3 (BioCat GmbH, Heidelberg, Germany). The 
construct contains an N-terminal GST-tag and a PreScission protease 
cleavage site (LEFLFQGP). 

SARS-CoV-2 3CLpro-pGEX-6P-3 vectors were transformed into E. coli 
Lemo21 (DE3) (New England BioLabs, USA) competent cells and grown 
overnight at 37 ◦C in LB-medium. This pre-culture was added to fresh 
LB-medium (Ampicillin and Chloramphenicol) and grew at 37 ◦C until 
the cells reached an OD600 of 0.6. Gene expression was induced with 
IPTG at final concentration of 0.5 mM (1 mM Rhamnose was added) and 
incubated for 3 h, at 37 ◦C and 120 rpm. Subsequently, the culture was 
harvested by centrifugation (4,000 rpm) at 5 ◦C for 20 min (Sorvall RC- 
5B Plus Superspeed Centrifuge, Thermo Fisher Scientific, USA; GSA 
rotor). The supernatant was discarded and the cells containing the re-
combinant SARS-CoV-2 3CLpro_GST were resuspended in 50 mM 
Tris–HCl pH 8.0, 200 mM NaCl (lysis buffer) and stored at − 20 ◦C for 
subsequent purification. 

For purification, the cell-suspension was incubated on ice for 1 h 
with addition of lysozyme, subsequently it was lysed by sonication in 
four pulses of 30 s each with amplitude of 30% interspersed by intervals 
of 10 s. The crude cell extract obtained was centrifuged (7,000 rpm for 
90 min at 6 ◦C). The supernatant containing SARS-CoV-2 3CLpro_GST 
was loaded onto a GSH-Sepharose matrix which was previously equili-
brated with the lysis buffer and was extensively washed with the same 
buffer. The protein was eluted with the same buffer plus addition of 10 
mM GSH. The eluted fractions were concentrated and dialyzed against 
PreScission protease cleavage buffer (50 mM Tris pH 7.0, 200 mM NaCl, 
1 mM DTT and 1 mM EDTA). PreScission protease was used to cleave the 
GST-tag from the SARS-CoV-2 3CLpro_GS◦CT protein. For 100 μg target 
protein, 10 μg PreScission protease was added and the sample incubated 
for 36 h at 4 ◦C. Separation of the target protein, the GST-tag and the 
PreScission protease was achieved using GSH-Sepharose. Further, to 
remove aggregated fraction, size exclusion chromatography was used 
(Superdex 200 10/300 GL GE Healthcare, USA), the column was 
equilibrated with 20 mM Tris-HCl pH 8.0, 150 mM NaCl. Sample purity 
after each purification step was assessed by 15% SDS–PAGE gels. The 

corresponding protein fraction was concentrated up to 2 mg/mL and 
stored at − 20 ◦C. 

4.2.2. Activity assay of SARS-CoV-2 3CLpro 

SARS-CoV-2 3CLpro activity assay was performed as described earlier 
using a fluorogenic substrate DABCYL-KTSAVLQ↓SGFRKME-EDANS 
(Bachem, Switzerland) in a buffer containing 20 mM Tris pH 7.2, 200 
mM NaCl, 1 mM EDTA and 1 mM TCEP [43,10,44]. The reaction 
mixture was pipetted in a Corning 96-Well plate (Sigma Aldrich) con-
sisting of 0.5 μM protein and the assay was initiated with the addition of 
the substrate at a final concentration of 50 μM. 

The inhibitory potential against the SARS-CoV-2 3CLpro activity of 
the best compounds identified in the virtual screening was investigated 
using the activity assay described above. 20 μM of the compounds was 
used for the screening tests. The mixtures were incubated for 30 min at 
RT. When the substrate with a final concentration of 50 μM was added to 
the mixture, the fluorescence intensities were measured at 60 s intervals 
over 30 min using an Infinite 200 PRO plate reader (Tecan, Männedorf, 
Switzerland). The temperature was set to 37 ◦C. The excitation and 
emission wavelengths were 360 nm and 460 nm, respectively. Inhibition 
assays were performed as triplicates. 

Funding sources 

The authors gratefully acknowledge the computing time granted 
through JARA-HPC (project COVID19MD) on the supercomputer 
JURECA at Forschungszentrum Jülich [45], the hybrid computer cluster 
purchased from funding by the Deutsche Forschungsgemeinschaft (DFG, 
German Research Foundation) project number INST 208/704-1 FUGG, 
and the Centre for Information and Media Technology at Heinrich Heine 
University Düsseldorf. R.J.E. recognizes with appreciation funding from 
FAPESP [Grant Nos. 2018/07572-3, 2019/05614-3]. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. The funders had no role in study design, 
data collection and analysis, decision to publish, or preparation of the 
manuscript. 

Appendix A. Supplementary material 

Supplementary data associated with this article can be found, in the 
online version, at https://doi.org/10.1016/j.bioorg.2021.104862. 

References 

[1] J. Luan, Y. Lu, X. Jin, L. Zhang, Spike protein recognition of mammalian ace2 
predicts the host range and an optimized ace2 for sars-cov-2 infection, Biochem. 
Biophys. Res. Commun. (2020). 

[2] D. Wrapp, N. Wang, K. Corbett, J. Goldsmith, C. Hsieh, O. Abiona, B. Graham, 
J. McLellan, Cryo-em structure of the 2019-ncov spike in the prefusion 
conformation, Science 367 (2002) 1260–1263. 

[3] S. Xia, Y. Zhu, M. Liu, Q. Lan, W. Xu, Y. Wu, T. Ying, S. Liu, Z. Shi, S. Jiang, et al., 
Fusion mechanism of 2019-ncov and fusion inhibitors targeting hr1 domain in 
spike protein, Cell. Mol. Immunol. (2020). 

[4] M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, 
T. Schiergens, G. Herrler, N. Wu, A. Nitsche, et al., Sars-cov-2 cell entry depends on 
ace2 and tmprss2 and is blocked by a clinically proven protease inhibitor, Cell 
(2020). 

[5] M. Romano, A. Ruggiero, F. Squeglia, G. Maga, R. Berisio, A structural view of sars- 
cov-2 rna replication machinery: Rna synthesis, proofreading and final capping, 
Cell 9 (2020) 1267. 

[6] O. Olubiyi, M. Olagunju, M. Keutmann, J. Loschwitz, B. Strodel, High throughput 
virtual screening to discover inhibitors of the main protease of the coronavirus 
sars-cov-2, Molecules 3193 (2020). 

[7] R. Amaro, J. Baudry, J. Chodera, O. Demir, J. McCammon, Y. Miao, J. Smith, 
Ensemble docking in drug discovery, Biophys. J. 114 (2018) 2271–2278. 

J. Loschwitz et al.                                                                                                                                                                                                                               

https://doi.org/10.17632/phxtv76n5s.3
https://doi.org/10.17632/phxtv76n5s.3
https://doi.org/10.1016/j.bioorg.2021.104862
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0005
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0005
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0005
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0010
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0010
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0010
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0015
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0015
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0015
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0020
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0020
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0020
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0020
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0025
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0025
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0025
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0030
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0030
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0030
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0035
http://refhub.elsevier.com/S0045-2068(21)00239-X/h0035


Bioorganic Chemistry 111 (2021) 104862

11

[8] J.-M. Jin, P. Bai, W. He, F. Wu, X.-F. Liu, D.-M. Han, S. Liu, J.-K. Yang, Gender 
differences in patients with covid-19: Focus on severity and mortality, Front. in 
Public Health 8 (2020) 152. 

[9] Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, 
Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, 
F. Bai, H. Liu, X. Liu, L.W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao, 
H. Yang, Structure of Mpro from COVID-19 virus and discovery of its inhibitors, 
Nature (2020). 

[10] L. Zhang, D. Lin, Y. Kusov, Y. Nian, Q. Ma, J. Wang, A. von Brunn, P. Leyssen, 
K. Lanko, J. Neyts, A. de Wilde, E.J. Snijder, H. Liu, R. Hilgenfeld, α-Ketoamides as 
Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure- 
Based Design, Synthesis, and Activity Assessment, J. Med. Chem. 63 (2020) 
4562–4578. 

[11] V. Salmaso, S. Moro, Bridging molecular docking to molecular dynamics in 
exploring ligand-protein recognition process: an overview, Front. Pharmacol. 9 
(2018) 923. 

[12] A. Wallace, R. Laskowski, J. Thornton, LIGPLOT: a program to generate schematic 
diagrams of protein-ligand interactions, Protein Eng. Des. Sel. 8 (1995) 127–134. 

[13] R. Laskowski, M. Swindells, LigPlot+: multiple ligand-protein interaction diagrams 
for drug discovery, J. Chem. Inf. Model. 51 (2011) 2778–2786. 

[14] I. Hung, K. Lung, E. Tso, R. Liu, T. Chung, M. Chu, Y. Ng, J. Lo, J. Chan, A. Tam, 
H. Shum, V. Chan, A. Wu, K. Sin, W. Leung, W. Law, D. Lung, S. Sin, P. Yeung, 
C. Yip, R. Zhang, A. Fung, E. Yan, K. Leung, J. Ip, A. Chu, W. Chan, A. Ng, R. Lee, 
K. Fung, A. Yeung, T. Wu, J. Chan, W. Yan, W. Chan, J. Chan, A. Lie, Q. Tsang, 
V. Cheng, T. Que, C. Lau, K. Chan, K. To, K. Yue, Triple combination of interferon 
beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to 
hospital with COVID-19: an open-label, randomised, phase 2 trial, Lancet 395 
(2020) 1695–1704. 

[15] P. Norman, A novel syk kinase inhibitor suitable for inhalation: R-343(?) – wo- 
2009031011, Expert. Opin. Ther. Pat. 19 (2009) 1469–1472. 

[16] R. Kumari, R. Kumar, A. Lynn, g_mmpbsa–A GROMACS tool for high-throughput 
MM-PBSA calculations, J. Chem. Inf. Comp. Sci. 54 (2014) 1951–1962. 

[17] S. Jo, S. Kim, D.H. Shin, M.S. Kim, Inhibition of SARS-CoV 3CL protease by 
flavonoids, J. Enzyme. Inhib. Med. Chem. 35 (2020) 145–151. 

[18] S. Rowland, E. O’Brien Bergin, Screening for low testosterone is needed for early 
identification and treatment of men at high risk of mortality from covid-19, Crit. 
Care 24 (2020) 367. 

[19] M.L. Agostini, E.L. Andres, A.C. Sims, R.L. Graham, T.P. Sheahan, X. Lu, E.C. Smith, 
J.B. Case, J.Y. Feng, R. Jordan, A.S. Ray, T. Cihlar, D. Siegel, R.L. Mackman, M. 
O. Clarke, R.S. Baric, M.R. Denison, Coronavirus susceptibility to the antiviral 
remdesivir (gs-5734) is mediated by the viral polymerase and the proofreading 
exoribonuclease, mBio 9 (2018) e00221–18. 

[20] E.P. Tchesnokov, C.J. Gordon, E. Woolner, D. Kocincova, J.K. Perry, J.Y. Feng, D. 
P. Porter, M. Gotte, Template-dependent inhibition of coronavirus rna-dependent 
rna polymerase by remdesivir reveals a second mechanism of action, J. Biol. Chem. 
(2004). 

[21] J. Wang, R. Wolf, J. Caldwell, P. Kollman, D. Case, Development and testing of a 
general amber force field, J. Comput. Chem. 25 (2004) 1157–1174. 

[22] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, 
V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. 
Hratchian, A. Izmaylov, J. Bloino, G. Zheng, J. Sonnenberg, M. Hada, M. Ehara, K. 
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. 
Nakai, T. Vreven, J. Montgomery, J. Peralta, F. Ogliaro, M. Bearpark, J. Heyd, E. 
Brothers, K. Kudin, V. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. 
Rendell, J. Burant, S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. Millam, M. Klene, J. 
Knox, J. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. 
Yazyev, A. Austin, R. Cammi, C. Pomelli, J. Ochterski, R. Martin, K. Morokuma, V. 
Zakrzewski, G. Voth, P. Salvador, J. Dannenberg, S. Dapprich, A. Daniels, Ö. 
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