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Abstract

The ability to move fast and accurately track moving objects is fundamentally constrained by the 

biophysics of neurons and dynamics of the muscles involved. Yet the corresponding trade-offs 

between these factors and tracking motor commands have not been rigorously quantified. We use 

feedback control principles to quantify performance limitations of the sensorimotor control system 

(SCS) to track fast periodic movements. We show that (1) linear models of the SCS fail to predict 

known undesirable phenomena, including skipped cycles, overshoot and undershoot, produced 

when tracking signals in the “fast regime,” while nonlinear pulsatile control models can predict 

such undesirable phenomena, and (2) tools from nonlinear control theory allow us to characterize 

fundamental limitations in this fast regime. Using a validated and tractable nonlinear model of the 

SCS, we derive an analytical upper bound on frequencies that the SCS model can reliably track 

before producing such undesirable phenomena as a function of the neurons’ biophysical 

constraints and muscle dynamics. The performance limitations derived here have important 

implications in sensorimotor control. For example, if the primary motor cortex is compromised 

due to disease or damage, the theory suggests ways to manipulate muscle dynamics by adding the 

necessary compensatory forces using an assistive neuroprosthetic device to restore motor 

performance and, more important, fast and agile movements. Just how one should compensate can 

be informed by our SCS model and the theory developed here.

1 Introduction

Tracking fast, unpredictable movements is a valuable skill, applicable in many situations. In 

the animal kingdom, the context includes the action of a predator chasing its prey that is 

running and dodging at high speeds—for example, a cheetah chasing a gazelle. The 
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sensorimotor control system (SCS) is responsible for such actions, and its performance 

clearly depends on the relaying capabilities of neurons and the dynamics of the muscles 

involved. Despite these obvious factors that set the limits on how fast an animal can track a 

moving object, tracking performance of the SCS and its dependence on neural relaying and 

muscle dynamics has not been explicitly quantified. This study aims to rigorously quantify 

the performance trade-offs between accurately tracking fast-moving objects, in particular 

periodic inputs and the relaying capabilities of neurons subject to their biophysical 

constraints. The trade-offs are also described as a function of muscle dynamics.

Tracking periodic signals is in itself an experimental paradigm that has been explored in 

many visuomotor and memory tasks (Hanneton, Berthoz, Droulez, & Slotine, 1997; Schmid 

& Ron, 1986). It has been shown in experimental settings that tracking faster and faster 

periodic inputs leads to a regime where subjects skip cycles because they are unable to keep 

up. In Fuchs (1967), monkeys performed an oculomotor task in which they were required to 

track periodic inputs with their eye muscles. Tracking was shown to be accurate at low 

frequencies, but as the frequency of the input increased, the monkeys’ performance 

deteriorated and they started to skip cycles (see Figure 1A). In Vince (1948), human subjects 

were asked to make quick, periodic downward and upward motions upon hearing a periodic 

auditory stimulus. When the frequency of the input increased, accuracy decreased. More 

importantly, several undesirable phenomena, including overshoot, undershoot, and skipped 

cycles, were observed in the high-frequency regime (see Figure 1B).

We hypothesize the existence of a fundamental frequency, ωc, above which we observe these 

undesirable phenomena when tracking sinusoidal inputs. To test our hypothesis, we set out 

to (1) construct a mathematical model of the SCS consisting of a feedback interconnection 

between the cerebrocerebellar system, alpha motor neurons, and the musculoskeletal system 

and then (2) develop formal methods to prove the existence of and compute ωc as a function 

of our model parameters.

Although tracking in motor control has been well studied, with competing mathematical 

models to describe the phenomena observed (Hanneton et al., 1997), the applicability of 

these models in the regime of tracking high-frequency periodic signals has been overlooked. 

One possible reason is due to the analytical tractability of experimentally validated models. 

Linear models of the SCS are simple to analyze (Fitzpatrick, Burke, & Gandevia, 1996), but 

they fail to capture the undesirable tracking phenomena observed experimentally. For 

example, if you insert a high-frequency periodic input into a linear model, the same 

frequency appears at the output but is likely attenuated. There are no skipped cycles or 

overshoot phenomena, as observed in the SCS.

Discontinuities appearing in slow movements are a well-known feature that have been 

studied to elucidate the junction between neuronal activity and the musculoskeletal system 

(Plamondon & Alimi, 1997). Specifically, during slow movements, discontinuities in the 

finger position have been observed, even when subjects try hard to follow a smooth trace 

(Miall, Weir, & Stein, 1993; Hanneton et al., 1997). These discontinuities are not captured 

with linear models of the SCS (Hanneton et al., 1997), also discussed in section 3.2. Due to 

this limitation of linear models, nonlinear threshold-based pulsatile control of movements 
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was first suggested in 1947 (Craik, 1947) and since then has been in active exploration in the 

feedback setting (Fishbach, Roy, Bastianen, Miller, & Houk, 2007; Loram, Gollee, Lakie, & 

Gawthrop, 2011; Loram, Van De Kamp, Lakie, Gollee, & Gawthrop, 2014; Miall et al., 

1993; Novak, Miller, & Houk, 2002; Wolpert, Miall, Winter, & Stein, 1992; Hanneton et al., 

1997; Farmer, 1999).

Here, we construct a biophysically based, analytically tractable nonlinear model of the SCS 

that reproduces several characteristics of neuronal and motor outputs in response to periodic 

inputs in the slow and fast regimes observed in humans and primates in both health and 

disease. A highlevel view of the model is shown in Figure 2, and a more detailed model 

considered in this letter is shown in Figure 3. The critical part of our SCS model that must 

remain biophysically based and nonlinear is how alpha motor neurons encode signals from 

the cerebrocerebellar system in the form of spike events.

Using our SCS model, we derive conditions for which tracking a sinusoidal input produces 

undesirable phenomena as a function of the parameters of the closed-loop system. 

Specifically, we show that for a fixed musculoskeletal system M, cerebrocerebellar dynamics 

K, and a group of motor neurons with spiking thresholds q (for activation of agonist/

antagonist pair of muscles), the oscillatory input (periodic back-and-forth movement) with 

frequency ω may generate undesired skipped cycles if ω > ωc(M, K, q).

The results derived here make a scientific contribution in advancing our understanding of 

how movement speeds may be limited given the processing of the driving signal through 

neurons, although neuronal spiking may confer additional advantages such as energy 

efficiency (Laughlin, de Ruyter van Steveninck, & Anderson, 1998). The characterization of 

ωc for sinusoidal movements provides a theoretical basis for further investigation for more 

general classes of movements. By providing a concrete dependance on the parameters of the 

system, our analysis can also guide the design of therapies for movement disorders caused 

by a compromise in K, q, or M.

2 Model of Sensorimotor Control System

A schematic for the SCS model is shown in Figure 2, and a more detailed model that we 

consider is shown in Figure 3. It is an interconnected feedback system, as suggested by 

previous models for sensorimotor control (Massaquoi & Topka, 2002; Todorov & Jordan, 

2002; Shadmehr, Smith, & Krakauer, 2010; Wolpert, Ghahramani, & Jordan, 1995; Kawato, 

1999). We assume that the SCS input is the intended voluntary movement or reference 

signal, r(t), that exists in some part of the brain (e.g., in parietal regions). The reference input 

is processed by brain structures including the sensorimotor, premotor, and motor cortices, 

and ultimately the neurons in premotor and motor areas send spike train signals to muscles 

via the spinal cord. Appropriate muscles are innervated to generate a movement, z(t), as the 

system attempts to follow or track r(t). The generated movement (output of SCS) is then fed 

back, via proprioceptive and visual feedback, represented by a feedback gain F, to be 

processed by structures including the cerebellum and motor cortex. There are other 

structures involved in the generation of movements such as the basal ganglia and motor 

thalamus not explicitly shown.
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We break down our SCS model into two general components: neural dynamics and the 

musculoskeletal system, as in Figure 2. The neural dynamics consists of cerebrocerebellar 

processing of the error between intended and actual movement and alpha motor neuron 

encoding of cortical motor commands. In the following sections, we describe each model 

component.

2.1 Neural Dynamics.

We take a systems approach to model neural dynamics. Specifically, we use a previously 

validated model of cerebrocerebellar processing (Massaquoi & Topka, 2002) that describes 

how motor cortical areas integrate with cerebellar processing of errors between intended and 

actual kinematics. This model characterizes firing rate activity of populations of cerebellar 

and cortical neurons during movement and produces an analog signal that is then sent to an 

integrate-and-fire (IAF) model describing the spiking responses of groups of alpha motor 

neurons.

The concept of relaying capabilities of neurons can be thought of as the density of the 

resulting spike trains that directly drive muscle activity: the higher the density of the spikes, 

the more information is flowing from the neural system to the musculoskeletal system.

2.1.1 Cerebrocerebellar Dynamics.—A basic cerebrocerebellar system diagram is 

given in Figure 3A (Jo & Massaquoi, 2007, 2004; Massaquoi & Topka, 2002). We 

characterize the cerebrocerebellar SCS component as a dynamical feedback control system 

(K) that compares the intended movement with actual movement. Many behavioral and 

neurophysiological data on human and animal cerebellar motor control relate to stabilization 

of posture and accurate control of movements rather than explicit control of contact force or 

joint torques. Importantly, though, because of the uniformity of its circuitry, intracerebellar 

mechanisms are almost certainly common to both position and force control systems, 

especially for fast movements. This motivates our choice of modeling the cerebrocerebellar 

system, K, as belonging to a class of linear time-invariant systems including proportional 

(Kp), integral (Ki), and derivative (Kd) (PID) controllers, as in Massaquoi and Topka (2002). 

More specifically,

K(s) = I1
Kc
s + Kcbl(s)

s + I2
, (2.1)

Kcbl(s) = ap + aI
s + ads . (2.2)

Although the cerebellar dynamics here are modeled as PID, other linear time-invariant (LTI) 

models have been used in the past to characterize cerebellum operation (Bhanpuri, Okamura, 

& Bastian, 2014); the results derived in this letter do not depend on the exact 

characterization for the cerebrocerebellar dynamics.

2.1.2 Alpha Motor Neuron Dynamics.—Alpha motor neurons are driven by the 

output of the cerebrocerebellar system, and their activity directly drives muscles. 
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Consequently, we maintain the spiking or pulsatile nature of alpha motor neuron control of 

muscles by modeling them with IAF models, which have been used to model motor neurons 

in both experimental and computational studies (Goroso, Cisi, & Kohn, 2000; Cofer et al., 

2010).

For each joint in our muscle model described in section 2.2, we characterize an effective 

agonist group of motor units and an effective antagonist group of motor units. More 

specifically, we assume that each group of motor units generates spikes in an IAF fashion 

(see Figure 3B). The membrane voltage of each of these groups of neurons is described as

v(t) = ∫
0

t
y(t) + vreset, (2.3)

when v (t) > q, a weighted positive spike, qδ (t), is produced. If v (t) < −q, a weighted 

negative −qδ (t), is produced. In both cases, the membrane potential v (t) is reset to vreset. 

The collection of positive spikes u1(t) = ∑k ∈ Zqδ(t − tk
p) is the spike train generated 

collectively by neurons in the effective agonist group of motor units, and the collection of 

negative spikes (represented as positive action potentials in brain) u2(t) = − ∑k ∈ Zqδ(t − tkn)
is the spike train generated collectively by neurons in the effective antagonist group of motor 

units. The weight of the spike is chosen to be the same as the integral, following 

Henneman’s size principle (Henneman & Mendell, 2011). In general, if we have more than 

one neuron innervating the muscle, the innervation amplitude should be proportional to the 

activation threshold in keeping with Henneman’s size principle. An increase in relaying 

capability follows an increase in the density of the spike trains (i.e., a decrease in the spiking 

threshold q).

2.2 Musculoskeletal Dynamics.

We use a single joint model of the musculoskeletal system as in McIntyre and Bizzi (1993; 

see Figure 3C), though our methods easily extend to multiple joint systems. The transfer 

function of this model from the neural activity (u) to the limb output (z) is

M(s) = Km
Ims2 + Bms + Km

. (2.4)

As shown in Figure 3C, Km corresponds to the net stiffness of all muscles acting around the 

joint, as determined by the level of agonist/antagonist coactivation, Bm is the net viscosity, 

and Im is the inertia. This model is taken from the class of equilibrium-point models for 

motor control (McIntyre & Bizzi, 1993). Under this class of models, the mechanical 

properties of muscles and the myotactic reflexes generate equilibrium positions for the limb. 

If the limb is displaced from a rest position, the spring-like properties of the muscles 

generate the appropriate restoring torques to return the limb to rest (equilibrium). These 

models are in reasonable agreement with experimental data yet are simple enough to 

analyze. More information about the musculoskeletal model is provided in Appendix C.
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3 Results

In this section, we first demonstrate how our closed-loop SCS model qualitatively 

reproduces fundamental properties of alpha motor neuron activity and musculoskeletal 

responses during movement generation. We also show the qualitative reproduction of 

responses to several types of reference signals observed in both healthy subjects and 

cerebellar patients. We then show that a linear SCS model would not suffice to reproduce the 

phenomenon of skipped cycles for higher frequencies. Finally, we derive the fundamental 

frequency, ωc, as a function of model parameters and describe its sensitivity to SCS model 

parameters.

3.1 SCS Model Reproduces Observed Phenomena in Health and in Disease.

The SCS model introduced in section 2 reproduces observed phenomena by the SCS, as 

shown in Figure 4. Figure 4a illustrates how motor neurons may produce plateau potentials, 

resulting in self-sustained firing, providing a mechanism for translating short-lasting 

synaptic inputs into long-lasting motor output. This self-sustained oscillatory behavior is a 

key property observed in more complex models of neural behavior (Henneman & Mendell, 

2011). Figure 4b shows how during voluntary contraction of a muscle group, agonist and 

antagonist muscles can both be active with a specific activation pattern (agonist first, then 

antagonist, and then agonist again at a lower level). This concurrent activation of agonist and 

antagonist muscles is referred to commonly as a triphasic pattern of muscle contraction 

during rapid limb movement and is captured by our model. The model reproduces spiking 

patterns during slow periodic movements, as shown in Figure 4c, in fact also capturing the 

discontinuities during slow movements.

The SCS model also reproduces movement responses to some elemental reference inputs in 

both health and cerebellar disease. Figures 5a and 5b compare model responses to step and 

pulse inputs to responses of human subjects to the same input types in health (Navas & 

Stark, 1968) and in cerebellar dysfunction (Manto, 2009; Hore & Vilis, 1984). The position 

signals between model and experimental data qualitatively match very well. We model 

cerebellar degeneration by decreasing the gain parameters of the cerebellar model (Kd, Kp, 

Ki, and I2) by 60%, as well as increasing the muscle stiffness Km by four times, to simulate 

the typical compensation strategy displayed by patients (Jo & Massaquoi, 2004). Cerebellar 

patients are known to display dysmetria, specifically hypermetria (or significant overshoot), 

as well as oscillatory activity past the end of the movement. We see this effect in the model 

simulations in Figures 5a and 5b.

3.2 Linear Time-Invariant SCS Model Does Not Display Skipped Cycles.

The presence of skipped cycles is perhaps the most important feature observed while 

tracking fast sinusoidal inputs, and this phenomenon cannot be modeled using linear time-

invariant (LTI) systems or remedied in open loop using a linear system at the output of the 

movement. If all the components of the feedback system are linear, the steady-state output 

only contains the frequency present in the input signal, albeit with an amplitude and phase 

that depends on the gains of the individual systems. Specifically, we consider r(t) = R 
sin(2πωt + ϕ) and denote the closed-loop system from r to z as H. If the closed loop 
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contains K, M, and F LTI as above and does not contain the IAF nonlinearity, H = MK
1 + MKF . 

Using principles in linear dynamical systems, we can show that for any LTI H, the steady-

state response of the system can be written as (Aström & Murray, 2010)

z(t) = R ∣ H(jω) ∣ sin(2πωt + ϕ + ∠H(jω)) . (3.1)

Note that z(t) is confined to oscillate at the input frequency ω, and thus an LTI model cannot 

produce either discontinuities in the movement or skipped cycles.

The IAF nonlinearity acts in such a way as to not transmit information if the amplitude of 

the integral of the signal y falls between −q and q. This inherently ties together the 

amplitude of the integral of y and the frequency of the desired movement r and leads to the 

conditions derived in the next section for the feedback system to reliably transmit the 

periodic signal. The nonlinearity in the IAF is a thresholding and reset nonlinearity, which 

can be approximated by an identity function below the limiting frequency of ωc (Saxena, 

2017).

3.3 Spiking SCS Model Enables Analytical Derivation of ωc.

In the SCS model as in Figure 3, we see in Figure 7 that our SCS model is able to maintain 

good tracking performance to a sinusoidal input until the input frequency is larger than the 

fundamental frequency ωc. After this input frequency, the model displays undesirable 

phenomena seen in experimental data, including undershoot, overshoot, and skipped cycles. 

Both undershoot and overshoot are phenomena accompanying fast movements in general, 

tolerating lower accuracy while reaching for a target and then correcting the movement 

when close to the target. In a repetitive movement, however, the movement is not corrected 

for the duration of several cycles, as seen in Figure 1b. Here, we derive a fundamental 

frequency, ωc, for which skipped cycles are generated when tracking a sinusoidal input 

whose frequency is higher than ωc. More importantly, we compute how ωc depends on our 

SCS model parameters.

Intuitively, we know that skipped cycles are observed as the density of spikes decreases. In 

order to track the sinusoidal input, the alpha motor neurons must generate a series of positive 

spikes to track the increasing part of the sinusoidal reference input, which are then followed 

by a series of negative spikes to track the decreasing part of the sinusoidal reference input. 

To avoid skipped cycles, we need the spike period, that is, the maximum length of time 

between the sequence of positive spikes to the sequence of negative spikes and back, to be 

less than or equal to the period of the sinusoidal input r. To calculate the dependence of the 

presence of skipped cycles on system parameters, we build a switching map from one spike 

to the next and analytically determine the switching times. We can then determine whether 

the spike period is more than the period of the driving oscillation for some initial conditions 

of the system.

Briefly, let the positive and negative spike times be defined as {ti
p}i ∈ Z and {tin}i ∈ Z, 

respectively. Let {θk
p}k ∈ Z be defined as the time between the first positive spike in a 
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sequence of positive spikes and the first subsequent negative spike, and similarly for 

{θk
n}k ∈ Z. (See Figure 6.)

Conjecture.—Let r(t) = R sin(2πωt + ϕ), and the closed-loop system as in Figure 3D. For 

any given parameter values, there exists a cutoff frequency, ωc, such that for all ω > ωc, 

there exist initial conditions that lead to skipped cycles.

We first define Ak and tk as z at the time of switching and the switching time, respectively. 

Specifically, {tk}k ∈ Z = ∪ {ti
p}i ∈ Z, {tin}i ∈ Z . The system can be entirely described by the 

state Ak and time of switching tk. The switching map Π, given a sequence of q’s, that is, 

{±q, ±q, …} for the state and spike times, is

…
Πk − 1 Ak

tk
Πk Ak + 1

tk + 1

Πk + 1 Ak + 2
tk + 2

Πk + 2 … (3.2)

The equations for calculating Πk (i.e., calculating Ak+1 and tk+1 as a function of Ak and tk) 

for a simple SCS model are provided in appendix A and are easily extendable to higher-

order models.

In general, this system can have multiple positive spikes in a row and multiple negative 

spikes in a row. We define θk
p and θk

n recursively as the following (see also Figure 6):

θ1
p = t1n − t1

p, (3.3)

θ1
n = min

j ∈ Z
tjp − t1n , (3.4)

θk
n = min

j ∈ Z
tjp − ∑

i = 1

k − 1
θk − 1

p + θk − 1
n + θk

p + t1
p , (3.5)

θk
p = min

j ∈ Z
tjn − ∑

i = 1

k − 1
θk − 1

p + θk − 1
n + t1

p . (3.6)

Note that for the spike train to be periodic with at least frequency ω, maxk(θk
p + θk

n) > 1
ω . If 

the condition maxk(θk
p + θk

n) > 1
ω  is not met, we have skipped cycles at the output z. Thus, we 

can find the dependence of maxk(θk
p + θk

n) on q for a given system with a given sinusoidal 

reference signal r, as detailed in appendix B. In this section, we also numerically show the 

conjecture for specific parameter values.
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Figure 7 shows ωc as a function of q given a specific M, F, and K. As expected, as the 

spiking density increases (q decreases), more information about the cerebrocerebellar output 

is transmitted to the muscles, and we see that the tracking performance increases (ωc 

increases).

In Figure 8, we plot the explicit dependence of the fundamental frequency on the different 

system parameters. (Parameter values for the closed-loop models are in Table 1.) We observe 

that as the feedback gain, F, or as the bandwidth of the musculoskeletal system M increases, 

we have a larger ωc for all values of q. Moreover, as the cerebellar proportional gain (Kp) 

increases, ωc increases, but not significantly. However, as the cerebellar derivative gain (Kd) 

increases, ωc increases drastically, showing the large degree of sensitivity to Kd. The 

derivative action is hypothesized to take place in the dentate neurons of the cerebellum (Jo & 

Massaquoi, 2004), which are known to be important for rapidly implementing a desired 

action (Pruszynski & Scott, 2012; Thach, Perry, Kane, & Goodkin, 1992). This feature is 

corroborated in Figure 8d.

4 Discussion

Humans can make flexible and fairly fast movements; however, damage to various parts of 

the central nervous system can limit motor performance. Whether damage is caused by 

stroke, multiple sclerosis, amyotrophic lateral sclerosis, or spinal cord injury, weakness 

(paresis) occurs routinely after injury to the primary motor cortex (M1) or its output to the 

spinal cord (Wagner, Dromerick, Sahrmann, & Lang, 2007). This weakness is known to be 

associated with reduced voluntary recruitment of motor units in the spinal cord, in terms of 

both the number of motor units recruited and the firing rates they achieve (Frontera, Grimby, 

& Larsson, 1997; Gemperline, Allen, Walk, & Rymer, 1995; Jakobsson, Grimby, & 

Edström, 1992; Rosenfalck & Andreassen, 1980; Young & Mayer, 1982). Given that 

weakness translates to deficient production of muscular forces that are used to accelerate the 

limbs, we expect weakness to limit fast movements, with progressively more reduction of 

neural activity being associated with a deceleration of voluntary movements (Wagner et al., 

2007). However, to the best of our knowledge, this is the first time that a trade-off between 

relaying ability of neurons and motor tracking accuracy has been quantified. Relatedly, a 

“speed-accuracy” trade-off, otherwise known as Fitts’s law, describes the dependence of 

target error on the speed of reaching to a stationary target (Fitts & Peterson, 1964). Fitts’s 

law can in fact be reproduced using linear models (Connelly, 1984), and it does not address 

the case where the tracking breaks down to the extent that we skip cycles. Moreover, the 

neural underpinnings have also not been conclusively determined (Plamondon & Alimi, 

1997). Here, we consider the neural underpinnings of the phenomenon of skipped cycles. 

Nakahira, Liu, Sejnowski, and Doyle (2019) discussed speed-accuracy trade-offs in a 

systems-level model of sensorimotor control. The trade-offs they considered are in relation 

to the geometrical properties of the axons leading to delays in data transfer, whereas we 

consider the functional properties of the neurons, that is, their spiking nature as represented 

by a integrate-and-fire model, as leading to trade-offs. Importantly, the neural constraints 

modeled in Nakahira et al. (2019) are of the form of a pure, uniform delay, and such a delay 

in feedback cannot produce skipped cycles, which is the phenomenon we are interested in. 
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Here, we consider the trade-offs incurred in feedback due to the spiking nature of neural 

communication.

Our modeling framework provides us with an explicit dependence of the emergence of 

undesirable phenomena (skipped cycles) as a function of q, the parameter that directly 

dictates the density of spikes (neural computing), the musculoskeletal system M, and 

cerebrocerebellar dynamics K. Specifically, we show that for a fixed musculoskeletal system 

M, cerebrocerebellar dynamics K, and a pair of motor neurons with thresholds q (for 

activation of agonist/antagonist pair of muscles), the oscillation input (periodic back-and-

forth movement) with frequency ω may generate undesired skipped cycles if ω is too large 

and/or the density of spikes (related to q) is too small. Such undesirable phenomena are 

consistent with symptoms observed in patients with movement disorders and finger tracking 

experiments wherein subjects are trained to follow a trace back and forth quickly. Here, we 

address the fundamental frequency past that a sinusoidal periodic movement is no longer 

well tracked. Notably, this fundamental frequency may serve as a guide for movements at all 

frequencies and may point toward the bandwidth of the SCS model being limited to a similar 

value as ωc. We plan to address this in future work.

The formulation in this letter also quantifies the increase in maximum speed gained due to 

the system parameters. This can help us compensate in limbs by providing either electrical 

stimulation directly to the muscles or using an exoskeletal device that can provide extra 

assistance to the limb. An example of these ideas is presented in Figure 9. Here, the block 

for neural activity contains the cerebrocerebellar model as well as the IAF block with the 

threshold parameter q as earlier. Let ωc as a function of q for the normal regime be given by 

the blue curve in Figure 9B, and let the neural activity be compromised such that q increases 

(this could correspond to damage directly in the alpha motor neurons or the spinal cord). 

Decreased neural activation or sparser spikes are seen as a key symptom of general motor 

impairment, and we are directly modeling that effect as a decrease in the threshold to spike 

(recall that this is a systems-level model of neural computing, as detailed in section 2.1). In 

order to restore functioning, we can add a compensator as in Figure 9A, which measures the 

output of the musculoskeletal system and in turn stimulates the musculoskeletal system in 

feedback (here, C = 10 and thus Mnew = M
1 + MC ). If we can further drive the output of the 

musculoskeletal system up by the same amount, znew = 10z, then we can drive up the 

operating curve for ωc to the red curve shown in Figure 9B. This suggests that in theory, one 

can compensate for damage to the neural system using reinforcements—for example, via 

neuroprosthetics at the musculoskeletal end. While this is shown in an ad hoc manner here, 

the framework in this letter allows us to quantitatively design compensators, C, given SCS 

parameters, that is, R, q, K, F, and M, to meet specific control objectives. Specifically, one 

can design a compensator C with the following objective,

C = argmaxC(ωc(R, q, K, M, F, C)), (4.1)

where ωc can be calculated as a function of q and the rest of the SCS parameters as 

formulated above.

Saxena et al. Page 10

Neural Comput. Author manuscript; available in PMC 2021 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A critical component in our SCS model that captures undesirable tracking phenomena in the 

fast regime is the pulsatile control implemented by alpha motor neurons. Pulsatile control of 

movement has provided us with insights into the slow regime but has rarely been analyzed 

for limitations in tracking fast movements.

Our SCS model can reproduce experimentally known properties of motor neurons and 

responses to step, pulse, and sinusoidal signals. However, other threshold-based pulsatile 

models for neural control can be readily used in the theoretical framework developed here. 

Furthermore, multijoint muscle models can easily be handled by our framework, as adding 

joints simply adds dimensionality to M. Our framework can also be augmented to allow 

incorporation of transmission delays incurred by the spinal cord. Small delays can be 

approximated by first-order linear systems (Padé ap-proximations as in Aström & Murray, 

2010), while larger delays in feedback interconnections can be modeled as structured 

uncertainty. Finally, this model allows for robustness to modeling errors while building 

compensators, using standard methods as detailed in Zhou and Doyle (1998).
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Appendix A: Ak and tk for a Simple SCS Model

We detail Ak and tk here for a simple SCS model, where K = 1, M = 1
s + a , and F = 1, for 

some a > 0. We first describe the dynamics of z(t) for any t between two spikes tk and tk+1, 

that is, tk ≤ t < tk+1, as in the following. Specifically, {tk}k ∈ Z = ∪ {ti
p}i ∈ Z, {tin}i ∈ Z :

u(t) = ∑
i = 0

k
qiδ(t − ti), (A.1)

z(t) = e−atz(0) + ∫
0

t
e−a(t − τ)y(τ)dτ (A.2)

= e−atz(0) + ∑
i = 1

k
qie−a(t − ti) (A.3)

= e−atz(0) + e−at ∑
i = 1

k
qieati (A.4)

≡ e−atAk . (A.5)

Saxena et al. Page 11

Neural Comput. Author manuscript; available in PMC 2021 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here, Ak ≡ ∑i = 1
k qieati + A0, where A0 = z(0), and we assume that t0 = 0.

At all times, y(t) = z(t) — r(t), and the value of qk = ∫tk
tk + 1y(τ)dτ. Thus, given a sequence of 

{qk}k∈Z, where qk ∈ {q, −q}, we have the following condition for the dynamics:

qk = ∫tk

tk + 1
r(τ)dτ − ∫tk

tk + 1
z(τ)dτ (A.6)

= ∫tk

tk + 1
R sin(2π ωτ + ϕ)dτ − Ak∫tk

tk + 1
e−aτdτ

= R
2πω (cos(2π ωtk + ϕ) − cos(2π ωtk + 1 + ϕ)) + Ak

a e−atk + 1 − e−atk .
(A.7)

Thus, for the simple model, Ak+1 and tk+1 are such that

Ak + 1 = Ak + qk + 1eatk + 1, (A.8)

R
2πω cos(2π ωtk + 1 + ϕ) − Ak

a e−atk + 1 = − qk + R
2πω cos(2π ωtk + ϕ)

− Ak
a e−atk .

(A.9)

Appendix B: Numerical Solution for General K and M

Due to the transcendental nature for the equations to find Ak+1 and tk+1 (e.g., as in equations 

A.8 and A.9), a numerical solution is required. This is obtained by forward marching in time 

using a suitably chosen time step for each set of initial conditions z(0) and ϕ. We perform 

the numerical solution for 20 different randomly chosen values of z(0) and 12 different 

values of ϕ, and take the maximum (maxk, z(0), ϕ(θk
p + θk

n)) of these—hereafter written as 

(maxk(θk
p + θk

n)) for short. In Figure 10, we show ω maxk(θk
p + θk

n) as a function of q for 

several values of ω for two sets of specific system parameters: one for K = 1, M = 1
s + 1 , and 

F = 1 and the second for K = 1, M =
Km

Ims2 + Bms + Km
, with Km = 1, Im = 1, Bm = 1, R = 1, 

and several values of ω. We see that for both cases, as we increase q, we hit the regime 

termed the undesirable regime namely with skipped cycles, with ω(maxk(θk
p + θk

n)) > 1. 

Moreover, for any fixed value for q, we see that there exists a frequency ωc such that for ω > 

ωc, we can find initial conditions that lead to skipped cycles. Thus, we show the conjecture 

for specific systems. More details for general K and M, as well as approximation methods 

for determining ωc, are discussed in Saxena (2017).
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Appendix C: Musculoskeletal Dynamics

Considerable work has been done on modeling the forward dynamics of the arm (Fuglevand, 

Winter, & Patla, 1993). In principle, models can be very complex, taking into account 

multiple muscles (An, Hui, Morrey, Linscheid, & Chao, 1981), their geometries of origin 

and insertion (An et al., 1981), effective moment arms (An et al., 1981), activation dynamics 

(Fuglevand et al., 1993; Winters, 1995; Zahalak, 1981), nonlinear force-velocity relations 

(Winters, 1995; Zahalak, 1981), skeletal mass distributions (Fuglevand et al., 1993), and 

spindle behavior (Houk, Rymer, & Crago, 1981).

As this study requires analytical tractability of the SCS model, we use a simplified model of 

the musculoskeletal system of a single joint as in McIntyre and Bizzi (1993). In this model, 

the muscle acts like a spring for passive displacements. This formulation is consistent with 

alpha-gamma coactivation that maintains the sensitivity of the muscle model to multiple 

inputs, deafferented monkey experiments in which the proprioceptive feedback to the spinal 

cord is compromised, as well as reflex function of the limbs. Analysis can also be carried 

out using Hill-type models for a single muscle (Shadmehr & Wise, 2005); however, various 

combinations of these Hill-type muscle models would be needed to model a single joint.
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Figure 1: 
Undesirable phenomena as seen in experiments performed in (a) Fuchs (1967) and (b) Vince 

(1948) . In both cases, fairly accurate tracking is seen in relatively low-frequency reference 

signals (i.e., ω < ωc), whereas undesirable phenomena such as skipped cycles (blue circles), 

overshoot (orange circle), and undershoot (red circles) are seen in high-frequency signals for 

ω > ωc for some ωc.
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Figure 2: 
Closed-loop model of the sensorimotor control system (SCS). The input, r(t), goes through a 

linear model of the cerebrocerebellar system K that in turn generates a control signal, u(t), 
from a group of alpha motor neurons. These motor neurons then actuate a linear model of 

the musculoskeletal system M that generates the motor output z(t), which is fed back to the 

cerebrocerebellar system.
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Figure 3: 
Proposed closed-loop model for movement generation. (A) Details of cerebrocerebellar 

dynamics. (Adapted from Jo & Massaquoi, 2007, 2004; Massaquoi & Topka, 2002.) (B) 

Details of the IAF Model (Kandel, Schwartz, & Jessell, 2000). (C) Details of the 

musculoskeletal system. (Adapted from McIntyre & Bizzi, 1993.) (D) A closed-loop model 

of the agonist/antagonist muscles acting around a single joint.
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Figure 4: 
Model reproduces known experimental properties of alpha motor neuron activity. In all 

panels, experimental data from literature are to the left and simulations using our model are 

to the right. Note that these are qualitative reproductions. (a) Self-sustained oscillations 

(Heckman, Johnson, Mottram, & Schuster, 2008). (b) Triphasic pattern of muscle 

contraction during rapid limb movement (Ghez, 1991). (c) The match between spiking 

patterns for periodic movements in (left) Joachim Büdingen and Freund (1976) and (right) 

our simulation results, all for low movement speeds (ω < ωc). The gray bar at the bottom of 

each plot represents 0.5 s.
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Figure 5: 
Model reproduces responses to elemental signals in health and during cerebellar disease. (a) 

Step movement: Data for healthy individuals and for patients with cerebellar disease (Manto, 

2009). (b) Short pulse: Data for healthy individuals and for patients with cerebellar disease 

(Hore & Vilis, 1984). Note that these are qualitative reproductions.
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Figure 6: 

A graphical illustration of positive spike times {tk
p}k ∈ Z, negative spike times {tkn}k ∈ Z, and 

spike period maxk ∈ Z(θk
p + θk

n).
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Figure 7: 
(a) ωc for R = 1, K = 1, F = 1, for varying q. (b) q = 0.1, ω = 1. (c) q = 0.1, ω = 3.18.
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Figure 8: 
Dependence of the fundamental frequency ωc on system parameters, with R = 1, and K, F, 

M as in Figure 3. (a) Varying the feedback gain F. (b) Varying the muscle stiffness KM. (c) 

Varying the cerebellar proportional gain Kp. (d) Varying the cerebellar derivative gain Kd.

Saxena et al. Page 23

Neural Comput. Author manuscript; available in PMC 2021 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9: 
Design of a compensator to restore functioning of the SCS in the presence of a compromised 

neural system. More details are in the text.
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Figure 10: 

ω(maxk(θk
p + θk

n)), for several values of ω and q, for two different systems. If this is greater 

than 1, the system displays skipped cycles. (a) K = 1, M = 1
s + 1 , F = 1. (b) K = 1, 

M =
Km

Ims2 + Bms + Km
, with Km = 1, Im = 1, Bm = 1. The systems were solved forward in time 

for multiple values of initial conditions z(0) and ϕ.
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Table 1:

The Values Used for Model Parameters.

Parameter Kc Kp Ki Kd I1 I2 Ka Km Im Bm Kf

Value 0.5 0.5 0.1 1 1 0.2 1 4 0.1 1 1

Note: The corresponding model is shown in Figure 3.
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