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Abstract

Sexual dimorphism may play a key role in the pathogenesis of diabetic kidney disease (DKD) and
explain differences observed in disease phenotypes, responses to interventions, and disease
progression between men and women with diabetes. Therefore, omitting the consideration of sex
as a biological factor may result in delayed diagnoses and suboptimal therapies. This review will
summarize the effects of sexual dimorphism on putative metabolic and molecular mechanisms
underlying DKD, and the potential implications of these differences on therapeutic interventions.
To successfully implement precision medicine, we require a better understanding of sexual
dimorphism in the pathophysiologic progression of DKD. Such insights can unveil sex-specific
therapeutic targets that have the potential to maximize efficacy while minimizing adverse events.
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INTRODUCTION

The call for individualized medicine including differences based on sex has become
increasingly louder in recent years [1]. An ever-expanding mass of studies show that many
diseases affect each sex differently. Despite these findings, women remain largely
underrepresented as participants in biomedical research. In fact, there are fewer women than
men represented in trials evaluating cardiovascular and kidney disease outcomes, the leading
causes of morbidity and mortality in women [1, 2]. Furthermore, even when women are
equally represented in research, the potential influences of sex (a biologic variable) and/or
gender (a social construct) are often inadequately investigated [2]. Men and women not only
differ in their risk factors and propensity for kidney disease, but also in multiple biological
processes including aging, cell apoptosis, and the functioning of several homeostatic
systems (e.g. blood pressure, fluid balance, and the hypothalamic-pituitary-adrenal axis) that
could modify the progression of kidney disease [3-5]. The reasons for these differences are
multifactorial and may relate to the presence or absence of a Y chromosome and sex
differences in gene expression, mitochondrial genome inheritance, and neurohormonal
activity [6, 7].

Male sex is associated with enhanced risk for progression of acute kidney injury (AKI) and
chronic kidney disease (CKD) in human and animal models [8-15]. However, a higher
prevalence of CKD is reported in women than men in the United States (15% vs 12%) [16].
Comparatively, from 2007 to 2017, global CKD prevalence increased by 28.2% in women,
while only a 25.3% increase was reported in men [17]. It would be interesting to see if this
CKOD trend was the same in developing countries. In addition, a large metanalysis of sex-
related differences in CKD did not demonstrate greater nephroprotection in women than
men when adjusting for additional risk factors including hypertension and albuminuria [18].
Notably, most women in these studies were postmenopausal, thus these results could be
influenced by the loss of estrogen-mediated nephroprotection [18]. In the United States,
almost half of patients with end-stage kidney disease (ESKD) have concurrent diabetic
kidney disease (DKD), with over 80% suffering from type 2 diabetes (T2D) [19]. Yet, the
data on sex and DKD risk are inconsistent. Studies have reported either a higher risk in men
[20-35], a higher risk in women [25, 35-43], or no significant sexual dimorphism [44-49]
(Table 1).

There are several potential reasons for these inconsistencies in the data on sexual
dimorphism in DKD. One of the most compelling is that the tools used to assess DKD and
CKD are often crude and subject to imprecision and inaccuracy. In fact, most studies
estimate glomerular filtration rate (GFR) in lieu of gold standard measurements of kidney
function. Indeed, endogenous filtration markers (e.g. serum creatinine and cystatin C) may
differ in women and men [50]. In addition, there are multiple equations to estimate GFR,
and some of them do not perform equivalently in men and women [51, 52]. Validated sex
specific cut-offs for estimated GFR and albuminuria have not been extensively used [53].
Criteria for CKD staging may need to take into account the distribution of GFR by age and
sex [51, 54]. Additionally, residual confounders such as the different impact of concomitant
cardiovascular risk factors on DKD progression in men vs. women are not fully understood
[51, 54, 55].
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Even with the inconsistent data, several mechanisms have been proposed to explain the
potential sexual dimorphism in DKD including differences in sex hormone concentrations
[56-101], kidney hemodynamic function [39, 96-97, 102-112], adiponectin concentrations
[113-121], oxidative stress [37, 38,100-101,122-126], activity and expression of membrane
channels and water-electrolyte homeostasis within the kidney [127-131], and additional
concomitant risk factors [132-133]. This review will outline the role of sex in the
pathogenesis of DKD and discuss the potential effects of sexual dimorphism on existing and
novel interventions to mitigate kidney injury (Figure 1).

Sex-related differences in the risk for DKD development and progression

To date, an unequivocal link between sex and DKD prevalence or progression has not been
found. The influence of sex on the clinical course of DKD is actively under investigation. To
synthesize a summary of studies evaluating sexual dimorphism in DKD, we performed a
comprehensive literature review. The following key words were used to search the literature

“diabetic kidney disease”, “diabetic renal disease”, “diabetic renal insufficiency”, “diabetic
kidney insufficiency”, “diabetic kidney failure”, “diabetic renal failure”, “diabetic end stage
renal disease”, “ diabetic end-stage kidney disease”, “diabetic ESKD”, “diabetic ESRD”,
“diabetic proteinuria”, “diabetic albuminuria” and “sex”, “gender”, “men”, and *“ women”.
No search restrictions were imposed, and references were scanned to identify other
potentially relevant studies. When referring to sexual dimorphism in human studies we use
the terms men and women, and boys and girls as appropriate to distinguish between the
sexes. In citing animal research, we instead use the terms males and females. From our
literature search, we found 29 studies on sex-related differences in the prevalence and
progression of DKD (Table 1). Most studies included individuals affected by type 1 diabetes
(T1D) (18 studies, 60%), but 7 (23%) studies included participants with type 2 diabetes
(T2D), and 5 (17%) studies included both individuals with T1D and T2D. Sixteen studies
(50%) showed that men were at higher risk of developing DKD in both the T1D and T2D
populations, while 10 studies (31%) showed that women were at higher risk and 6 studies
(19%) showed no significant sex-related differences (Table 1). It should be noted that Yu et
al reported men were at higher prevalence of DKD, while women were at higher risk of
advanced DKD [35]. A majority of studies reviewed showed that men were at higher risk of
DKD, even when considering the differences in overall duration of follow-up and the sizes
of the populations examined. In addition, of the 10 studies with albuminuria as an
independent outcome (8 [80%] with T1D), 6 studies (60%) showed a higher risk of
albuminuria in men [23-27, 31], while only 2 (20%) demonstrated a higher risk in women
[39, 43] and the remaining 2 showed no significant difference between sexes [44, 45]. These
findings are consistent with non-diabetic CKD studies that also showed an increased
prevalence and progression of kidney disease among men [8-16]. However, the larger meta-
analysis of Shen et a/. including 5,000,000 participants with either T1D or T2D showed a
higher incidence of ESKD in women [42].

Possible explanations for these heterogeneous results may include key differences in the
populations studied such as age, menopausal status for women, age of diabetes onset,
diabetes duration, and presence of other comorbidities or risk factors for DKD progression,
as well as differences in the study design including the equations used for calculating the
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GFR and variations in outcome measures. Indeed, epidemiologic data suggest that age of
T1D onset predicts the risk of ESKD and mortality, with diagnoses around puberty
conferring the greatest risk of future ESKD [28, 41, 43, 48]. Additionally, data also suggest
that the risk of ESKD is equal in men and women if T1D is diagnosed during childhood, but
there are sex differences if diabetes onset occurs peripubertally, although studies are split
whether men or women are at higher risk [28, 29, 41, 43]. Indeed, the onset of T1D and T2D
close to puberty has shown to magnify the risk for DKD development and progression in
both sexes [56]. These findings support a key role for puberty and sex hormones in the
development and progression of DKD. Menopause, the cessation of sex hormone production
in older women, could also help us further define the role of sex hormones in the
development of kidney disease and Yu et a/. has demonstrated that women =60 years of age
had a greater prevalence of advanced DKD compared to men [35]. Sex-differences are
highly dependent on duration of diabetes, as the prevalence of DKD increases in men with
T1D who have had diabetes for >25 years [28, 30]. This increase was not significant in
women. Despite longer disease duration, childhood onset of T1D is protective against future
development of DKD for both sexes, while pubertal onset of diabetes has a sex-dependent
effect on DKD risk.

Men with either T1D or T2D appear to be at higher risk of developing DKD and especially
albuminuria compared with women, particularly if they have had diabetes for >25 years. Yet,
women have a higher prevalence of ESKD than men, which suggests a faster progression to
ESKD in women vs. men but little has been conclusively shown. Post-menopausal women
on the other hand are also at higher risk of DKD compared to men. However, it has to be
noted that a majority of studies on sex-related differences on DKD did not consider the
menopausal state as a variable and did not analyze the differences between pre- and post-
menopausal women.

Pathophysiology of sex-related differences in DKD

1. Sex hormones—The expression of sex hormone receptors and concentrations of sex
hormones are important to consider in the discussion of sex-related differences in DKD.
Variable expression of sex hormone receptors has been shown in cells throughout the
nephron including the glomerulus, proximal tubule, distal tubule, connecting tubule, and
collecting duct, but the precise localization of these receptors is still under debate [57].

In the kidney, the androgen receptor (AR), a soluble nuclear receptor, is expressed in both
men and women, but it is unknown exactly where this receptor is located [57]. The
progesterone receptor is present in the cortex and medulla of the kidney, in both sexes [58].
Estrogen can bind either soluble intracellular receptors (ERa and ERp), or recently
discovered membrane bound receptors (MER). ERa is expressed in the kidney in both sexes,
but it is still unclear if ERp is present in men [57]. In animal kidney models, ERB increases
and ERa decreases during menopause, and there is a normalization of ERp levels with
replacement hormone therapy [58]. Conversely, an increase in ERa/ER ratio has been
observed in diabetic rat models compared to healthy controls, with a normalization after
17p-estradiol supplementation through an increase in ERP and a decrease in ER expression
[59]. Supplementation with 17p-estradiol (E,) in animal models attenuates the development
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of DKD and reduces albuminuria, podocyte injury, glomerulosclerosis, and tubulointerstitial
fibrosis through regulation of expression and signaling of the extracellular matrix and TGF-
B [60-67]. In studies of both human and animal models with diabetes and menopause who
were treated with either E; or ER modulators (tamoxifen or raloxifene), there was an
improvement in DKD progression [68—72]. In addition, recent data showed that women with
pre-gestational diabetes who had preeclampsia had a 4-5 times increased long-term risk of
end-stage renal disease or death [73] and preeclampsia has shown to be related to a decrease
in estradiol concentration [74]. Estradiol metabolites concentrations can also be determinant
for the progression of DKD. For example, 2-ethoxyestradiol and 2-methoxyestradiol have
shown to be renoprotective, increasing renal blood flow and glomerular filtration, and
decreasing albuminuria in diabetic ZSF1 rats [75].

Progesterone has also shown to play a role in DKD. Replacement of progesterone can
ameliorate DKD in rat models of diabetes [76]. However, some studies suggest that high
levels of progesterone could play a key role in the development of insulin resistance and
gestational diabetes [77]. Progesterone also has a high affinity for the mineralocorticoid
receptor and can antagonize its effects [57]. However, the overall antagonist or agonist
activity of progesterone also depends on its metabolites. For example, 20alpha-DH-
progesterone /n vitro has demonstrated the strongest agonistic potency reaching 11.5% of
aldosterone transactivation, while 17alpha-OH-progesterone has shown to be a strong
mineral corticoid receptor antagonist [78].

Testosterone is one of multiple androgens synthesized by cytochrome P450 enzymes in the
gonads, adrenal glands and, interestingly, also in the kidney [79]. Men with either T1D or
T2D have lower concentrations of total and calculated free testosterone compared with
healthy controls [80-83], and a decrease in serum testosterone predicts the development of
macroalbuminuria [83]. However, elevated serum estradiol and testosterone are independent
predictors of ESKD development in men with T1D [83]. Testosterone supplementation
attenuates kidney injury in diabetic rat models [84]. In human studies, testosterone may
attenuate the morbidity and mortality of cardiovascular disease in men with T2D, but there
are no conclusive data for DKD in adults with T1D [85]. In men with androgen deficiency,
testosterone supplementation improves arterial vasoreactivity, reduces proinflammatory
cytokine levels, decreases triglycerides and total cholesterol concentrations, reduces visceral
fat, and enhances glucose-stimulated insulin secretion [86-88]. Studies of testosterone
action and replacement in women are scarce but observational data suggest that testosterone
may have a cardioprotective role, particularly in menopausal women [89].

Low Sex Hormone-Binding Globulin (SHBG) has been found in men with T2D and young
boys with T1D, and a correlation between lower concentrations and new onset
microalbuminuria has been found in men with T1D [80, 83]. However, young men with
childhood onset T1D have higher concentrations of SHBG and testosterone than their
healthy counterparts [90].

Among individuals with diabetes, there is an imbalance in sex hormone concentrations as
men demonstrate lower levels of total testosterone and higher levels of estradiol due to
increased adipose-tissue driven testosterone aromatization when compared with non-diabetic
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controls [60, 83, 86, 91-93]. By contrast, women with diabetes have lower concentrations of
estradiol and higher concentrations of total testosterone when compared to their non-diabetic
counterparts [60, 83, 86, 91-93]. Interestingly, women with diabetes and albuminuria have
lower estradiol concentrations than counterparts without albuminuria and healthy controls
[94]. In addition, sex hormones play different roles in men and women. For example,
estrogens have shown to regulate growth hormone (GH) secretion only in men [95] and GH
can also play an important role in DKD development and progression [96].

Insulin sensitivity and secretion have also shown to be influenced by sex hormones [97, 98].
Pre-menopausal women demonstrated higher insulin sensitivity and postprandial insulin
levels than men [97, 98]. However, women with T1D showed greater deficits in insulin
sensitivity than men counterparts [99]. Women with T2D had a similar glucose metabolism
than men with T2D [100]. Thus, in women with both types of diabetes insulin sensitivity
and secretion were equal or worse than men counterpart, loosing the advantage in glucose
metabolism seen in adults with normal glucose tolerance.

Sex hormone differences are theorized to influence the dimorphism of the renin-angiotensin-
aldosterone-system (RAAS). The RAAS plays a key role in kidney hemodynamic function
and disease progression [101]. In general, men have higher RAAS activity levels than
women [102]. There are multiple possible sex hormone-related etiologies for this
dimorphism. Estrogen promotes higher angiotensinogen levels and reduces angiotensin
converting enzyme [103] activity, renin activity, angiotensin 11 receptor type 1 (AT1R)
density, aldosterone secretion, angiotensin Il (AT2) activity, and hemodynamic and excretory
responses to AT2 [101, 104] (Figure 2). In addition, progesterone and aldosterone compete
for the mineralocorticoid receptor, effecting the regulation of water and electrolytes.
Androgens can induce renal vasoconstriction through increased RAAS activity [102, 104].
Furthermore, the role of the counter-regulatory arm of the RAAS, characterized by the
ACE2-Angiotensin 1-7 axis, has not been thoroughly investigated. This arm is upregulated
by estrogen and generally opposes the traditional pathway, leading to vasodilation,
natriuresis, and anti-proliferative effects on vascular smooth muscle cells [102].

Sex hormones also play a regulatory role in oxidative stress. In animal studies, estradiol acts
as an antioxidant and rats who have undergone oophorectomy demonstrate an increase in
renal nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and the
glomerulosclerosis index, a measure of the percentage of sclerosis in glomeruli [58].
Estradiol replacement reverses these changes [105, 106]. Conversely, androgens increase
oxidative stress both systematically and in the kidney [58, 105, 106]. Sex hormone
differences appear to play an integral role in the pathophysiology of sexual dimorphism in
DKD and further exploration is needed to elucidate if treatments such as altering hormone
levels could attenuate kidney injury caused by the hormone imbalances seen in T1D and
T2D.

2. Kidney hemodynamic function—Kidney hemodynamic differences constitute
another important facet of the effects of sexual dimorphism in DKD (Figure 3). One of the
most studied and early events in the development of DKD is hyperfiltration [107]. We
demonstrated with other research groups that adolescent girls with T1D or T2D have a
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higher prevalence of renal hyperfiltration compared to boys with diabetes [108, 109]. Skrti¢
and colleagues calculated kidney hemodynamic parameters by Gomez equations and found
that women with T1D and hyperfiltration had higher efferent arteriolar resistance and lower
effective renal plasma flow compared to men with T1D who also had hyperfiltration [39].
These pathophysiologic features lead to higher glomerular hydrostatic pressure in women
which can worsen DKD. Another study in adolescents with T1D confirmed lower effective
renal plasma flow during euglycemia and increased renal vascular resistance and filtration
rates during clamped hyperglycemia in young women vs. young men [110]. The underlying
mechanisms have not yet been fully explained but could involve sex differences in nitric
oxide (NO) levels, since female animals have higher NO synthase activity that leads to an
increase in NO which in turns causes vasodilation of the afferent arteriole [111, 112]. NO
abnormalities have also been linked to DKD, with upregulation early in the development of
diabetes and downregulation in advanced kidney disease [113]. Additionally, Studies have
exhibited induction of NO synthesis by ER-mediated mechanisms [114].

When assessing kidney hemodynamics and filtration, it is important to consider the RAAS
system. This system has demonstrated sex-dependent effects and plays a key role in kidney
hemodynamics and disease progression [101]. Men have a higher sensitivity to AT2, greater
cardiovascular protective effects in response to angiotensin-converting-enzyme inhibitors
(ACEis) and AT2 receptor blockers (ARBSs), and a better metabolic profile with lower AT2
receptor type Il (AT2R) when compared to women [101, 102]. The distributions of AT2R
and AT1R also differ between the sexes. As discussed previously, men have higher RAAS
activity levels and this could explain the greater effect of both ACEis and ARBs in men
[102].

Another important mechanism of sex-dimorphism in kidney hemodynamics is endothelin-1
(ET-1), a potent vasoconstrictor also produced by the kidney. Overall, ET-1 levels are higher
in men than women and these levels increase due to a variety of conditions, including aging,
diabetes and menopause in women [115]. However, in some clinical circumstances (e.g.
pulmonary hypertension), women have shown better responses to type A endothelin receptor
blockers [115]. These data are corroborated by the greater ET-1-induced vasoconstriction
observed in female rats with diabetes [116]. Additionally, endothelin has shown sex
hormone-responsive effects and testosterone treatment increases plasma endothelin
concentrations in female animals [58].

Finally, copeptin, the C-terminal end of a vasopressin hormone precursor, correlates with a
higher risk of development and progression of diabetes and DKD [117]. However, in the
British Regional Heart Study, copeptin concentrations were associated with an increased risk
of diabetes only in men [117].

3. Adiponectin—Adiponectin is an adipocytokine produced by adipocytes, skeletal and
cardiac myocytes, and endothelial cells that plays an important role in inflammation and
insulin sensitivity. Lower concentrations are associated with obesity, insulin resistance, and
T2D [118]. Higher concentrations of this adipocytokine are found in women, suggesting a
possible role of adiponectin in DKD sexual dimorphism [119]. In a longitudinal study of
Pima Indians (n=1,069), adiponectin concentrations strongly correlated with serum
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creatinine and diabetes duration in participants with T2D after adjustment for age and sex
[120]. Furthermore, lower levels of adiponectin predicted the onset of T2D [121-123]. Few
studies have shown insulin-sensitizing, anti-atherogenic, and anti-inflammatory effects of
adiponectin administration in humans and rodents [118]. However, Looker et a/. found that
adiponectin concentrations increased with macroalbuminuria and DKD, probably exerting a
compensatory action against further progression of DKD [120]. In fact, adiponectin receptor
agonism has shown to exert renoprotective effects in DKD [124]. /n vitro experiments in
human adipocytes from Horenburg et a/. demonstrated that while adipocytes express AR and
ER, both the expression and secretion of adiponectin are not affected by the presence of sex
steroids, leading to the hypothesis of an additional serum factor that is responsive to sex
hormones and is ultimately responsible for the sexual dimorphism of circulating adiponectin
levels [125]. This hypothesis is further supported by a study in 1546 adults which also found
that sex hormone regulation was not responsible for circulating adiponectin concentrations
and did not explain the differences between the sexes [126]. In the same study, median
serum adiponectin concentration was 50% higher in women than in men.

4. Oxidative stress—Oxidative stress is a key pathogenetic feature of many kidney
diseases, including DKD, and there is evidence of higher degrees of oxidative stress in men
than women [58]. Diabetes is intrinsically associated with an imbalance between O,
consumption and production rate in the kidney, leading to a relative state of hypoxia and
ischemia [38, 40]. In addition, insulin resistance and hyperglycemia can worsen kidney
hypoxia through ATP depletion due to mitochondrial dysfunction and AMP-activated
protein kinase inhibition in glomerular and tubular cells [37, 38, 127]. Mitochondrial
dysfunction can also lead to increased production of reactive oxygen species (ROS) [38].
Specifically in the kidney, hyperglycemia induces intracellular reactive-oxygen-species
(ROS) in mesangial and tubular cells in a process involving intracellular glucose uptake and
metabolism and advanced glycation end-products and cytokines including TGF-B1, and AT2
[128]. ROS are capable of subsequently activating transcription factors Nuclear Factor-
Kappa B (NF-xB) and Activator-Protein-1 (AP-1) and upregulating extracellular matrix
(ECM) expression which may lead to tubulointerstitial fibrosis [128]. Sex hormones play a
regulatory role in oxidative stress. While estradiol acts as an antioxidant, androgens increase
oxidative stress [58, 105, 106].

Noradrenaline has demonstrated associations with both worsened ischemia and ROS
production in the kidney [129]. Male sex correlates with higher levels of noradrenaline at
baseline and after kidney ischemic injury [5, 130, 131]. Animal models indicate that this sex
dimorphism could be secondary to differences in monoamine oxidase type A (MAOa)
concentrations and/or to the role of estradiol in reducing the effects of the renal sympathetic
nervous system via NO production [131]. In addition, NO and ROS signaling cross-talk and
NO-cGMP pathway interactions play a role in oxidative stress and insulin sensitivity and
secretion [130]. Thus, NO is another important player of sex-related differences in oxidative
stress.

5. Membrane channels and Water-electrolyte homeostasis—Renal ion transport
alterations have been related to DKD development and progression [132]. Animal models
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demonstrate sex-related differences in both membrane channels and water-electrolyte
homeostasis, with females appearing to concentrate urine better than males in the setting of
dehydration [133]. Two possible explanations for this finding include increased aquaporin 2
mobilization and expression and increased activity of the collecting duct intercalated cell
vacuolar-type H+ pumping ATPase in female animals vs. males [133]. Veiras and colleagues
found higher Na*-K*-CI~ cotransporter 2 and Na*-K*-ATPase protein densities along the
kidney medulla and higher Na*-CI~ cotransporter, Claudin 7, and epithelial Na* channel
concentrations in the distal nephron and collecting duct of female mice [134]. These findings
suggest an increased uptake of electrolytes in the kidneys in women vs. men, subsequently
leading to increased reabsorption of water and more concentrated urine. Sabolic and
colleagues also found both sex and species differences in the sodium glucose co-transporter
2 (SGLT?2) transcripts with female rats having higher expression than male counterparts
[135]. This finding could also suggest increased reabsorption of water in female animals as
the reabsorption of sodium and glucose increases due to increased transporters.
Contrastingly, male animals have higher expression of the aquaporin protein 1, a water
transporter in the kidney [136]. These findings highlight the significant variability between
the sexes in both kidney membrane channels and water-electrolyte homeostasis. More
studies exploring human pathophysiology might be considered to fully identify the role of
sex in both normal physiology and DKD.

6. Different impact of concomitant risk factors—Many cardiovascular risk factors
such as hypertension, hyperuricemia, central obesity, and dyslipidemia can magnify the risk
for DKD [34, 137]. In addition, these risk factors appear to have less deleterious effects in
women than in men [137]. However, in individuals with diabetes, women appear to be
paradoxically affected as they have higher risk of complications than men in the setting of
positive risk factors, irrespective of diabetes type [34, 55]. In a meta-analysis (n=5 162 654
participants), Wang et a/. found that women with diabetes have a 58% greater risk of
coronary heart disease (CHD) and a 13% greater risk of all-cause mortality when compared
with men [138]. Hormone imbalances could serve as a possible explanation for these
observed differences, but little is conclusively known.

Sexual Dimorphism and Therapies

The discussion of the DKD pathophysiology presents numerous therapeutic implications.
Replacement of estradiol [58, 68—72], progesterone [76], and testosterone [86—88] have
already shown promising results, improving DKD in both human and animal models
through different pathways which involve almost all the pathophysiologic mechanisms
previously shown.

SGLT2 inhibitors have emerged as a compelling therapy to protect kidney function in DKD.
SGLT?2 inhibitors ameliorate kidney hemodynamic dysfunction and reduce kidney injury
across cardiovascular and kidney outcome trials in adults with T2D [139, 140]. These
inhibitors may also regulate oxidative stress through a reduction of renal O, consumption in
the proximal tubular cells [139] and may play a role in the regulation of adiponectin [118,
141]. It is notable that SGLT2 inhibition has provided similar renoprotective effects in both
sexes [142, 143], emphasizing the potential value of this class in the treatment of both sexes
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with DKD. Currently, SGLT2 inhibitors are rare as both a monotherapy and in a
combination therapy, but there is much promise in its benefits [144]. Drugs targeting sex
differences in SGLT2 expression, as well as aquaporin channels, claudins, and Na*/K*
ATPases, could also be helpful in the treatment of DKD. In particular, the Na*/K* ATPase
can be regulated by multiple different mechanisms, including adrenergic agonists/
antagonists [145] and dopamine receptors [146].

Therapies acting on sex-differences in kidney hemodynamics could also be promising. Men
and women respond differently to RAAS inhibitors, but in order to optimize therapeutic
choices further controlled studies are needed [102]. In addition, there are promising
experimental drugs. For example, in animal models human recombinant ACE2 and
angiotensin-(1-7) somministration slow the progression of DKD [147]. Vasopressin V2
receptors (V2R) antagonists, such as lixivaptan, reduce albuminuria and hyperfiltration in
diabetic animal models [148] and could be a therapeutic target as well. Finally, the
“Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease”
study, a double-blind, randomized, placebo-controlled trial of atrasentan, a selective
endothelin receptor antagonist, has recently demonstrated a possible role for endothelin
receptor antagonists in preserving renal function in individuals with T2D who are at risk of
DKD [149].

There are also sex-specific therapies that could correct the oxidative imbalance present in
diabetes. Estradiol replacement and monoamine oxidase (MAOa) inhibitors could
potentially reverse diabetic oxidative imbalances as they influence redox homeostasis [58,
131]. Phosphodiesterase type 5 inhibitors (PDE-5), piperazine ferulate, astragaloside 1V,
bardoxolone and idebenone all attenuate oxidative stress and exert renoprotective effects in
diabetes [150-154]. Treatment with Astragaloside IV reduces oxidative stress through
inhibition of the TLR4/NF«xB pathway, one of the main injury patterns of oxidative stress
[151, 155]. In the randomized controlled Bardoxolone Methyl Evaluation in Patients with
Chronic Kidney Disease and Type 2 Diabetes [152] trial, bardoxolone was associated with
improvements in GFR, but no significant reductions were seen in ESKD or cardiovascular
mortality in adults with T2D who had stage 4 CKD [152]. In addition to its antioxidative
action, Idebenone increases insulin sensitivity both /n vitro and in vivo [153], potentially
relieving some stress on the kidney as glucose levels entering the organ decrease. Another
potential therapeutic target involves adiponectin, which could also play a part in regulating
sex-related differences in oxidative stress in DKD [117, 155]. For example, AdipoRon, an
adiponectin receptor agonist, improves DKD in human glomerular endothelial cells and in
diabetic mice models [156]. Indeed, mechanisms of action of this oral drug include the
reduction of high-glucose—induced oxidative stress and lipotoxicity [156].
Thiazolidinediones and different bariatric surgery’s approaches have also been shown to
increase adiponectin concentrations and exert nephroprotective effects [155, 157]. However,
most animal and human studies involving antioxidant drugs do not include an equal number
of men and women or male and female animals and sex is rarely considered as an
independent variable. Thus, the effect of sexual dimorphism on these pathways remains
unknown. However, it is reasonable to hypothesize that antioxidant drugs could have
different effects in men vs. women.
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There are potential implications of sexual dimorphism in other comorbidities which should
also be considered in the development of therapies for DKD. Hypertension is a known risk
factor for the progression of a variety of kidney diseases, and sex-related differences in the
pathophysiology and therapeutic response of hypertension have been shown [158]. Men and
women, for example, have differential responses to ACEi and ARB therapies in the
treatment of hypertension [102]. Another example is represented by hyperuricemia, which
has also demonstrated a key role in the pathogenesis of DKD [159]. In fact, hyperuricemic
women respond better to febuxostat than to allopurinol compared to men [160]. Much
remains to be learned about how the effects of the therapies mentioned potentially differ
between the sexes. Strategies leveraging these therapies cannot be fully optimized until
potential sex-related differences are fully explored.

Conclusions

In this review, we have described in detail the effects of sexual dimorphism on the metabolic
and molecular mechanisms underlying DKD (Figure 1). Men with either T1D or T2D
appear to be at higher risk of DKD than pre-menopausal women, and the sex-related
discrepancy is magnified when diabetes duration exceeds 25 years. Post-menopausal
women, in contrast, appear to be at a higher risk than both groups for DKD development.
Additionally, pre- and post-menopausal women have a higher prevalence of ESKD than
men. Concomitant risk factors such as hypertension appear to progress to end organ damage
to a greater degree in women vs. men with diabetes. Childhood onset of T1D is a protective
factor for both sexes, while pubertal onset of both diabetes types represents a risk factor for
the development of DKD.

Yet, much remains unknown about the precise mechanisms of these sex-differences and how
they relate to the progression of DKD. Consequently, further study of the sexual dimorphism
in DKD is critical. Not only to advance our overall understanding, but also to develop
targeted therapies that take into consideration the inherent differences in pathophysiology
between the sexes. Though promising, the efficacy and value of the potential therapies
explored in this review cannot be fully understood and put into clinical practice without
further studies exploring the effects of sexual dimorphism. An integrated biological
approach is necessary and possible research strategies include clinical phenotyping through
the use of kidney clearance studies and functional imaging, as well as histopathological and
molecular phenotyping through kidney biopsy analysis. Improvements in our understanding
of the mechanisms underlying sex differences in DKD and other related comorbidities could
serve as an important first step towards personalized precision medicine.
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Figure 1. Mechanisms of sexual dimorphism in DKD and potential therapeutic implications
Abbreviations: ACEi: Angiotensin-converting enzyme inhibitors; ACE2: Angiotensin-

converting enzyme 2; ARB: angiotensin receptor blocker; MAO: Monoamine oxidase;
MAOa: Monoamine oxidase type A; PDE5: Phosphodiesterase type 5; RAAS: Renin-
angiotensin-aldosterone system; SGLT2: Sodium glucose co-transporter 2.
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Figure 2.
Effects of estrogens on DKD pathophysiologic mechanisms

J Diabetes Complications. Author manuscript; available in PMC 2022 April 01.




1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Piani et al. Page 22

. N 7
[/ Afferent \\  yasoconsTRICTORS
ficmyy arteriolar tone} | - Adrenaline/Noradrenaline |

| - Endothelin | Affergnt
arteriolar tone

A AAS g pe
4 g i S —— | Hyperfiltration
<L. - Vasopressin | - t Efferent
' arteriolar tone

VASODILATORS
- Nitric Oxide 1

Efferent
arteriolar tone/

Figure 3. Regulation of kidney hemodynamics
Kidney hemodynamics are regulated by the interplay between afferent and efferent arteriolar

tone. Efferent vasoconstriction and afferent vasodilation increase intraglomerular pressure
and glomerular filtration rate. The arrows indicate the changes in women compared to men.
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